切线斜率,倾斜角,切点横坐标(范围)
- 格式:doc
- 大小:137.31 KB
- 文档页数:2
高二数学导数的概念和几何意义试题答案及解析1.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.2.已知函数().⑴若函数的图象在点处的切线的倾斜角为,求在上的最小值;⑵若存在,使,求的取值范围.【答案】⑴在上的最小值为;⑵的取值范围为.【解析】⑴对函数求导并令导函数为0,看函数的单调性,即可求在上的最小值;⑵先对函数求导得,分、两种情况讨论即可求的取值范围.(1) 1分根据题意, 3分此时,,则.令-+∴当时,最小值为. 8分(2)∵,①若,当时,,∴在上单调递减.又,则当时,.∴当时,不存在,使 11分②若,则当时,;当时,.从而在上单调递增,在上单调递减.∴当时, 14分根据题意,,即,∴. 15分综上,的取值范围是. 16分【考点】导数的应用、分类讨论思想.3.设,则曲线在处的切线的斜率为()A.B.C.D.【答案】B【解析】因为,根据导数的几何意义可知,曲线在处的切线的斜率为,故选B.【考点】导数的几何意义.4.设曲线在点(3,2)处的切线与直线垂直,则的值是A.2B.C.D.【答案】B【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:B.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.5.设,则在处的导数()A.B.C.0D.【答案】A【解析】,故选A.【考点】某点处的导数.6.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是________.【答案】【解析】与已知直线垂直的直线的斜率,,解得,代入曲线方程所以切线方程为,整理得:【考点】1.导数的几何意义;2.直线的垂直.7.已知A为函数图像上一点,在A处的切线平行于直线,则A点坐标为 ;【答案】(1,2)【解析】因为,设,则A点坐标为(1,2).【考点】导数的几何意义8.过点且与曲线相切的直线方程为()A.或B.C.或D.【答案】A【解析】设切点为,因为,所以切线的斜率为,所以切线方程为,又因为切线过点,所以即,注意到是在曲线上的,故方程必有一根,代入符合要求,进一步整理可得即,也就是即,所以或,当时,,切线方程为即;当时,,切线方程为即,故选A.【考点】导数的几何意义.9.在曲线处的切线方程为。
切线倾斜角的范围切线倾斜角的范围是一个很有趣的数学概念呢。
我们先从倾斜角本身说起吧。
倾斜角就像是我们在爬山时,山坡与水平面所成的角。
你可以想象一下,当我们站在平地上,这个角就是0度,就像我们平静地走在笔直的大路上,没有任何起伏。
那切线呢?切线就好比是刚好与曲线在某一点轻轻触碰的一条直线。
就像是你拿着一根直直的小棍,在一个弯弯的轨道上,在某一点让小棍刚好靠着轨道,这个小棍就像是切线。
现在我们来聊聊切线倾斜角的范围。
在平面直角坐标系里,倾斜角的范围是0度到180度。
这就好比我们看一个半圆,从最左边的水平开始,慢慢转到最右边的水平,这个转动的角度范围就是倾斜角的范围。
当切线是水平的时候,倾斜角就是0度,就像平静的湖面一样,没有波澜。
而当切线垂直于x轴的时候,倾斜角就是90度,这就像我们在爬一个垂直的峭壁,非常陡峭。
当切线从垂直慢慢又向水平变化时,倾斜角从90度又慢慢回到180度。
我们还可以从三角函数的角度来看。
正切函数的值与倾斜角是有关系的。
当倾斜角从0度慢慢增大到90度时,正切函数的值从0慢慢增大到正无穷。
而当倾斜角从90度增大到180度时,正切函数的值从负无穷增大到0。
这就像一个循环,从平静到陡峭再到另一种状态的平静。
从斜率的角度来看,斜率k等于倾斜角的正切值。
斜率也能反映出切线倾斜角的特征。
斜率为0的时候,倾斜角是0度;斜率不存在的时候,倾斜角是90度。
我们还可以通过一些具体的曲线来理解。
比如对于圆来说,在圆上某一点的切线倾斜角是有一定范围的,这个范围与圆的位置以及该点在圆上的位置有关。
再比如抛物线,抛物线上不同点的切线倾斜角范围也不一样,在顶点处切线倾斜角可能是0度,而在一些比较弯曲的地方,倾斜角会有较大的变化。
所以说,切线倾斜角的范围不仅仅是一个简单的数学概念,它还像是一个可以描绘曲线在某一点的“姿态”的工具。
它让我们从不同的角度去理解曲线的特征,就像我们从不同的视角去欣赏一幅画一样。
考点49:利用导数求切线方程【题组一 求切线斜率或倾斜角】 1.曲线()sin cos f x x x =在点,66f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为 . 【答案】12【解析】1()sin 22f x x =,则()cos 2f x x '=,1()cos(2)662f ππ'=⨯=. 2.曲线x y e x =+在0x =处的切线的斜率等于 . 【答案】2【解析】函数的导数为()'1xf x e =+,则在0x =处的导数()0'01112f e =+=+=,即切线斜率()'02k f ==.3.曲线34y x x =-在点()1,3-处的切线的倾斜角为 . 【答案】135°【解析】由题得2()34,(1)341=tan f x x k f α''=-∴==-=-,所以切线倾斜角为135°.4.已知曲线()323f x x =在点()()1,1f 处的切线的倾斜角为α,则222sin cos 2sin cos cos ααααα-=+ . 【答案】35【解析】曲线()323f x x =,点的坐标为21,3⎛⎫ ⎪⎝⎭ 所以2'()2f x x = ,在点21,3⎛⎫⎪⎝⎭处切线斜率2k = ,即tan 2α= 所以222sin cos 2sin cos cos ααααα-+分子分母同时除以 2cos α可得 222sin cos 2sin cos cos ααααα-+2tan 132tan 15αα-==+ 5.曲线2ln y x x =-在1x =处的切线的倾斜角为α,则cos(2)2πα+的值为 . 【答案】35【解析】根据已知条件,212()f x x x '=+,因为曲线2ln y x x=-在1x =处的切线的倾斜角为α,所以tan (1)123f α'==+=,02πα<<.因为22sin cos 1a α+=,sin tan 3cos ααα==,则解得sin α=cosα=,3cos(2)sin 22sin cos 25παααα+=-=-=-.6.已知曲线234x y lnx =-的一条切线的斜率为12-,则切点的横坐标为 。
高二数学导数的概念和几何意义试题答案及解析1.已知函数的导函数为,.求实数的取值范围。
【答案】或。
【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.2.曲线在横坐标为l的点处的切线为,则点P(3,2)到直线的距离为()A.B.C.D.【答案】A【解析】欲求点到直线的距离,需知点的坐标和直线的方程,由公式,计算可得.由于直线为已知曲线方程的切线,且已知切点,这样一般通过求导数得到切线的斜率,由点斜式得到直线方程.,,.【考点】(1)导数与切线的关系;(2)点到直线的距离.3.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为()A.B.C.D.【答案】B【解析】由曲线在点处的切线方程为得:,从而可得:,所以曲线在点处切线的斜率为4;故选B.【考点】函数导数的几何意义.4.已知函数().⑴若函数的图象在点处的切线的倾斜角为,求在上的最小值;⑵若存在,使,求的取值范围.【答案】⑴在上的最小值为;⑵的取值范围为.【解析】⑴对函数求导并令导函数为0,看函数的单调性,即可求在上的最小值;⑵先对函数求导得,分、两种情况讨论即可求的取值范围.(1) 1分根据题意, 3分此时,,则.令-+∴当时,最小值为. 8分(2)∵,①若,当时,,∴在上单调递减.又,则当时,.∴当时,不存在,使 11分②若,则当时,;当时,.从而在上单调递增,在上单调递减.∴当时, 14分根据题意,,即,∴. 15分综上,的取值范围是. 16分【考点】导数的应用、分类讨论思想.5.曲线在点处的切线斜率为()A.B.C.D.【答案】A【解析】由,得到,把x=0代入得:,则曲线在点A(0,1)处的切线斜率为1.故选A.【考点】1.直线的斜率;2.导数的几何意义.6.已知函数f(x)=x2-4,设曲线y=f(x)在点(xn ,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中x n为正实数.(1)用xn 表示xn+1;(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.【答案】(1);(2);(3)详见解析.【解析】(1)由题设条件知曲线y=f(x)在点处的切线方程是.由此可知.所以.(2)由,知,同理.故.由此入手能够导出.(3)由题设知,所以,由此可知.解:(1)由题可得.所以曲线在点处的切线方程是:.即.令,得.即.显然,∴.(2)由,知,’同理.----6’故.-----7’从而,即.所以,数列成等比数列.---8’故.即.----9’从而,所以.----10’(3)由(Ⅱ)知,∴∴ ---11’当时,显然.-------12’当时,-----13’∴.综上,.【考点】1.数列递推式;2.等比关系的确定;3.数列的求和;4.不等式的证明.7.设,则在处的导数()A.B.C.0D.【答案】A【解析】,故选A.【考点】某点处的导数.8.已知曲线:(1)试求曲线在点处的切线方程;(2)试求与直线平行的曲线C的切线方程.【答案】(1);(2)或.【解析】(1)先求出的值,再求函数的导函数,求得的值即为点斜率,代入点斜式方程,再化为一般式方程即可;(2)设切点为,利用导数的几何意义和相互平行的直线的斜率相等,即可得所求切线的斜率,再求出切点的坐标,代入点斜式方程,再化为一般式方程即可.(1)∵,∴,求导数得:,∴切线的斜率为,∴所求切线方程为,即:.(2)设与直线平行的切线的切点为,则切线的斜率为.又∵所求切线与直线平行,∴,解得:,代入曲线方程得:切点为或,∴所求切线方程为:或,即:或.【考点】1、导数的计算;2、导数的几何意义.9.已知A为函数图像上一点,在A处的切线平行于直线,则A点坐标为 ;【答案】(1,2)【解析】因为,设,则A点坐标为(1,2).【考点】导数的几何意义10.过点恰可以作曲线的两条切线,则的值为;【答案】0或1或9【解析】设切点,则有所以或.因为过点恰可以作曲线的两条切线,,所以方程有不等于零的两个等根或包含零的两个不等根.由得或,此时方程的根非零.当方程有零根时,,此时方程还有另一根【考点】导数求切线11.若曲线在点处的切线方程为,则曲线在点处切线的方程为.【答案】【解析】曲线在点处切线的方程为:.【考点】导数的几何性质.12.过点且与曲线相切的直线方程为()A.或B.C.或D.【答案】A【解析】设切点为,因为,所以切线的斜率为,所以切线方程为,又因为切线过点,所以即,注意到是在曲线上的,故方程必有一根,代入符合要求,进一步整理可得即,也就是即,所以或,当时,,切线方程为即;当时,,切线方程为即,故选A.【考点】导数的几何意义.13.在曲线处的切线方程为。
切线的斜率
当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的。
平面几何中,将和圆只有一个公共交点的直线叫做圆的切线。
斜率是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。
它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
如果直线与x轴互相垂直,直角的正切值无穷大,故此直线不存在斜率。
当直线L的斜率存在时,对于一次函数y=kx+b,(斜截式)k即该函数图像的斜率。
扩展资料:
1、对于一次函数y=kx+b,(斜截式)k即该函数图像的斜率,|k|=tana;
2、a为倾斜角当a为90°时直线没有斜率;
3、|k|=tanα=(y2-y1)/(x2-x1);
4、当直线L的斜率存在时,斜截式y=kx+b当k=0时y=b;
5、当直线L的斜率存在时,点斜式y2—y1=k(X2—X1);
6、当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1;
7、对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα;
8、计算:ax+by+c=0中,k=-a/b;
9、直线斜率公式:k=(y2-y1)/(x2-x1);
10、两条垂直相交直线的斜率相乘积为-1:k1*k2=-1。
考点49:利用导数求切线方程【思维导图】【常见考法】考点一:求切线的斜率或倾斜角1.曲线1x y xe -=在点(1,1)处切线的斜率等于 . 【答案】2【解析】由1x y xe -=,得,故,故切线的斜率为.2.点P在曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围为 . 【答案】2,3ππ⎡⎫⎪⎢⎣⎭【解析】根据题意可知:''1xy e ==+⎝⎭ 则()()()221111'111x xxx e y e e e ⎫+-⎪=-=-⎪+++⎝⎭令()1,0,11x t t e =∈+所以)()2',0,1y t t t =-∈可知)'y ⎡∈⎣ 曲线在点P 处的切线的斜率范围为)⎡⎣,所以)tan α⎡∈⎣故2,3παπ⎡⎫∈⎪⎢⎣⎭3.已知函数()()21,.f x g x xx==若直线l 与曲线()f x ,()g x 都相切,则直线l的斜率为 . 【答案】4-【解析】设直线l 的斜率为k ,则()21'k f x x ==-,解得x =,切点为⎛⎝;且()'2kg x x ==,解得2kx =,切点为2,24k k ⎛⎫⎪⎝⎭; 因为l 与曲线()f x ,()g x 都相切,所以2k k +=,解得4k =-.考法二:在某点处求切线方程1.设曲线3ln(1)y x x =-+ 在点(0,0)处的切线方程_________________. 【答案】20x y -=【解析】由题意,函数3ln(1)y x x =-+的导数为131y x '=-+, 可得曲线3ln(1)y x x =-+在点(0,0)处的切线斜率为312-=,即切线的斜率为2, 则曲线在点(0,0)处的切线方程为02(0)y x -=-,即为2y x =,即20x y -=. 故答案为:20x y -=.2.函数3()2ln 2f x x x =-+的图象在1x =处的切线方程为______________________. 【答案】20x y -+=【解析】由题3(1)12ln123f =-+=,又22'()3f x x x=-,故3()2ln 2f x x x =-+在(1,3)处的斜率为2'(1)311f =-=,故在(1,3)处的切线方程为31(1)20y x x y -=⨯-⇒-+= 故答案为:20x y -+= 3.已知函数()2()1xf x x x e =++,则()f x 在(0, (0))f 处的切线方程为 .【答案】210x y -+=【解析】因为()2()32x f x e x x '=++,所以(0)2f '=,又因为(0)1f =,所以切点为(0)1,, 所以曲线()f x 在(0, (0))f 处的切线方程为210x y -+=.4.已知()()221f x x xf '=+,则曲线()y f x =在点()()00f ,处的切线方程为 .【答案】40x y +=【解析】由题:()()221f x x xf =+',所以()()'221f x x f +'=,()()'1221f f =+',所以()'12f =-,所以()24f x x x =-,()24f x x '=-,()00f =,()04f '=-所以切线方程为40x y +=.5.设a 为实数,函数()()322f x x ax a x =++-的导函数是fx ,且fx 是偶函数,则曲线()y f x =在原点处的切线方程为 . 【答案】2y x =-【解析】由()()322f x x ax a x =++-所以()()2'322f x x ax a =++-,又()f x '是偶函数,所以20a =,即0a =所以()2'32f x x =-则()'02f =-,所以曲线()y f x =在原点处的切线方程为2y x =-考法三:过某点求切线方程1.曲线ln y x =过点(0,1)-的切线方程为_________. 【答案】10x y --= 【解析】由题, 1'y x=,设切点为()00,ln x x ,则在切点处的切线斜率为01x ,又切线过点(0,1)-,故0000ln (1)11x x x x --=⇒=.故切点为()1,0. 故切线方程为()101101x y y x -=---=⇒.故答案为:10x y --= 2.求函数()32f x x x x =-+的图象经过原点的切线方程为 . 【答案】0x y -=【解析】由函数()32f x x x x =-+,则()2321f x x x '=-+,所以()01f '=,所以函数()32f x x x x =-+的图象经过原点的切线方程为()010y x -=-,即0x y -=.3.若过原点的直线l 与曲线2ln y x =+相切,则切点的横坐标为 . 【答案】1e【解析】设切点坐标为()00,2ln x x +,由1y x'=,切线方程为00012ln ()y x x x x --=-, 原点坐标代入切线方程,得02ln 1x +=,解得01ex =.4.已知函数()3f x x x =-,则曲线()y f x =过点()1,0的切线条数为 .【答案】2【解析】设切点坐标 3000(,)P x x x -,由()3f x x x =-,得2()31x f x '=-,∴切线斜率2031k x =-,所以过3000(,)P x x x -的切线方程为320000(31)()y x x x x x -+=--,即2300(31)2y x x x =--,切线过点()1,0,故32002310x x -+=,令()32000231h x x x =-+,则()200066h x x x '=-,由()00h x '=,解得00x =或01x =,当0(,0),(2,)x ∈-∞+∞时,()00h x '>,当0(0,2)x ∈时,()00h x '<,所以()0h x 的极大值极小值分别为 h (0)10=>,(1)0h =, 故其图像与x 轴交点2个,也就是切线条数为2.考法四:已知切线求参数1.已知函数()()e xf x x a =+的图象在1x =和1x =-处的切线相互垂直,则a = .【答案】-1 【解析】因为'()(1)xf x x a e =++ ,所以1'(1)(2)'(1)af a e f aee,-=+-==,由题意有(1)'(1)1f f -=- ,所以1a =-.2.已知在曲线()21ax f x x =+在点()()1,1f 处切线的斜率为1,则实数a 的值为 .【答案】43【解析】当0x >时,()()2221ax axf x x +'=+,()11f '=,即314a=,得43a =.. 3.已知函数()ln f x x x ax =+,过点()1,1P 可作两条直线与()f x 的图象相切,则a 的取值范围是 。
切点和切线斜率的关系切点和切线斜率是微积分中重要的概念,它们之间存在着密切的关系。
在数学上,切点是曲线上的一个点,而切线是通过这个点且与曲线相切的一条直线。
切线的斜率则是切线的特征之一,它表示切线在曲线上的变化率。
我们来看切点和切线的定义。
给定一个曲线,我们想要找到曲线上的一个点P,使得过点P的切线与曲线相切。
这个点P就是切点,而过点P的切线就是切线。
在数学中,切线的斜率是一个非常重要的概念。
它表示切线在曲线上的变化率,也就是切线的斜率决定了切线的倾斜程度。
斜率的计算方法是通过切线经过的两个点的纵坐标之差除以横坐标之差。
例如,对于曲线y = f(x),切点P的横坐标为x0,纵坐标为y0,切线的斜率可以表示为:k = (f(x0) - y0) / (x - x0)其中,k表示切线的斜率。
接下来,我们来探讨切点和切线斜率之间的关系。
当我们知道曲线的方程和切点的坐标时,可以通过求导来求得切线的斜率。
求导是微积分中的一项重要技巧,它可以用来计算曲线在某一点的切线的斜率。
具体来说,当我们给定曲线的方程y = f(x)时,可以通过求导来得到曲线在任意一点的切线的斜率。
求导的结果是一个函数,表示了曲线在每个点的斜率。
然后,我们可以将切点的坐标代入导数函数,即可得到切点处的切线斜率。
举个例子来说明这个关系。
假设我们有一个曲线y = x^2,我们想要求解曲线在点(1, 1)处的切线的斜率。
首先,我们对曲线进行求导,得到导数函数y' = 2x。
然后,我们将切点的坐标(1, 1)代入导数函数,得到切点处的切线斜率为2。
这意味着曲线y = x^2在点(1, 1)处的切线的斜率为2。
总结起来,切点和切线斜率之间的关系可以通过求导来确定。
当我们知道曲线的方程和切点的坐标时,可以通过求导得到曲线在切点处的切线斜率。
求导是一种重要的计算方法,它可以用来计算曲线在任意一点的切线的斜率。
切点和切线斜率的关系在微积分中有着广泛的应用。
高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tanα (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率(前提是斜率都存在)21k k ≠ 特例----垂直时:<1> ;0211=⊥k k x l 不存在,则轴,即 <2> 斜率都存在时: 。
121-=∙k k ②平行:<1> 斜率都存在时:;2121,b b k k ≠= <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:;2121,b b k k ==二、方程与公式:1、直线的五个方程:①点斜式: 将已知点直接带入即可;)(00x x k y y -=-k y x 与斜率),(00 ②斜截式: 将已知截距直接带入即可;b kx y +=k b 与斜率),0( ③两点式: 将已知两点直),(2121121121y y x x x x x x y y y y ≠≠--=--其中),(),,(2211y x y x 接带入即可;④截距式:将已知截距坐标直接带入即可;1=+bya x ),0(),0,(b a ⑤一般式: ,其中A 、B 不同时为00=++C By Ax 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA CC d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A ①AB 中点: ),(00y x )2,2(2121y y x x ++ ②AB 三分点: 靠近A 的三分点坐标),(),,(2211t s t s )32,32(2121y y x x ++ 靠近B 的三分点坐标)32,32(2121y y x x ++中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
1.设P 为曲线2
:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为0,4⎡⎤⎢⎥⎣⎦
π,则点P 横坐标的取值范围为( ) A .11,2⎡⎤--⎢⎥⎣⎦ B .[]1,0- C .[]0,1 D .1,12⎡⎤⎢⎥⎣⎦
解析 22y x '=+,由于曲线C 在点P 处的切线倾斜角的取值范围为0,4⎡⎤⎢⎥⎣⎦
π,所以其切线的斜率的范围为[]0,1,根据导数的几何意义,得0221x ≤+≤,即112x -≤≤-.故选
A.
2.正弦曲线sin y x =上一点P ,以点P 为切点的切线l ,则直线l 的倾斜角的范围是( )
A .30,,44⎡⎤
⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭πππ B .[)0,π C .3,44⎡⎤⎢⎥⎣⎦ππ D .30,,424⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣
⎦πππ 2.A 解析 c o s y x '=,其值域为以点P 为切点的切线的斜率的取值范围,为[]1,1-,结合正切函数图像及直线倾斜角取值范围[)0,π,可知答案为30,
,44πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭,故选A 。
3.设函数()32cos 412f x x x x θ=
++-,其中50,6πθ⎡⎤∈⎢⎥⎣⎦,则导数()1f '-的取值范围是( )
A.[]3,6
B. 3,4⎡⎣
C. 4⎡⎤⎣⎦
D. 4⎡+⎣
3. A 解析 由()2
cos 4f x x x θθ'=++,
得()1cos 4f θθ'-=-+=2sin 46πθ⎛
⎫-+ ⎪⎝⎭
, 又5210,,sin 1666326πππππθθθ⎛⎫≤≤
-≤-≤-≤-≤ ⎪⎝
⎭,则3≤()16f '-≤.故选A .
4.设点P 是曲线y =x 3-3x +23
上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )
A.⎣⎡⎭⎫0,π2∪⎣⎡⎭
⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6
解析:选C 因为y ′=3x 2-3≥-3,故切线的斜率k ≥-3,所以切线的倾斜角α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π.
5.已知点P 在曲线y =4
e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是(
) A.⎣⎡⎭⎫3π4,π B.⎣⎡⎭⎫π4,π2
C.⎝⎛⎦⎤π2,3π4
D.⎣⎡⎭⎫0,π4
答案 A
解析 求导可得y ′=-4
e x +e -x +2,
∵e x +e -x +2≥2e x ·e -x +2=4,当且仅当x =0时,等号成立,
∴y ′∈[-1,0),得tan α∈[-1,0),
又α∈[0,π),∴3π4≤α<π.。