导数切线斜率问题解析版
- 格式:doc
- 大小:534.00 KB
- 文档页数:8
专题03 导数及其应用1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.2.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.3.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.5.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.7.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0x xa -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.8.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x =-+,21sin ())(1x 'x g x =-++. 当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点. (iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π⎥⎝⎦有唯一零点. (iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.9.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点. (2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力. 10.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1若存在,求出,a b 的所有值;若不存在,说明理由. 【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =a =-a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 11.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-, 即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-. 由321()4g x x x =-得23()24g'x x x =-.令()0g'x =得0x =或83x =. (),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 12.【2019年高考天津理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-. 【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)由已知,有()e (cos sin )x f 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n x n x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且()()()22e cos ecos 2e n n yx n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<. 所以,20022sin c s e o n n n x x x -πππ+-<-.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力. 13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注:e=…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦. 【解析】(1)当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-+=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a ≤,得0a <≤.当0a <≤()f x ≤2ln 0x -≥. 令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x =.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得,11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()10g t g x ⎛+=> ⎝.由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2xf x a .综上所述,所求a 的取值范围是⎛⎝⎦. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==. 列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学2019届高三第二次调研考试数学】函数f(x)=x 2−2lnx 的单调减区间是A .(0,1]B .[1,+∞)C .(−∞,−1]∪(0,1]D .[−1,0)∪(0,1]【答案】A【解析】f′(x)=2x −2x =2x 2−2x(x >0),令f′(x)≤0,解得:0<x ≤1. 故选A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题.16.【江西省南昌市2019届高三模拟考试数学】已知f(x)在R 上连续可导,f ′(x)为其导函数,且f(x)=e x +e −x −f ′(1)x ⋅(e x −e −x ),则f ′(2)+f ′(−2)−f ′(0)f ′(1)= A .4e 2+4e −2 B .4e 2−4e −2 C .0D .4e 2【答案】C【解析】∵()e e (1)()(e e ()x x x x f x f x f x --'-=+=---), ∴()f x 是偶函数,两边对x 求导,得()()f x f x -'-=',即()()f x f x '-=-', 则()f x '是R 上的奇函数,则(0)0f '=,(2)(2)f f '-=-',即(2)(2)0f f '+'-=,则(2)(2)(0)(1)0f f f f ''''+--=. 故选C .【名师点睛】本题主要考查函数导数值的计算,根据条件判断函数的奇偶性是解决本题的关键,是中档题.17.【江西省新八校2019届高三第二次联考数学】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为A .5250x y +-=B .10450x y +-=C .540x y +=D .204150x y --=【答案】B 【解析】()()3321f x f x x x +-=++……①,()()3321f x f x x x ∴-+=--+……②,联立①②,解得()31124f x x x =--+,则()2312f x x '=--, ()11511244f ∴=--+=-,()351122f '=--=-,∴切线方程为:()55142y x +=--,即10450x y +-=. 故选B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数2l ()n f x x x =的最小值为A .1e -B .1eC .12e-D .12e【答案】C【解析】由题得(0,)x ∈+∞,()2ln (2ln 1)f x x x x x x '=+=+, 令2ln 10x +=,解得12ex -=,则当12(0,e )x -∈时,()f x 为减函数,当12(e ,)x -∈+∞时,()f x 为增函数, 所以12e x -=处的函数值为最小值,且121(e )2ef -=-. 故选C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.19.【四川省内江市2019届高三第三次模拟考试数学】若函数f(x)=12ax 2+xlnx −x 存在单调递增区间,则a 的取值范围是 A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】()ln f x ax x '=+, ∴()0f x '>在x ∈()0+∞,上成立, 即ax+ln x >0在x ∈()0+∞,上成立,即a ln xx->在x ∈()0+∞,上成立. 令g (x )ln x x =-,则g ′(x )21ln xx -=-, ∴g (x )ln xx =-在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )ln x x =-的最小值为g (e )=1e-,∴a >1e-. 故选B .【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题.20.【山西省太原市2019届高三模拟试题(一)数学】已知定义在(0,+∞)上的函数f(x)满足xf ′(x)−f(x)<0,且f(2)=2,则f (e x )−e x >0的解集是 A .(−∞,ln2) B .(ln2,+∞) C .(0,e 2)D .(e 2,+∞)【答案】A 【解析】令g (x )=f (x )x,g ′(x )=xf ′(x )−f (x )x 2<0,∴g(x)在(0,+∞)上单调递减,且g (2)=f (2)2=1,故f (e x )−e x >0等价为f (e x )e x>f (2)2,即g (e x )>g (2),故e x <2,即x <ln2, 则所求的解集为(−∞,ln2). 故选A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题. 21.【河南省焦作市2019届高三第四次模拟考试数学】已知a =ln √33,b =e −1,c =3ln28,则a,b,c 的大小关系为 A .b <c <a B .a >c >b C .a >b >cD .b >a >c【答案】D【解析】依题意,得ln33a ==,1lne e e b -==,3ln2ln888c ==.令f (x )=ln x x,所以f ′(x )=1−ln x x 2.所以函数f (x )在(0,e )上单调递增,在(e,+∞)上单调递减, 所以[f (x )]max =f (e )=1e =b ,且f (3)>f (8),即a >c , 所以b >a >c . 故选D.【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数()ln xf x x=是解题的关键,属于中档题.22.【安徽省毛坦厂中学2019届高三校区4月联考数学】已知f (x )=lnx +1−ae x ,若关于x 的不等式f (x )<0恒成立,则实数a 的取值范围是 A .1,e ⎛⎫-∞ ⎪⎝⎭B .(),0-∞C .1,e⎡⎫+∞⎪⎢⎣⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由()0f x <恒成立得ln 1ex x a +>恒成立, 设()ln 1e x x h x +=,则()1ln 1e xx x h x -='-. 设()1ln 1g x x x =--,则()2110g x x x'=--<恒成立,∴g (x )在(0,+∞)上单调递减,又∵g (1)=0,∴当0<x <1时,g (x )>g (1)=0,即ℎ′(x )>0; 当x >1时,g (x )<g (1)=0,即ℎ′(x )<0, ∴ℎ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴ℎ(x)max =ℎ(1)=1e ,∴a >1e . 故选D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.23.【辽宁省丹东市2019届高三总复习质量测试】若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .-2 B .3 C .-2或3D .-3或2【答案】B 【解析】()()()()32222113(3)(132)f x x a x a a f x x x a x a a '=++-=++-+-⇒+-,由题意可知(1)0f '=,即()212(1)303a a a a +-=+⇒-=+或2a =-,当3a =时,()222()2(1)389(9)(1)f x x a x a a x x x x +-'=++-=+-=+-,当1x >或9x <-时,()0f x '>,函数单调递增;当91x -<<时,()0f x '<,函数单调递减, 显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f x x a x x x x +-=-++=-=+-≥',所以函数()f x 是R 上的单调递增函数,没有极值,不符合题意,舍去. 故3a =. 故选B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点. 24.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【解析】设()()2g x x f x =,因为()f x 为R 上的奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上的奇函数对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦, 而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增,则不等式()()()22018+2018420x f x f +-<+即()()()22018+201842x f x f +<--, 即()()()22018+201842x f x f +<, 即()()20182g x g +<,所以20182x +<,解得2016x <-. 故选A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题.25.【重庆西南大学附属中学校2019届高三第十次月考数学】曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________. 【答案】12-【解析】因为21()ln 2f x x x x =+,所以()ln 1f x x x '=++, 因此,曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线斜率为(1)112k f '==+=, 又该切线与直线10ax y --=垂直,所以12a =-. 故答案为12-. 【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22-【解析】作出函数()f x 的图象如图所示,由()2f x a =⎡⎤⎣⎦,可得()1f x =>, 即1a >,不妨设12x x < ,则2212e x x =(1)t t =>,则12ln x x t ==,12ln x x t ∴+=令()ln g t t =()g t '= ∴当18t <<时,()0g t '>,g t 在()1,8上单调递增;当8t时,()0g t '<,g t 在()8,+∞上单调递减,∴当8t =时,g t 取得最大值,为(8)ln823ln22g =-=-.故答案为3ln 22-.【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数()f x 的极值与最值的步骤:(1)确定函数的定义域;(2)求导数()f x ';(3)解方程()0,f x '=求出函数定义域内的所有根;(4)判断()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值;(6)如果求闭区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市2019届高三3月诊断性测试(一模)数学】已知函数4211()42f x x ax =-,a ∈R . (1)当1a =时,求曲线()f x 在点(2,(2))f 处的切线方程;(2)设函数2()(22)e e ()x g x x x a f x =-+--,其中e 2.71828...=是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)6100x y --=;(2)当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞单调递增,在(单调递减,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【解析】(1)由题意3()f x x ax '=-,所以当1a =时,(2)2f =,(2)6f '=, 因此曲线()y f x =在点(2,(2))f 处的切线方程是26(2)y x -=-, 即6100x y --=.(2)因为2()(22)e e ()x g x x x a f x =-+--, 所以2()(22)e (22)e e '()x x g x x x x a f x '=-+-+--232()e e()()(e e )x x x a x ax x a x =---=--,令()e e x h x x =-,则()e e x h x '=-, 令()0h x '=得1x =,当(,1)x ∈-∞时,()0h x '<,()h x 单调递减, 当(1,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以当1x =时,min ()(1)0h x h ==, 也就说,对于x ∀∈R 恒有()0h x ≥. 当0a ≤时,2()()()0g x x a h x '=-≥,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,令()0g x '=,可得x =当x <x >2()()()0g x x a h x '=-≥,()g x 单调递增,当x <<()0g x '<,()g x 单调递减,因此,当x =()g x 取得极大值2e(2)e4g a =+;当x =()g x 取得极小值2e (4g a =-+. 综上所述:当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞上单调递增,在(上单调递减, 函数既有极大值,又有极小值,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.28.【陕西省2019届高三第三次联考数学】已知函数f(x)=lnx −ax ,g(x)=x 2,a ∈R .(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a 的取值范围.【答案】(1)极大值点为1a ,无极小值点.(2)a ≥−1.【解析】(1)()ln f x x ax =-的定义域为(0,+∞),f ′(x )=1x −a , 当a ≤0时,f ′(x )=1x −a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,解f ′(x )=1x −a >0得0<x <1a ,解f ′(x )=1x −a <0得x >1a , 所以f (x )在(0,1a )上单调递增,在(1a ,+∞)上单调递减,所以函数f (x )有极大值点,为1a ,无极小值点. (2)由条件可得ln x −x 2−ax ≤0(x >0)恒成立, 则当x >0时,a ≥ln x x−x 恒成立,令ℎ(x )=ln x x−x(x >0),则ℎ′(x )=1−x 2−ln xx 2,令k (x )=1−x 2−ln x(x >0),则当x >0时,k ′(x )=−2x −1x <0,所以k (x )在(0,+∞)上为减函数. 又k (1)=0,所以在(0,1)上,ℎ′(x )>0;在(1,+∞)上,ℎ′(x )<0. 所以ℎ(x )在(0,1)上为增函数,在(1,+∞)上为减函数, 所以ℎ(x )max =ℎ(1)=−1,所以a ≥−1.【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数f(x)=lnx −xe x +ax(a ∈R).(1)若函数f(x)在[1,+∞)上单调递减,求实数a 的取值范围; (2)若a =1,求f(x)的最大值.【答案】(1)a ≤2e −1;(2)f(x)max =−1.【解析】(1)由题意知,f′(x)=1x −(e x +xe x )+a =1x −(x +1)e x +a ≤0在[1,+∞)上恒成立, 所以a ≤(x +1)e x −1x 在[1,+∞)上恒成立. 令g(x)=(x +1)e x −1x ,则g′(x)=(x +2)e x +1x 2>0,所以g(x)在[1,+∞)上单调递增,所以g(x)min =g(1)=2e −1, 所以a ≤2e −1.(2)当a =1时,f(x)=lnx −xe x +x(x >0). 则f′(x)=1x−(x +1)e x +1=(x +1)(1x−e x ),令m(x)=1x −e x ,则m′(x)=−1x 2−e x <0, 所以m(x)在(0,+∞)上单调递减.由于m(12)>0,m(1)<0,所以存在x 0>0满足m(x 0)=0,即e x 0=1x 0.当x ∈(0,x 0)时,m(x)>0,f′(x)>0;当x ∈(x 0,+∞)时,m(x)<0,f′(x)<0. 所以f(x)在(0,x 0)上单调递增,在(x 0,+∞)上单调递减. 所以f(x)max =f (x 0)=lnx 0−x 0e x 0+x 0, 因为e x 0=1x 0,所以x 0=−lnx 0,所以f(x 0)=−x 0−1+x 0=−1, 所以f(x)max =−1.【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.30.【福建省龙岩市2019届高三5月月考数学】今年3月5日,国务院总理李克强作的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.设每篇学位论文被每位专家评议为“不合格”的概率均为(01)p p <<,且各篇学位论文是否被评议为“不合格”相互独立.(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为()f p ,求()f p ;(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元.现以此方案实施,且抽检论文为6000篇,问是否会超过预算并说明理由.【答案】(1)−3p 5+12p 4−17p 3+9p 2;(2)若以此方案实施,不会超过预算.【解析】(1)因为一篇学位论文初评被认定为“存在问题学位论文”的概率为C 32p 2(1−p )+C 33p 3, 一篇学位论文复评被认定为“存在问题学位论文”的概率为C 31p (1−p )2[1−(1−p )2],所以一篇学位论文被认定为“存在问题学位论文”的概率为f (p )=C 32p 2(1−p )+C 33p 3+C 31p (1−p )2[1−(1−p )2]=3p 2(1−p )+p 3+3p (1−p )2[1−(1−p )2] =−3p 5+12p 4−17p 3+9p 2.(2)设每篇学位论文的评审费为X 元,则X 的可能取值为900,1500.P (X =1500)=C 31p (1−p )2, P (X =900)=1−C 31p (1−p )2, 所以E (X )=900×[1−C 31p (1−p )2]+1500×C 31p (1−p )2=900+1800p (1−p )2. 令g (p )=p (1−p )2,p ∈(0,1),g ′(p )=(1−p )2−2p (1−p )=(3p −1)(p −1). 当p ∈(0,13)时,g ′(p )>0,g (p )在(0,13)上单调递增;当p ∈(13,1)时,g ′(p )<0,g (p )在(13,1)上单调递减,所以g (p )的最大值为g (13)=427.所以实施此方案,最高费用为100+6000×(900+1800×427)×10−4=800(万元). 综上,若以此方案实施,不会超过预算.【名师点睛】本题主要考查互斥事件的概率和独立重复试验的概率的求法,考查随机变量的期望的求法,考查利用导数求函数的最大值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 31.【北京市西城区2019届高三4月统一测试(一模)数学】设函数f(x)=m e x −x 2+3,其中m ∈R .(1)当f(x)为偶函数时,求函数ℎ(x)=xf(x)的极值;(2)若函数f(x)在区间[−2 , 4]上有两个零点,求m 的取值范围. 【答案】(1)极小值ℎ(−1)=−2,极大值ℎ(1)=2;(2)−2e <m <13e 4或m =6e 3.【解析】(1)由函数f(x)是偶函数,得f(−x)=f(x), 即m e −x −(−x)2+3=m e x −x 2+3对于任意实数x 都成立, 所以m =0. 此时ℎ(x)=xf(x)=−x 3+3x ,则ℎ′(x)=−3x 2+3. 由ℎ′(x)=0,解得x =±1. 当x 变化时,ℎ′(x)与ℎ(x)的变化情况如下表所示:所以ℎ(x)在(−∞,−1),(1,+∞)上单调递减,在(−1,1)上单调递增. 所以ℎ(x)有极小值ℎ(−1)=−2,极大值ℎ(1)=2. (2)由f(x)=m e x −x 2+3=0,得m =x 2−3e x.所以“f(x)在区间[−2 , 4]上有两个零点”等价于“直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点”.对函数g(x)求导,得g ′(x)=−x 2+2x+3e x.由g ′(x)=0,解得x 1=−1,x 2=3. 当x 变化时,g ′(x)与g(x)的变化情况如下表所示:所以g(x)在(−2,−1),(3,4)上单调递减,在(−1,3)上单调递增. 又因为g(−2)=e 2,g(−1)=−2e ,g(3)=6e 3<g(−2),g(4)=13e 4>g(−1),所以当−2e <m <13e4或m =6e3时,直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点.即当−2e <m <13e 4或m =6e3时,函数f(x)在区间[−2 , 4]上有两个零点.【名师点睛】利用函数零点的情况求参数值或取值范围的方法: (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解. (3)转化为两熟悉的函数图象问题,从而构建不等式求解.。
…○…………外…………○…………装…………○…………订…………○学校:___________姓名:___________班级:___________考号:___________…○…………内…………○…………装…………○…………订…………○…○…………外…………○…………装…………○…………订…………○学校:___________姓名:___________班级:___________考号:___________…○…………内…………○…………装…………○…………订…………○…○…………外…………○…………装…………○…………订…………○学校:___________姓名:___________班级:___________考号:___________…○…………内…………○…………装…………○…………订…………○处的切线的倾斜角,则α的取值范围是( )A.3[,)4ππB.[,)42ππC.3(,]24ππ D.[0,4π) 8.若曲线321()3f x xx mx=++的所有切线中,只有一条与直线30x y +-=垂直,则实数m 的值等于( )A .0B .2C .0或2D .39.曲线在点A 处的切线与直线平行,则点A 的坐标为( )(A ) (B ) (C )(D )10.设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a 等于 ( )A. 2B. 12C. 12- D. 2-11.曲线323y x x =-+在点(1,2)处的切线方程为( )A .y =3x -1B .y =-3x +5C .y =3x +5D .y =2x 12.已知曲线421y xax =++在点()-12a +,处切线的斜e xy =30x y -+=()11,e --()0,1()1,e ()0,2(A )9 (B )6 (C )-9 (D )-6 13.已知点P 在曲线y=41xe +上,α为曲线在点P处的切线的倾斜角,则α的取值范围是( )A.[0,4π)B.[,)42ππC. 3(,]24ππD. 3[,)4ππ第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)14.曲线2yx=在点(1,2)处切线的斜率为__________。
考点49:利用导数求切线方程【题组一 求切线斜率或倾斜角】 1.曲线()sin cos f x x x =在点,66f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为 . 【答案】12【解析】1()sin 22f x x =,则()cos 2f x x '=,1()cos(2)662f ππ'=⨯=. 2.曲线x y e x =+在0x =处的切线的斜率等于 . 【答案】2【解析】函数的导数为()'1xf x e =+,则在0x =处的导数()0'01112f e =+=+=,即切线斜率()'02k f ==.3.曲线34y x x =-在点()1,3-处的切线的倾斜角为 . 【答案】135°【解析】由题得2()34,(1)341=tan f x x k f α''=-∴==-=-,所以切线倾斜角为135°.4.已知曲线()323f x x =在点()()1,1f 处的切线的倾斜角为α,则222sin cos 2sin cos cos ααααα-=+ . 【答案】35【解析】曲线()323f x x =,点的坐标为21,3⎛⎫ ⎪⎝⎭ 所以2'()2f x x = ,在点21,3⎛⎫⎪⎝⎭处切线斜率2k = ,即tan 2α= 所以222sin cos 2sin cos cos ααααα-+分子分母同时除以 2cos α可得 222sin cos 2sin cos cos ααααα-+2tan 132tan 15αα-==+ 5.曲线2ln y x x =-在1x =处的切线的倾斜角为α,则cos(2)2πα+的值为 . 【答案】35【解析】根据已知条件,212()f x x x '=+,因为曲线2ln y x x=-在1x =处的切线的倾斜角为α,所以tan (1)123f α'==+=,02πα<<.因为22sin cos 1a α+=,sin tan 3cos ααα==,则解得sin α=cosα=,3cos(2)sin 22sin cos 25παααα+=-=-=-.6.已知曲线234x y lnx =-的一条切线的斜率为12-,则切点的横坐标为 。
专题11 利用导数解决零点问题1.(2022·全国·高考真题(理))已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】 【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究 (1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e xx f x f x ''-=+=+,所以切线斜率为2 所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x = (2)()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a xf x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <= 故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20xg x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '> 所以()f x 在(0,)+∞上单调递增,()(0)0f x f >= 故()f x 在(0,)+∞上没有零点,不合题意 3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增 (0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减 当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<= 当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x ∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增 1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '= 当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+< 又1(1)0eg -=> 所以存在(1,)t n ∈-,使得()0g t =,即()0f t '= 当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减 有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点 即()f x 在(1,0)-上有唯一零点 所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-2.(2022·全国·高考真题(理))已知函数()ln xf x x a x x e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【答案】(1)(,1]e -∞+ (2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-, 若()0f x ≥,则e 10a +-≥,即1a e ≤+ 所以a 的取值范围为(,1]e -∞+ (2)由题知,()f x 一个零点小于1,一个零点大于1 不妨设121x x 要证121x x <,即证121x x < 因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111e 1e 1e e xx x xx x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x xx x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝所以()()1e x ϕϕ>=,而1e e x <所以1e e 0xx x->,所以()0g x '>所以()g x 在(1,)+∞单调递增 即()(1)0g x g >=,所以1e e 0xx x x-> 令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭;综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 3.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】 【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. (1)当0a =时,()1ln ,0f x x x x =-->,则()22111xf x x x x-'=-=,当()0,1∈x 时,0f x ,()f x 单调递增; 当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-;(2)()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x--+'=+-=, 当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,由(1)得1ln 1x x +≥,即1ln 1x x ≥-,所以ln x x x <<<当1x >时,11()(1)ln 2((2f x ax a x ax a ax a x x=--+>--+-+则存在2312m a a⎛⎫=+> ⎪⎝⎭,使得()0f m >,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x-'=≥,所以()f x 单调递增,又()110f a =-=,所以()f x 有唯一零点,符合题意; 当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;此时()110f a =->,由(1)得当01x <<时,1ln 1xx>-,1>ln 21x ⎛> ⎝, 此时11()(1)ln 2(11)1f x ax a x ax ax x x ⎛=--+<--+-< ⎝ 存在2114(1)n a a=<+,使得()0f n <, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意; 综上,a 的取值范围为()0,+∞.4.(2022·全国·模拟预测)已知函数()()ln 13f x a x x =+-.(1)讨论函数()f x 的单调性;(2)证明:当1a =时,方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.【答案】(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)先求出函数的定义域,再求出()31af x x '=-+,然后分0a >,0a ≤可得出函数的单调性. (2)设()()ln 1sin g x x x =+-,将问题转化为函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点,又当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,求出其导数,由零点存在原理即可证明. (1)函数()()ln 13f x a x x =+-的定义域是()1,-+∞,()31af x x '=-+. 当0a >时,令()0f x '<,得33a x ->;令()0f x '>,得313a x --<<, 故()f x 在31,3a -⎛⎫- ⎪⎝⎭上单调递增,在3,3a -⎛⎫+∞ ⎪⎝⎭上单调递减;当0a ≤时,()0f x '<恒成立,故()f x 在()1,-+∞上单调递减. (2)当1a =时,方程()sin 3f x x x =-即为()ln 13sin 3x x x x +-=-,即()ln 1sin 0x x +-=. 令()()ln 1sin g x x x =+-,则()1cos 1g x x x '=-+, 则“方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解”等价于“函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点”.当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以()0g x >在()e 1,-+∞上恒成立, 所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点.因为e 1π-<,所以当,e 12x π⎛⎤∈- ⎥⎝⎦时,cos 0x <,101x >+, 所以()0g x '>在,e 12π⎛⎤- ⎥⎝⎦上恒成立.所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上单调递增,又ln 1sin ln 1102222g ππππ⎛⎫⎛⎫⎛⎫=+-=+-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()e 11sin e 1g -=--,所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,即()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点.故方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.5.(2022·湖北·大冶市第一中学模拟预测)已知函数()e sin xf x x ax =+,其中e 是自然对数的底数.(1)若1a =时,试判断f (x )在区间(2π-,0)的单调性,并予以证明;(2)从下面两个条件中任意选一个,试求实数a 的取值范围. ①函数()f x 在区间[0,2π]上有且只有2个零点; ①当2,0x π⎡⎤∈⎢⎥⎣⎦时,()2f x x ≥.【答案】(1)f (x )在(π2-,0)上单调递增,证明见解析;(2)选择①:π22e 1πa -≤<-;选择①:1a ≥-.【解析】 【分析】(1)求导,通过判定导函数在(π2-,0)上的正负确定单调性; (2)选择①:易得()00f =,则因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点,求导通过讨论找出符合条件的a 的取值范围;选择①:构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦,此时()00m =,可通过端点效应或隐零点等思路求a的取值范围. (1)当1a =时,()e sin ,(,0)2xf x x ax x π=+∈-()πe sin e cos 1sin 14x x xf x x x x ⎛⎫=++=++ ⎪⎝⎭'.当π,02x ⎛⎫∈- ⎪⎝⎭时,πππ,444x ⎛⎫+∈- ⎪⎝⎭,所以sin 1144x x ππ⎛⎫⎛⎫<+<-+< ⎪ ⎪⎝⎭⎝⎭, 又0e 1x <<,πsin 14xx ⎛⎫+>- ⎪⎝⎭,从而()0f x '>,所以,f (x )在(π2-,0)上单调递增. (2) 选择①,由函数()e sin 0π,2xf x x ax x ⎡⎤=+∈⎢⎥⎣⎦,,可知()00f =因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点.()e sin e cos x x f x x x a +'=+,令()e sin e cos x x h x x x a =++, 则()2e cos 0xh x x '=≥在[0.π2]上恒成立.即()f x '在[0,π2]上单调递增,()2ππ01e 2f a f a ⎛'⎫=+=⎪⎭'+ ⎝,,当1a ≥-时,()()00f x f '≥'≥,f (x )在[0.π2]上单调递增.则f (x )在(0,π2]上无零点,不合题意,舍去,当π2e a ≤-时,()0π2f x f ⎛⎫'≤'≤ ⎪⎝⎭,()f x 在[0,π2]上单调递减,则()f x 在(0,π2]上无零点,不合题意,舍去,当2e 1a π-<<-时,π2(0)10,()e 2π0f a f a '=+<'=+≥则()f x '在(0,π2)上只有1个零点,设为0x .且当0(0,)x x ∈时,()0f x <′;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x >′ 所以当()00x x ∈,时,()f x 在(0,0x )上单调递减,在(x0,π2)上单调递增,又()π200e ππ22f f a ⎛⎫==+ ⎪⎝⎭,因此只需20π22πe f a ⎛⎫=+≥ ⎪⎝⎭即可,即π22e 1πa -≤<-,综上所述:2π2e 1πα-≤<-选择①,构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦此时()2π2e π244π00x m m a ⎛⎫==+- ⎪⎝⎭,则2π()e sin e cos 2(0)π1,(e 2π)xxm x x x a x m a m a'=++-'=+'=-+,易知(1)π)(2m m '>'令()e sin e cos 2,()2e cos 2,(0)0,()2π2x x xt x x x a x t x x t t =++-'=-'='=-令2π()2e cos 2,()2e (cos sin ),(0)2,()2πe 2xxp x x p x x x p p =-=-'='=-', 令()2e (cos sin )x q x x x =-,则()4e sin 0x q x x '=-≤ 所以()2e (cos sin )x q x x x =-在(0,π2)上单调递减.又π20π(0)(0)20,()()2e 22πq p q p ='=>='=-<在(0,π2)上存在唯一实数1x 使得()10q x =,且满足当()10,x x ∈时,()0q x >当1π(,)2x x ∈时.()0q x <即p (x )在(0,x 1)上单调递增,在(x 1,π2)上单调递减.又()()ππ0002022p t p t ⎛⎫⎛⎫==-=-< ⎪'' ⎪⎝⎭⎝⎭,,所以()2e cos 2x p x x =-在1π(,)2x 上存在一实数2x 使得()20p x =,且满足当2(0,)x x ∈时,()0p x >;当2π()2x x ∈⋅时,()0p x <即()()t x m x ='在(0,x2)上单调递增,在(2x ,2π)上单调递减, 当()010m a ='+≥时,即()10a m x ≥-'≥,,函数()2e sin x m x x ax x =+-在[0,π2]上单调递增,又()00m =,因此()2e sin 0x m x x ax x =+-≥恒成立,符合题意,当()010m a '=+<,即1a <-,在π20,x ⎛⎫∈ ⎪⎝⎭上必存在实数3x ,使得当()30,x x ∈时,()0m x '<,又()00m =,因此在()30,x x ∈上存在实数()0m x <,不合题意,舍去 综上所述1a ≥-.6.(2022·浙江湖州·模拟预测)已知函数12()e x f x =(e 为自然对数的底数). (1)令1()||()()g x a x f x f x =--,若不等式()0g x ≤恒成立,求实数a 的取值范围; (2)令3()()x xf x m ϕ=-,若函数()ϕx 有两不同零点()1212,x x x x <. ①求实数m 的取值范围;①证明:21e e 21x x m -<+. 【答案】(1)(,1]-∞;(2)①2,03e m ⎛⎫∈- ⎪⎝⎭;①证明见解析.【解析】 【分析】(1)根据()g x 为偶函数,将问题转化为0x ≥时()0g x ≤恒成立,根据(0)0g =及参变分离求0x >有1122ee x x a x--≤恒成立,求参数范围;(2)①利用导数研究()ϕx 的单调性,及区间值域情况,进而判断()0x ϕ=有两不同解时m 的范围即可;①由(1)知:0x <时1122e e x x x -≥-且120x x <<,应用放缩法有2()e e x x x ϕ≥-,构造2()e e x x F x =-研究极值并判断()F x m =的两根与12,x x 大小关系得到3214e e e e x x x x -<-即可证结论. (1)由题设,1122()||e ex x g x a x -=--,则()()g x g x =-,所以()g x 为偶函数,故只需0x ≥时,()0g x ≤恒成立,而(0)0g =满足, 所以0x >有1122ee x x a x--≤恒成立,令02t x =>,则e e 2t ta t--≤,若()e e 2t t h t t -=--,则()e e 220t t h t -'=+-≥=,仅当0=t 时等号成立, 所以()0h t '>,即()h t 在(0,)+∞上递增,则()(0)0h t h >=,即e e 2t t t -->, 所以,在(0,)+∞上e e 12t tt-->,则1a ≤, 综上:a 的范围为(,1]-∞. (2)①由题设,323()1e 2x x x ϕ⎛⎫=+ ⎪'⎝⎭,若()0x ϕ'>得:23x >-,故()ϕx 在2,3⎛⎫-∞- ⎪⎝⎭单调减,在2,3⎛⎫-+∞ ⎪⎝⎭单调增,且x 趋向负无穷()ϕx 趋向于0,x 趋向正无穷()ϕx 趋向于正无穷,又2233e ϕ⎛⎫-=- ⎪⎝⎭,()00ϕ=,则0x <时,()0x ϕ<;0x >时,()0x ϕ>,要使()0x ϕ=有两个不同解12,x x 且120x x <<,则2,03e m ⎛⎫∈- ⎪⎝⎭;①由(1)知:0x <时1122e ex x x -≥-,则1132222()e e e e e x x x x xx ϕ-⎛⎫≥-=- ⎪⎝⎭;记2()e e x x F x =-且0x <,则(()e e 1)2x x F x '=-,所以(,ln 2)-∞-上()0F x '<,(ln 2,0)-上()0F x '>,故()F x 在(,ln 2)-∞-上递减,(ln 2,0)-上递增,且12()(ln 2),043e F x F ⎛⎫≥-=-∈- ⎪⎝⎭,所以()F x m =也有两根,记为34x x <,又(,0)-∞上)(()x F x ϕ≥,则31240x x x x <<<<, 令e x t =,则34e ,e xx 为20t t m --=的两根,故34e e 1x x +=,34e e x x m =-,所以34e e x x -=3124e e e e x x x x <<<,所以3214(41)1e e e e 212x x x xm m ++-<-==+. 7.(2022·湖北·模拟预测)已知()()1ln af x a x x x=-++(1)若0a <,讨论函数()f x 的单调性; (2)()()ln a g x f x x x =+-有两个不同的零点1x ,()2120x x x <<,若12202x x g λλ+⎛⎫'> ⎪+⎝⎭恒成立,求λ的范围.【答案】(1)单调性见解析 (2)(][),22,λ∈-∞-+∞【解析】 【分析】(1)求导可得()()()21x a x f x x +-'=,再根据a -与0,1的关系分类讨论即可;(2)由题()ln g x a x x =+,,设()120,1x t x =∈根据零点关系可得21ln x x a t -=,再代入1222x x g λλ+⎛⎫' ⎪+⎝⎭化简可得()()21ln 02t t t λλ+-+<+恒成立,设()()()21ln 2t ht t t λλ+-=++,再求导分析单调性与最值即可(1)()f x 定义域为()0,∞+()()()()()222211111x a x a x a x a f x a x x x x+--+-'=-+-== ①)01a <-<即10a -<<时,()01f x a x '<⇒-<<,()00f x x a '>⇒<<-或1x > ①)1a -=即1a =-时,()0,x ∈+∞,()0f x '≥恒成立 ①)1a ->即1a <-,()01f x x a '<⇒<<-,()001f x x '>⇒<<或x a >- 综上:10a -<<时,(),1x a ∈-,()f x 单调递减;()0,a -、()1,+∞,()f x 单调递增 1a =-时,()0,x ∈+∞,()f x 单调递增1a <-时,()1,x a ∈-,()f x 单调递减;()0,1、(),a -+∞,()f x 单调递增(2)()ln g x a x x =+,由题1122ln 0ln 0a x x a x x +=⎧⎨+=⎩,120x x <<则()1221ln ln a x x x x -=-,设()120,1x t x =∈ ①212112ln ln ln x x x xa x x t--==-()1a g x x'=+ ①122112122221122ln 2x x x x g a x x t x x λλλλλλ+-++⎛⎫'=+=⋅+ ⎪+++⎝⎭()()()21102ln t t tλλ+-=+>+恒成立()0,1t ∈,①ln 0t < ①()()21ln 02t t t λλ+-+<+恒成立设()()()21ln 2t h t t t λλ+-=++,①()0h t <恒成立()()()()()()()()22222224122241222t t t t h t t t t t t t λλλλλλλ⎛⎫-- ⎪++-+⎝⎭'=-==+++ ①)24λ≥时,204t λ-<,①()0h t '>,①()h t 在()0,1上单调递增 ①()()10h t h <=恒成立, ①(][),22,λ∈-∞-+∞合题①)24λ<,20,4t λ⎛⎫∈ ⎪⎝⎭,①()0h t '>,①()h t 在20,4λ⎛⎫⎪⎝⎭上单调递增2,14t λ⎛⎫∈ ⎪⎝⎭时,()0h t '<, ①()h t 在2,14λ⎛⎫⎪⎝⎭上单调递减①2,14t λ⎛⎫∈ ⎪⎝⎭,()()10h t h >=,不满足()0h t <恒成立综上:(][),22,λ∈-∞-+∞【点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了双零点与恒成立问题的综合,需要根据题意消去参数a ,令()120,1x t x =∈,再化简所求式关于t 的解析式,再构造函数分析最值.属于难题 8.(2022·浙江绍兴·模拟预测)设a 为实数,函数()e ln 1=++x f x a x x . (1)当1a e=-时,求函数()f x 的单调区间;(2)判断函数()f x 零点的个数.【答案】(1)减区间为()0,∞+,无增区间. (2)当0a ≥,函数()f x 在(0,)+∞上没有零点;当210e a -≤<,函数()f x 在(0,)+∞上有1个零点;当21e a <-,函数()f x 在(0,)+∞上有2个零点. 【解析】 【分析】(1)利用二次求导研究函数()f x 的单调性,进而得出结果; (2)利用分类讨论的思想,根据函数()f x 与()()f x g x x=具有相同的零点,结合导数分别研究当0a ≥、210e a -≤<、21e a <-时()g x 的单调性,利用零点的存在性定理即可判断函数()g x 的零点个数,进而得出结果. (1)函数()f x 的定义域为(0,)+∞, 当1a e=-时,1()e ln 1e xf x x x =-++,则1()e ln 1x f x x -'=-++,且()01f '=, 有1111e ()ex x x f x x x---''=-+=,令()01f x x ''=⇒=, 所以当(0,1)x ∈时()0f x ''>,则()'f x 单调递增, 当(1,)x ∈+∞时()0f x ''<,则()'f x 单调递减, 所以max ()(1)0f x f ''==,即()0f x '≤,则函数()f x 在(0,)+∞上单调递减, 即函数()f x 的减区间为(0,)+∞,无增区间; (2)由(1)知当1a e=-时函数()f x 在(0,)+∞上单调递减,又(1)0f =,此时函数()f x 只有1个零点; 因为函数()f x 的定义域为(0,)+∞,所以()f x 与()f x x具有相同的零点, 令()e 1()ln (0)x f x a g x x x x x x ==++>, 则222(1)e 11(1)(e 1)()x x a x x a g x x x x x --+'=+-=, 当0a ≥时,e 10x a +>,令()01g x x '=⇒=,则函数()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以min ()(1)e 10g x g a ==+>,此时函数()g x 无零点,即函数()f x 无零点;当0a <时,令()01g x x '=⇒=或1ln()x a=-,若10e a -<<,则11ln()a<-,列表如下:当211e ea -≤≤-时,222e 2e 222e 4222e e e (e )2e 2e e 2e 0e ea g ------=++<++=-++<, 当210e a -<<即21e a ->时,131e ()a a->-,1121111()e ln()[e ln()1]aa g a a a a a a a a---=-+--=---+3111[()(1)1]0a a a a a <-----+<,又(1)0g >,此时函数()g x 有1个零点,则函数()f x 有1个零点; 若1e <-a ,则11ln()a>-,列表如下:所以ln()min 1e 111()(ln())ln ln()ln ln()ln1011ln()ln()aa g x g a a a a a -=-=+-+=-<=--, 又(1)0g >,2(e )0g <,则此时函数()g x 有2个零点,即函数()f x 有2个零点; 综上,当0a ≥时,函数()f x 在(0,)+∞上没有零点, 当210ea -≤<时,函数()f x 在(0,)+∞上有1个零点, 当21e a <-时,函数()f x 在(0,)+∞上有2个零点.【点睛】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图像与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图像的交点问题.9.(2022·河南·开封市东信学校模拟预测(理))已知函数()ln 12a af x x x =+-+,其中R a ∈. (1)讨论函数()f x 的单调性;(2)讨论函数()f x零点的个数.【答案】(1)当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭(2)当4a ≤,函数()f x 有且仅有一个零点;当4a >时,函数()f x 有且仅有3个零点 【解析】 【分析】(1)求导,再分0a <,04a ≤≤和4a >分类讨论即可;(2)根据单调性及零点存在性定理分析即可. (1)函数()f x 的定义域为(0,)+∞,2221(2)1()(1)(1)a x a x f x x x x x +-+'=-=++,在一元二次方程2(2)10x a x +-+=中,22Δ(2)44(4)a a a a a =--=-=-, ①当0a <时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当04a ≤≤时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当4a >时,一元二次方程2(2)10x a x +-+=有两个不相等的根, 分别记为()1221,x x x x >,有122x x a +=-,1210x x =>,可得210x x >>, 有12x x ==可得此时函数()f x 的增区间为()()120,,,x x +∞减区间为()12,x x , 综上可知,当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭; (2)由(1)可知:①当4a ≤时,函数()f x 单调递增,又由(1)0f =,可得此时函数只有一个零点为1x =; ①当4a >时,由122110,x x x x =>>,可得1201x x <<<,又由(1)0f =,由函数的单调性可知()()12(1)0,(1)0f x f f x f >=<=, 当01x <<且20e ax -<<时,可得2ln ln e ax -<,有ln 02ax +<, 可得()ln ln 022a af x x a x <+-=+<, 当2e ax >时,2()ln ln e 02222aa a a af x x >->-=-=可知此时函数()f x 有且仅有3个零点,由上知,当4a ≤时,函数()f x 有且仅有一个零点; 当4a >时,函数()f x 有且仅有3个零点.10.(2022·贵州·贵阳一中模拟预测(文))已知函数()323.f x ax x a b =-++(1)讨论()f x 的单调性;(2)当()f x 有三个零点时a 的取值范围恰好是()()()3,22,00,1,--⋃-⋃求b 的值. 【答案】(1)答案见解析 (2)3b = 【解析】 【分析】(1)求函数()f x 的导函数()'f x ,讨论a ,并解不等式()0f x '>,()0f x '<可得函数的单调区间;(2)由(1)结合零点存在性定理可求b . (1)()f x 的定义域为R ,()()23632,f x ax x x ax =-=-'若0a =,则()0600f x x x '>⇒->⇒<,()00f x x <⇒>'∴ ()f x 在(),0∞-单调递增,()0,∞+单调递减,若0a >,则()00'>⇒<f x x 或2x a>, ()200f x x a>⇒<<', ()f x ∴在(),0∞-单调递增,20,a ⎛⎫ ⎪⎝⎭单调递减,2,a ⎛⎫+∞ ⎪⎝⎭单调递增,若0a <,则()200f x x a'>⇒<< ()20f x x a>⇒<'或0x >, ()f x ∴在2,a ⎛⎫-∞ ⎪⎝⎭单调递减,2,0a ⎛⎫⎪⎝⎭单调递增,()0,∞+单调递减.(2)可知()f x 要有三个零点,则0a ≠, 且2(0)0f f a ⎛⎫< ⎪⎝⎭由题意也即是()200f f a ⎛⎫< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃,也就是关于a 的不等式()()()32224400a b a ba a b a b a a ++-⎛⎫++-<⇒< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃, 令()()()32240a b a ba h a a+++=<,时()()()()()1114130h b b b b =++-=+-=, 所以有1b =-或3b =, 当3b =时,()()()()()323222233434400a a a a a a a h a aa++-+-+-=<⇒<,()()()2231440a a a a a+-++<的解是()()()3,22,00,1--⋃-⋃,满足条件,当1b =-时,()()()322140a a a h a a---=<,当1a =-时,()1120h -=>,不满足条件, 故1b ≠-,综合上述3b =.11.(2022·河南·平顶山市第一高级中学模拟预测(理))已知函数()()e 12()exx xf x a a =+--∈R . (1)若()e ()=⋅x g x f x ,讨论()g x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围. 【答案】(1)答案见解析;(2)()0,1. 【解析】 【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形,根据导数与0的关系可得单调性;(2)函数有两个零点即()e ()=⋅x g x f x 有两个零点,根据(1)中的单调性结合零点存在定理即可得结果. (1)由题意知,()()()e ()e e 12e e 12e e x x x x x xx x g x f x a a x ⎡⎤=⋅=⋅+--=+--⎢⎥⎣⎦,()g x 的定义域为(,)-∞+∞,()e (e 1)e e 2e 1(2e 1)(e 1)x x x x x x x g x a a a '=++⋅--=+-.若0a ≤,则()0g x '<,所以()g x 在(,)-∞+∞上单调递减; 若0a >,令()0g x '=,解得ln x a =-.当(,ln )x a ∈-∞-时,()0g x '<;当(ln ,)x a ∈-+∞时,()0g x '>, 所以()g x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增. (2)因为e 0x >,所以()f x 有两个零点,即()e ()=⋅x g x f x 有两个零点. 若0a ≤,由(1)知,()g x 至多有一个零点.若0a >,由(1)知,当ln x a =-时,()g x 取得最小值,最小值为1(ln )1ln g a a a-=-+. ①当1a =时,由于(ln )0g a -=,故()g x 只有一个零点: ①当(1,)∈+∞a 时,由于11ln 0a a-+>,即(ln )0g a ->,故()g x 没有零点; ①当(0,1)a ∈时,11ln 0a a-+<,即(ln )0g a -<. 又2222(2)e (e 1)2e 22e 20g a -----=+-+>-+>,故()g x 在(,ln )a -∞-上有一个零点.存在03ln 1,x a ⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭,则0000000000()e (e 1)2e e (e 2)e 0x x x x x xg x a x a a x x =+--=+-->->.又3ln 1ln a a ⎛⎫->- ⎪⎝⎭,因此()g x 在(ln ,)a -+∞上有一个零点.综上,实数a 的取值范围为(0,1).12.(2022·青海·大通回族土族自治县教学研究室三模(理))已知函数()ln 1f x ax x =++. (1)若()f x 在(0,)+∞上仅有一个零点,求实数a 的取值范围; (2)若对任意的0x >,2()e x f x x ≤恒成立,求实数a 的取值范围. 【答案】(1)0a ≥或1a =- (2)(,2]-∞ 【解析】 【分析】(1)求导1()f x a x'=+,0x >,分0a ≥和0a <讨论求解; (2)对任意的0x >,2()e x f x x ≤恒成立,转化为2ln 1e xx a x+≤-在(0,)+∞上恒成立求解. (1)解:1()f x a x'=+,0x >, 当0a ≥时,()0f x '>恒成立,所以()f x 在(0,)+∞上单调递增.又()11ee 11a af a a ----=--+()1e 10a a --=-≤,(1)10f a =+>, 所以此时()f x 在(0,)+∞上仅有一个零点,符合题意; 当0a <时,令()0f x '>,解得10x a <<-;令()0f x '<,解得1x a>-, 所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,所以()f x 在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.要使()f x 在(0,)+∞上仅有一个零点,则必有10f a ⎛⎫-= ⎪⎝⎭,解得1a =-.综上,当0a ≥或1a =-时,()f x 在(0,)+∞上仅有一个零点. (2)因为()ln 1f x ax x =++,所以对任意的0x >,2()e x f x x ≤恒成立,等价于2ln 1e xx a x+≤-在(0,)+∞上恒成立. 令2ln 1()e (0)xx m x x x+=->,则只需min ()a m x ≤即可, 则2222e ln ()+'=x x xm x x ,再令22()2e ln (0)x g x x x x =+>,则()221()4e 0'=++>xg x x x x, 所以()g x 在(0,)+∞上单调递增.因为12ln 204g ⎛⎫=< ⎪⎝⎭,2(1)2e 0g =>,所以()g x 有唯一的零点0x ,且0114x <<, 所以当00x x <<时,()0m x '<,当0x x >时,()0m x '>, 所以()m x 在()00,x 上单调递减,在()0,x +∞上单调递增. 因为022002eln 0x x x +=,所以()()()00002ln 2ln ln ln x x x x +=-+-,设()ln (0)S x x x x =+>,则1()10'=+>S x x, 所以函数()S x 在(0,)+∞上单调递增.因为()()002ln S x S x =-,所以002ln x x =-,即0201ex x =.所以()0()m x m x ≥=02000000ln 1ln 11e 2x x x x x x x +-=--=, 则有2a ≤.所以实数a 的取值范围为(,2]-∞.13.(2022·福建省福州第一中学三模)已知函数()e sin 1x f x a x =--在区间0,2π⎛⎫⎪⎝⎭内有唯一极值点1x .(1)求实数a 的取值范围;(2)证明:()f x 在区间(0,)π内有唯一零点2x ,且212x x <. 【答案】(1)(1,)+∞ (2)证明见解析 【解析】 【分析】(1)先求导,再讨论1a 时,函数单增不合题意,1a >时,由导数的正负确定函数单调性知符合题意; (2)先由导数确定函数()f x 在区间(0,)π上的单调性,再由零点存在定理即可确定在区间(0,)π内有唯一零点;表示出()12f x ,构造函数求导,求得()120f x >,又由()20f x =,结合()f x 在()1,x x π∈上的单调性即可求解. (1)()e cos x f x a x '=-,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos (0,1)x ∈,21e e x π<<,①当1a 时,()0f x '>,()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,没有极值点,不合题意,舍去;①当1a >时,显然()'f x 在0,2π⎛⎫ ⎪⎝⎭上递增,又因为(0)10f a '=-<,2e 02f ππ⎛⎫'=> ⎪⎝⎭,所以()'f x 在0,2π⎛⎫ ⎪⎝⎭上有唯一零点1x ,所以()10,x x ∈,()0f x '<;1,2x x π⎛⎫∈ ⎪⎝⎭,()0f x '>,所以()f x 在0,2π⎛⎫⎪⎝⎭上有唯一极值点,符合题意.综上,(1,)∈+∞a .(2)由(1)知1a >,所以,2x ππ⎡⎫∈⎪⎢⎣⎭时,()e cos 0x f x a x '=->,所以()10,x x ∈,()0f x '<,()f x 单调递减;()1,x x π∈,()0f x '>,()f x 单调递增,所以()10,x x ∈时,()(0)0f x f <=,则()10<f x ,又因为()e 10f ππ=->,所以()f x 在()1,πx 上有唯一零点2x ,即()f x 在(0,)π上有唯一零点2x .因为()112211112e sin 21e 2sin cos 1x x f x a x a x x =--=--,由(1)知()10f x '=,所以11e cos xa x =,则()112112e 2e sin 1x xf x x =--,构造2()e 2e sin 1,0,2t t p t t t π⎛⎫=--∈ ⎪⎝⎭,所以()2()2e 2e (sin cos )2e e sin cos t t t t p t t t t t '=-+=--,记()e sin cos ,0,2tt t t t πϕ⎛⎫=--∈ ⎪⎝⎭,则()e cos sin t t t t ϕ'=-+,显然()t ϕ'在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ>=,所以()0p t '>,所以()p t 在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0p t p >=,所以()()1220f x f x >=,由前面讨论可知:112x x π<<,12x x π<<,且()f x 在()1,x x π∈单调递增,所以122x x >.【点睛】本题关键点在于先表示出()12f x ,构造函数()p t 求导,令导数为新的函数再次求导,进而确定函数()p t 的单调性,从而得到()120f x >,再结合()20f x =以及()f x 在()1,x x π∈上的单调性即可证得结论. 14.(2022·安徽·合肥市第八中学模拟预测(文))已知函数()e (sin cos )sin .x f x x x a x =+-.(1)当1a =时,求函数f (x )在区间[0]2π,上零点的个数; (2)若函数()y f x =在(0,2π)上有唯一的极小值点,求实数a 的取值范围 【答案】(1)2个(2)2]∞-⋃(,3222[2e ,)2e ,2e πππ⎧⎫+∞⋃⎨⎬⎩⎭【解析】 【分析】(1)利用导数判断函数f x ()在[0]2π,上的单调性,结合零点存在性定理确定零点个数;(2)利用导数,通过分类讨论确定函数f x ()的单调性及极值,由此确定a 的取值范围.(1)因为1a =,所以()e (sin cos )sin .x f x x x x =+-()(2e 1)cos x f x x '=-,则当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 又32223(0)10,()e 10,()1e 0,(2)e 022f f f f ππππππ=>=->=-<=>,则f x ()在322ππ⎛⎫ ⎪⎝⎭,,322ππ⎛⎫⎪⎝⎭,上各有一个零点,所以f x ()在区间[0]2π,上共有两个零点, (2)2()(2e )cos ,(02),22e 2e x x f x a x x ππ'=-∈<<,①当2a ≤时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 此时f x ()在32x π=的时候取得极小值,则2a ≤时符合题意: ①当22e a π≥时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在02π⎛⎫⎪⎝⎭,上单调递减,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递增, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,单词递减, 此时f x ()在2x π=的时候取得极小值,则22a e π≥时符合题意①当222e a π<<时,0ln 22a π<<,此时f x ()在0,ln 2a ⎛⎫ ⎪⎝⎭上单调递减,在ln ,22a π⎛⎫ ⎪⎝⎭,上单调递增,在3,22ππ⎛⎫ ⎪⎝⎭上单调递减,在3(,2)2ππ上单调递增,此时有两个极小值点,不符合题意: ①当22e a π=时,ln22a π=,此时f x ()在(0,32π)上单调递减,在3,22ππ⎛⎫ ⎪⎝⎭上单调递增,此时f x ()在32x π=的时候取得极小值,则22e a π=时符合题意;①当3222e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在,ln 22a π⎛⎫ ⎪⎝⎭上单调递增,在3ln 22a π⎛⎫⎪⎝⎭,上单调递减,在3,22ππ⎛⎫⎪⎝⎭上单调递增,此时有两个极小值点,不符合题意; ①当322e a π=时,3ln22a π=,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在22ππ⎛⎫ ⎪⎝⎭,上单调递增,此时f x ()在2x π=的时候取得极小值,则322e a π=时符合题意;①当322e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在322ππ⎛⎫⎪⎝⎭,上单调递增,在3(,ln )22a π上单调递减,在(ln ,2)2aπ上单调递增,此时有两个极小值点,不符合题意;综上所述3222(,22e ,)2 ][e ,2e a πππ⎧⎫∈-∞+∞⎨⎬⎩⎭.【点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同. (2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.15.(2022·江西·上高二中模拟预测(理))已知函数()()2ln 0ax af x x a x -=->.(1)讨论()f x 的单调性;(2)设()()2ag x f x x=-+有两个零点12,x x ,若212x x >,证明:3312672e x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求导得()2221b ax x af x a x x x -+-=--=',对导函数进行分情况讨论其正负,即可得()f x 的单调性. (2)通过函数有两个零点,转化成1212ln 2ln 2x x a x x ++==,然后根据比例,构造出221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,得到122111,e t x t x t x --==,进而构造函数33313ln ()ln[(1)]ln(1)1t t h t t t t t -=+=++-,利用导数处理单调性,进而可求. (1))()2221b ax x af x a x x x -+-=--=' 令2()F x ax x a =-+- ,则()00F a =-< ,且对称轴102x a=> 而214a ∆=-易知当10,2a ⎛⎫∈ ⎪⎝⎭ 时()f x 在0⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭ 单调递减,在⎝⎭单调递增当)12a ∞⎡∈+⎢⎣, 时()f x 在()0+∞,单调递减. (2)()g x 有两个零点12,x x 且0x >,则1212ln 2ln 2ln 2ln 20x x x x ax a a x x x +++-+=⇒=⇒==, 设21x t x =, 212x x >,2t ∴> ∴221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,∴11ln ln 2ln 2t x t x ++=+,所以12111ln ln 2e 1t t x x t t --=-⇒=-, ∴33333631121(1)e (1)t x x t x t t --+=+=+,设33313ln ()ln[(1)]ln(1)1t t h t tt t t -=+=++-,2t >,则222331(1)()[1ln ](1)1t t h t t t t t -'=--+-+, 设2231(1)()1ln 1t t t t t tϕ-=--++,则7437323223211()(441)[(1)4(1)](1)(1)t t t t t t t t t t t t t ϕ--'=+--=-+-++, 当(1,)t ∈+∞时,()0t ϕ'>,所以函数()t ϕ在(1,)t ∈+∞上递增,()()10t ϕϕ∴>=,则()0h t '>,()h t ∴在(1,)+∞递增,又2t >,∴()(2)ln72h t h >=,故3361272e x x -+>. 【点睛】本题考查了含参函数的单调性,最值问题,方程与函数零点的综合问题,利用导数解决单调性的问题,分情况讨论,转化,构造函数证明不等式,二阶求导等综合性的函数知识,在做题时要理清思路,是一道导数的综合题.16.(2022·山东师范大学附中模拟预测)已知函数()()ln h x x a x a =-∈R . (1)若()h x 有两个零点,a 的取值范围;(2)若方程()e ln 0xx a x x -+=有两个实根1x 、2x ,且12x x ≠,证明:12212e ex x x x +>. 【答案】(1)()e,+∞ (2)证明见解析 【解析】 【分析】(1)分析可知0a ≠,由参变量分离法可知直线1y a=与函数()ln xf x x=的图象有两个交点,利用导数分析函数()f x 的单调性与极值,数形结合可求得实数a 的取值范围;(2)令e 0x t x =>,其中0x >,令111e x t x =,222e xt x =,分析可知关于t 的方程ln 0t a t -=也有两个实根1t 、2t ,且12t t ≠,设120t t >>,将所求不等式等价变形为12112221ln 1t t t t t t ⎛⎫- ⎪⎝⎭>+,令121t s t =>,即证()21ln 1s s s ->+,令()()21ln 1s g s s s -=-+,其中1s >,利用导数分析函数()g s 的单调性,即可证得结论成立. (1)解:函数()h x 的定义域为()0,∞+.。
抛物线中的切线问题一、考情分析对于抛物线特别是抛物线x 2=2py p ≠0 ,可以化为函数y =x 22p,从而可以借组导数研究求性质,这种关联使得可以把抛物线与导数的几何意义交汇,这是圆锥曲线中的一大亮点,也是圆锥曲线解答题的一个热点.二、解题秘籍(一)利用判别式求解抛物线中的切线问题求解直线抛物线相切问题,可以把直线方程与抛物线方程联立整理成一个一元二次方程,然后利用Δ=0求解.【例1】(2023届河南省新未来高三上学期联考)已知抛物线C :y 2=2px p >0 ,直线l 1,l 2都经过点P -p2,0 .当两条直线与抛物线相切时,两切点间的距离为4.(1)求抛物线C 的标准方程;(2)若直线l 1,l 2分别与抛物线C 依次交于点E ,F 和G ,H ,直线EH ,FG 与抛物线准线分别交于点A ,B ,证明:PA =PB .【解析】(1)设经过点P -p 2,0 的直线为l :y =k x +p2 ,由y 2=2px y =k x +p 2消去y ,得k 2x 2+k 2-2 px +k 2p 24=0,Δ=k 2-2 2p 2-4×k 2⋅k 2p 24=4p 2-k 2+1 ,当直线l 与抛物线C 相切时,Δ=0,∵p >0,∴k =±1,所以x 2-px +p 24=0,解得x =p 2,∴切点为p 2,p ,p 2,-p ,又∵两切点间的距离为4,∴2p =4,即p =2,∴抛物线C 的标准方程为y 2=4x ;(2)设点E x 1,y 1 ,F x 2,y 2 ,G x 3,y 3 ,H x 4,y 4 ,设直线l 1:x =k 1y -1,直线l 2:x =k 2y -1,联立y 2=4x x =k 1y -1 消去x ,得y 2-4k 1y +4=0,则y 1y 2=4,同理,y 3y 4=4,故y 1=4y 2,y 4=4y 3,直线EH 的方程为y -y 1y 4-y 1=x -x 1x 4-x 1,令x =-1,得y A -y 1y 4-y 1=1-y 214y 244-y 214,整理得y A =y 1y 4-4y 1+y 4,同理,y B =y 2y 3-4y 2+y 3,所以y A =4y 2⋅4y 3-44y 2+4y 3=4-y 2y 3y 2+y 3=-y B ,∴PA =PB .(二)利用导数几何意义求解抛物线中的切线问题求解抛物线x 2=2py 在其上一点P x 1,y 1 处的切线方程,可先把x 2=2py 化为y =x 22p ,则y =xp,则抛物线x 2=2py 在点P x 1,y 1 处的切线斜率为x 1p ,切线方程为y -y 1=x1px -x 1 .【例2】(2023届湖南省三湘名校教育联盟高三上学期联考)在直角坐标系xoy 中,已知抛物线C :x 2=2py p >0 ,P 为直线y =x -1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.【解析】(1)当P 在y 轴上时,即P 0,-1 ,由题意不妨设A x 0,y 0 x 0>0 则B -x 0,y 0 ,设过点P 的切线方程为y =kx -1,与x 2=2py 联立得x 2-2pkx +2p =0,由直线和抛物线相切可得Δ=4p 2k 2-8p =0,x 0x 0=x 20=2p ,所以x 0=2p 由x 20=2py 0得y 0=1,∴A 2p ,1 ,B -2p ,1 ,由OA ⊥OB 可得2p ⋅-2p +1×1=0,解得p =12,∴抛物线C 的方程为x 2=y ;(2)x 2=y ,∴y =2x ,设A x 1,y 1 ,B x 2,y 2 ,则y -y 1=2x 1x -x 1 ,又x 21=y 1,所以y -y 1=2x 1x -2y 1即2x 1x =y +y 1,同理可得2x 2x =y +y 2,又P 为直线y =x -1上的动点,设P t ,t -1 ,则2x 1t =t -1+y 1,2x 2t =t -1+y 2,由两点确定一条直线可得AB 的方程为2xt =t -1+y ,即y -1=2t x -12 ,∴直线AB 恒过定点M 12,1 ,∴点O 到直线AB 距离的最大值为OM =12 2+1=52.(三)抛物线中与切线有关的性质过抛物线焦点弦的两端点作抛物线的切线,则(1)切线交点在准线上(2)切线交点与弦中点连线平行于对称轴(3)切线交点与焦点弦的两端点连线垂直(4)切线交点与焦点连线与焦点弦垂直(5)弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.反之:(1)过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点,该点与焦点连线垂直于过两切点的弦(2)过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.【例3】已知抛物线C :x 2=2py (p >0)的焦点为F ,过F 的直线l 与C 相交于A ,B 两点,PA ,PB 是C 的两条切线,A ,B 是切点.当AB ∥x 轴时,|AB |=2.(1)求抛物线C 的方程;(2)证明:|PF |2=|AF |⋅|FB |.【解析】(1)由题意,F 0,p 2 ,当AB ∥x 轴时,将y =p2代入x 2=2py 有x 2=p 2,解得x =±p ,又AB =2故2p =2,解得p =1.故抛物线C 的方程为x 2=2y .(2)由(1),设A x 1,y 1 ,B x 2,y 2 ,直线l 的方程为y =kx +12,联立抛物线方程有x 2-2kx -1=0,故x 1+x 2=2k ,x 1x 2=-1.又抛物线方程y =12x 2,故y =x ,故切线PA 的方程为y -12x 21=x 1x -x 1 ,即y =x 1x -12x 21,同理可得切线PB 的方程为y =x 2x -12x 22,联立y =x 1x -12x 21y =x 2x -12x 22可得x 1-x 2 x =12x 21-x 22 ,解得x =12x 1+x 2 ,代入y =x 1x -12x 21有y =12x 1x 1+x 2 -12x 21=12x 1x 2,代入韦达定理可得P k ,-12.故当k =0时有l ⊥PF ,当k ≠0时,因为k FP =-12-12k -0=-1k,故k FP ⋅k l =-1,也满足l ⊥PF .故l ⊥PF 恒成立.又k PA ⋅k PB =x 1x 2=-1,故PA ⊥PB .所以∠PAB +∠PBA =90∘,∠PAF +∠APF =90∘,故∠PBF =∠APF ,故Rt △PBF ∼Rt △APF ,故BFPF=PF AF ,即PF 2=AF ⋅BF ,即得证.【例4】已知直线l 过原点O ,且与圆A 交于M ,N 两点,MN =4,圆A 与直线y =-2相切,OA 与直线l 垂直,记圆心A 的轨迹为曲线C .(1)求C 的方程;(2)过直线y =-1上任一点P 作C 的两条切线,切点分别为Q 1,Q 2,证明:①直线Q 1Q 2过定点;②PQ 1⊥PQ 2.【解析】(1)如图,设A (x ,y ),因为圆A 与直线y =-2相切,所以圆A 的半径为|y +2|.由圆的性质可得|OA |2+|ON |2=|AN |2,即x 2+y 2+4=(y +2)2,化简得x 2=4y .因为O 与A 不重合,所以y ≠0,所以C 的方程为x 2=4y (y ≠0).(2)证明:①由题意可知Q 1,Q 2与O 不重合.如图,设P (t ,-1),Q 1x 1,y 1 ,则x 21=4y 1,因为y =x2,所以切线PQ 1的斜率为x 12,故x12=y 1+1x 1-t,整理得tx 1-2y 1+2=0.设Q 2x 2,y 2 ,同理可得tx 2-2y 2+2=0.所以直线Q 1Q 2的方程为tx -2y +2=0,所以直线Q1Q 2过定点(0,1).②因为直线Q 1Q 2的方程为tx -2y +2=0,由tx -2y +2=0,x 2=4y ,消去y 得x 2-2tx -4=0,所以x 1+x 2=2t ,x 1x 2=-4.又PQ 1 ⋅PQ 2=x 1-t x 2-t +y 1+1 y 2+1=x 1x 2-t x 1+x 2 +t 2+tx 1+22+1 tx 2+22+1 =x 1x 2-t x 1+x 2 +t 2+t 2x 1+2 t2x 2+2 =x 1x 2-t x 1+x 2 +t 2+t24x 1x 2+t x 1+x 2 +4=1+t24x 1x 2+t 2+4=0,所以PQ 1⊥PQ 2.三、跟踪检测1.(2023届云南省名校高三上学期月考)已知抛物线E :x 2=2py p >0 的焦点为F ,斜率为k k ≠0 的直线l 与E 相切于点A .(1)当k =2,AF =5时,求E 的方程;(2)若直线l 与l 平行,l 与E 交于B ,C 两点,且∠BAC =π2,设点F 到l 的距离为d 1,到l 的距离为d 2,试问:d1d 2是否为定值?若是,求出定值;若不是,说明理由.【解析】(1)由x 2=2py 得y =x 22p ,则y =x p,令xp =2,则x =2p ,即x A =2p ,y A =2p 22p=2p 则AF =2p +p2=5,所以p =2,故抛物线E 的方程为x 2=4y .(2)设A 2pt 0,2pt 20 ,B 2pt 1,2pt 21 ,C 2pt 2,2pt 22 ,则切线l 的斜率k =2pt 0p=2t 0,则切线l 的方程为:y -2pt 02=2t 0x -2pt 0 ,即y =2t 0x -2pt 20,k BC =2pt 12-2pt 222pt 1-2pt 2=t 1+t 2.直线l 的方程为y -2pt 21=t 1+t 2 x -2pt 1 ,化简得y =t 1+t 2 x -2pt 1t 2,因为l ∥l ,所以t 1+t 2=2t 0,由∠BAC =π2得2pt 12-2pt 022pt 1-2pt 0⋅2pt 22-2pt 022pt 2-2pt 0=-1,则t 1+t 0 t 2+t 0 =-1,即t 1t 2=-1-3t 20,即l :2t 0x -y +2p +6pt 02=0.由F 0,p 2 ,则d 1=3p 2+6pt 20 4t 20+1=3p 2+6pt 204t 20+1,d 2=-p 2-2pt 204t 20+1=p 2+2pt 204t 20+1,所以d 1d 2=3p 12+2t 20 p 12+2t 20 =3.故d1d 2是定值,定值为3.2.(2023届河南省北大公学禹州国际学校高三上学期月考)已知抛物线C 的顶点在坐标原点,焦点在y 轴的正半轴上,直线l :mx +y -1=0经过抛物线C 的焦点.(1)求抛物线C 的方程;(2)若直线l 与抛物线C 相交于A ,B 两点,过A ,B 两点分别作抛物线C 的切线,两条切线相交于点P ,求△ABP 面积的最小值.【解析】(1)由题意,设抛物线C 的方程为x 2=2py p >0 ,因为直线l :mx +y -1=0经过0,1 ,即抛物线C 的焦点F 0,p2,所以p2=1,解得p =2,所以抛物线C 的方程为x 2=4y .(2)设A x 1,y 1 、B x 2,y 2 ,联立方程组x 2=4y mx +y -1=0 ,整理得x 2+4mx -4=0,因为Δ=16m 2+16>0,且x 1+x 2=-4m ,x 1x 2=-4,y 1+y 2=x 214+x 224=x 1+x 2 2-2x 1x 24=4m 2+2,y 1y 2=x 214×x 224=-4 216=1所以AB =y 1+y 2+p =41+m 2 ,由x 2=4y ,可得y =x 24,则y =x 2,所以抛物线C 经过点A 的切线方程是y -y 1=x 12x -x 1 ,将y 1=x 214代入上式整理得y =x 12x -x 214,同理可得抛物线C 经过点B 的切线方程为y =x 22x -x 224,联立方程组y =x 12x -x 214y =x 22x -x 224,解得x =x 1+x 22,y =x 1x 24,所以x =-2m ,y =-1,所以P -2m ,-1 到直线mx +y -1=0的距离d =m ×-2m -1-1m 2+1=2m 2+1,所以△ABP 的面积S =12AB d =12×4×1+m 2 ×2m 2+1=4m 2+1 32,因为m 2+1≥1,所以S ≥4,即当m =0时,S =4,所以△ABP 面积的最小值为4.3.(2022届浙江省绍兴市高三上学期12月选考)已知抛物线C 的焦点是0,14 ,如图,过点D 22,t(t ≤0)作抛物线C 的两条切线,切点分别是A 和B ,线段AB 的中点为M .(1)求抛物线C 的标准方程;(2)求证:直线MD ⎳y 轴;(3)以线段MD 为直径作圆,交直线AB 于MN ,求|AB |-|MN ||AB |+|MN |的取值范围.【解析】(1)设抛物线的方程为x 2=2py p >0 ,由题意可得p 2=14,所以p =12,所以抛物线方程y =x 2.(2)由(1)y =x 2,因为y =2x ,设A (x 1,y 1),B (x 2,y 2),直线AD 的方程为y =2x 1x -x 21,直线BD 的方程为y =2x 2x -x 22,联立上述两直线方程,得D 点坐标D x 1+x 22,x 1x 2 ,又因为M 点为线段AB 的中点,所以M 点坐标M x 1+x 22,1-x 1x 2 ,因为x D =x M ,所以直线MD ⎳y 轴:(3)因为点D 22,t (t ≤0),所以x 1+x 22=22,x 1x 2=t ,则M 22,1-t ,圆心22,12,直线AB 的斜率为k =x 21-x 22x 1-x 2=x 1+x 2=2,直线AB 方程为y =2x -t ,y =x 2y =2x -t ,得x 2-2x +t =0,Δ=2-4t ,|AB |=1+k 2⋅Δ=6(1-2t ),圆心到直线AB 的距离为d =1-2t 23,半径r =|MD |2=1-2t2,|MN |=2r 2-d 2=63(1-2t ),令1-2t =m ≥1,|AB |-|MN ||AB |+|MN |=3-m 3+m =-1+6m +3在m ≥1时单调递减,|AB |-|MN ||AB |+|MN |∈-1,12 .4.(2022届山东省济宁市高三上学期期末)已知抛物线E :y 2=2px (p >0)上一点C 1,y 0 到其焦点F 的距离为2.(1)求实数p 的值;(2)若过焦点F 的动直线l 与抛物线交于A 、B 两点,过A 、B 分别作抛物线的切线l 1、l 2,且l 1、l 2的交点为Q ,l 1、l 2与y 轴的交点分别为M 、N .求△QMN 面积的取值范围.【解析】(1)因为点C 1,y 0 到其焦点F 的距离为2,由抛物线的定义知1+p2=2解得p =2(2)由上问可知,抛物线方程E :y 2=4x设A y 214,y 1 ,B y 224,y 2,(y 1≠0,y 2≠0),设l :x =ty +1,联立y 2=4x x =ty +1 ,得y 2-4ty -4=0,判别式Δ=16t 2+16>0,故t ∈R y 1+y 2=4t ,y 1y 2=-4设l 1:y -y 1=k x -y 214联立方程组y 2=4xy -y 1=k x -y 214,消x 得ky 2-4y +4y 1-ky 21=0,所以Δ=16-4k 4y 1-ky 21 =44-4ky 1+k 2y 21 =0所以k =2y 1则l 1:y -y 1=2y 1x -y 214,即y =2y 1x +y 12,令x =0,得M 0,y 12,同理l 2:y =2y 2x +y 22,N 0,y 22,联立y =2y 1x +y12y =2y 2x +y 22,得交点Q 的横坐标为x Q =y 1y 24=-1,∴S △QMN =12MN ⋅x Q =12y 12-y 22×1=14y 1+y 2 2-4y 1y 2=t 2+1≥1∴△QMN 面积的取值范围是1,+∞ .5.(2022届百校联盟高三上学期12月联考)已知曲线C 上任意一点到F 1(-1,0),F 2(1,0)距离之和为433,抛物线E :y 2=2px 的焦点是点F 2.(1)求曲线C 和抛物线E 的方程;(2)点Q x 0,y 0 x 0<0 是曲线C 上的任意一点,过点Q 分别作抛物线E 的两条切线,切点分别为M ,N ,求△QMN 的面积的取值范围.【解析】(1)依题意,曲线C 是以F 1(-1,0),F 2(1,0)为左右焦点,长轴长为433的椭圆,则短半轴长b 有b 2=232-12=13,曲线C 的方程为:x 243+y 213=1,即3x 24+3y 2=1,在y 2=2px 中,p 2=1,即p =2,所以曲线C 的方程为:3x 24+3y 2=1,抛物线E 的方程为:y 2=4x .(2)显然,过点Q 的抛物线E 的切线斜率存在且不为0,设切线方程为:y -y 0=k (x -x 0),由y -y 0=k (x -x 0)y 2=4x消去x 并整理得:k4⋅y 2-y +y 0-kx 0=0,依题意,Δ=1-k (y 0-kx 0)=x 0k 2-y 0k +1=0,设二切线斜率为k 1,k 2,则k 1+k 2=y 0x 0,k 1k 2=1x 0,设斜率为k 1的切线所对切点M (x 1,y 1),斜率为k 2的切线所对切点N (x 2,y 2),因此,y 1=2k 1,y 2=2k 2,于是得M 1k 21,2k 1 ,N 1k 22,2k 2 ,NM =1k 21-1k 22,2k 1-2k 2,直线MN 上任意点P (x ,y ),MP =x -1k 21,y -2k 1,由MP ⎳NM 得:2k 1-2k 2 x -1k 21 -1k 21-1k 22y -2k 1 =0,化简整理得:2x -k 1+k 2k 1k 2y +2k 1k 2=0,则直线MN 的方程为:2x -y 0y +2x 0=0,点Q 到直线MN 的距离d =|4x 0-y 20|4+y 2,|MN |=1k 21-1k 222+2k 1-2k 2 2=1k 1-1k 2 21k 1+1k 22+4 =k 1+k 2k 1k 22-4k 1k 2k 1+k 2k 1k 2 2+4 =(y 20-4x 0)(y 20+4),则△QMN 的面积S △QMN =12|MN |⋅d =12⋅(y 20-4x 0)(y 20+4)⋅|4x 0-y 20|4+y 20=12(y 20-4x 0)32,而点Q x 0,y 0 x 0<0 在曲线C 上,即y 20=13-14x 20,-23≤x 0<0,y 20-4x 0=-14x 20-4x 0+13在x 0∈-23,0 上单调递减,当x 0=0时,(y 20-4x 0)min =13,当x 0=-23时,(y 20-4x 0)max =83,于是有13<y 20-4x 0≤83,则39<(y 20-4x 0)32≤164123,有318<S △QMN ≤84123所以△QMN 的面积的取值范围是318,84123.6.(2022届四川省达州高三上学期诊断)过定点0,1 的动圆始终与直线l :y =-1相切.(1)求动圆圆心的轨迹C 的方程;(2)动点A 在直线l 上,过点A 作曲线C 的两条切线分别交x 轴于B ,D 两点,当△ABD 的面积是32时,求点A 坐标.【解析】(1)设动圆圆心坐标为x ,y ,因为过定点0,1 的动圆始终与直线l :y =-1相切,可得-x 2+y -1 2=y +1 ,化简得x 2=4y ,即动圆圆心的轨迹方程C :x 2=4y .(2)设动点A x 0,-1 ,根据题意过点A 作曲线C 的切线斜率存在,设为k k ≠0 ,所以切线方程为y =k x -x 0 -1,联立方程组x 2=4y ,y =k x -x 0 -1 ,整理得x 2-4kx +4kx 0+4=0,且Δ=k 2-kx 0-1=0,因为k 2-kx 0-1=0有两不等实根,所以有两条切线,斜率分别设为k 1,k 2,所以k 1+k 2=x 0,k 1k 2=-1,切线y =k 1x -x 0 -1交x 轴于点B x 0+1k 1,0 ,切线y =k 2x -x 0 -1交x 轴于点D x 0+1k 2,0 ,所以S △ABD =12x 0+1k 1-x 0-1k 2×1=12k 2-k 1k 1k 2=12k 1+k 22-4k 1k 2k 1k 2=32,即12x 02+41=32,解得x 0=±5,所以点A 坐标为5,-1 或-5,-1 .7.(2022届四川省成都市高三上学期考试)已知抛物线C :x 2=2py p >0 的焦点为F .且F 与圆M :x 2+y +42=1上点的距离的最小值为4.(1)求抛物线的方程;(2)若点P 在圆M 上,PA ,PB 是C 的两条切线.A ,B 是切点,求△PAB 面积的最大值.【解析】(1)抛物线C 的焦点为F 0,p 2 ,FM =p2+4,所以,F 与圆M :x 2+(y +4)2=1上点的距离的最小值为p2+4-1=4,解得p =2;所以抛物线的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =x 24,对该函数求导得y =x 2,设点A x 1,y 1 ,B x 2,y 2 ,P x 0,y 0 ,直线PA 的方程为y -y 1=x 12x -x 1 ,即y =x 1x2-y 1,即x 1x -2y 1-2y =0,同理可知,直线PB 的方程为x 2x -2y 2-2y =0,由于点P 为这两条直线的公共点,则x 1x 0-2y 1-2y 0=0x 2x 0-2y 2-2y 0=0,所以,点A 、B 的坐标满足方程x 0x -2y -2y 0=0,所以,直线AB 的方程为x 0x -2y -2y 0=0,联立x 0x -2y -2y 0=0y =x 24,可得x 2-2x 0x +4y 0=0,由韦达定理可得x 1+x 2=2x 0,x 1x 2=4y 0,所以AB =1+x 022⋅x 1+x 22-4x 1x 2=1+x 022⋅4x 20-16y 0=x 20+4 x 20-4y 0点P 到直线AB 的距离为d =x 20-4y 0x 2+4,所以,S △PAB =12AB ⋅d =12x 20+4 x 20-4y 0 ⋅x 20-4y 0x 20+4=12x 20-4y 0 32,∵x 20-4y 0=1-y 0+4 2-4y 0=-y 20-12y 0-15=-y 0+6 2+21,由已知可得-5≤y 0≤-3,所以,当y 0=-5时,△PAB 的面积取最大值12×2032=205.8.(2022届山西省怀仁市高三上学期期中)已知抛物线C :y 2=2px p >0 的焦点为F ,准线与x 轴交于D点,过点F 的直线与抛物线C 交于A ,B 两点,且FA ⋅FB =FA +FB .(1)求抛物线C 的方程;(2)设P ,Q 是抛物线C 上的不同两点,且PF ⊥x 轴,直线PQ 与x 轴交于G 点,再在x 轴上截取线段GE =GD ,且点G 介于点E 点D 之间,连接PE ,过点Q 作直线PE 的平行线l ,证明l 是抛物线C 的切线.【解析】(1)解:设过点F 的直线方程为y =k x -p2,A x 1,y 1 ,B x 2,y 2 ,联立y =k x -p2 y 2=2px,得k 2x 2-pk 2+2p x +k 2p 24=0,则x 1+x 2=pk 2+2p k 2,x 1⋅x 2=p 24,所以FA +FB =x 1+p 2+x 2+p 2=2pk 2+2pk 2,FA ⋅FB =x 1+p 2 x 2+p 2 =p 22+p 2k 2+2 2k 2,因为FA ⋅FB =FA +FB ,所以2pk 2+2p k 2=p 22+p 2k 2+2 2k 2,化简得p 2-2p 1+1k2 =0,所以p =2,当过点F 的直线斜率不存在时,则FA =FB =p ,故FA +FB =2p ,FA ⋅FB =p 2,又因为FA ⋅FB =FA +FB ,则p 2=2p ,所以p =2,综上所述,p =2,所以y 2=4x ;(2)证明:不妨设点P 在第一象限,则P 1,2 ,D -1,0 ,F 1,0 ,设直线PQ 的方程为y -2=m x -1 ,m ≠0,Q x 3,y 3 ,联立y -2=m x -1 y 2=4x ,消元整理得m 24y 2-y -m +2=0,则2+y 3=4m ,即y 3=4-2mm 故x 3=2-m 2m 2,即Q 2-m 2m 2,4-2m m,当y =0时,x =-2m +1,则G -2m+1,0 ,又因GE =GD ,且点G 介于点E 点D 之间,则G 为DE 的中点,所以E -4m+3,0 ,则直线PE 的斜率为24m-2=m2-m ,因为直线PE 平行直线l ,所以直线l 的斜率为m2-m,故直线l 的方程为y -4-2m m =m 2-m x -2-m 2m 2,即y =m 2-m x +2-m m ,联立y =m 2-m x +2-mm y 2=4x,消元整理得m 42-m y 2-y +2-m m =0,Δ=1-4×m 42-m⋅2-mm =0,所以直线l 与抛物线只有一个交点,有直线l 斜率不为0,所以l 是抛物线C 的切线.9.已知抛物线C :x 2=2py ,点M -4,4 在抛物线C 上,过点M 作抛物线C 的切线,交x 轴于点P ,点O 为坐标原点.(1)求P 点的坐标;(2)点E 的坐标为-2,-1 ,经过点P 的直线交抛物线于A ,B 两点,交线段OM 于点Q ,记EA ,EB ,EQ 的斜率分别为k 1,k 2,k 3,是否存在常数λ使得k 1+k 2=λk 3.若存在,求出λ的值,若不存在,请说明理由.【解析】(1)因为M -4,4 在抛物线C 上,所以-4 2=8p ,所以p =2所以抛物线C 的方程为x 2=4y ,即y =14x 2,则y =12x ,所以切线的斜率为12×(-4)=-2,所以过点M 的切线方程为y =-2x +4 +4,即y =-2x -4联立y =-2x -4y =0,解得P 点的坐标为-2,0(2)由题意可知过点P 的直线的斜率存在,设为y =kx +2k ,线段OM 所在的直线为y =-x ,联立y =kx +2k y =-x,解得Q 点坐标为-2k k +1,2kk +1,所以k 3=2k k +1+1-2k k +1+2=3k +12设A x 1,x 214 ,B x 2,x 224,联立y =kx +2kx 2=4y ,得x 2-4kx -8k =0,所以x 1+x 2=4k ,x 1x 2=-8k .则k 1+k 2=x 214+1x 1+2+x 224+1x 2+2=14x 1x 2x 1+x 2 +x 1+x 2 +12x 21+x 22 +4x 1x 2+2x 1+x 2 +4=-8k 2+4k +1216k 2+16k +4-8k +8k +4=12k +44=3k +1所以k 1+k 2=2k 3,即存在λ=2满足条件.10.如图,已知A x 1,y 1 、B x 2,y 2 为二次函数y =ax 2(a >0)的图像上异于顶点的两个点,曲线y =ax 2在点A x 1,y 1 、B x 2,y 2 处的切线相交于点P x 0,y 0 .(1)利用抛物线的定义证明:曲线y =ax 2上的每一个点都在一条抛物线上,并指出这条抛物线的焦点坐标和准线方程;(2)求证:x 1、x 0、x 2成等差数列,y 1、y 0、y 2成等比数列;(3)设抛物线y =ax 2焦点为F ,过P 作PH 垂直准线l ,垂足为H ,求证:∠BPH =∠APF .【解析】(1)证明:令F 0,14a ,直线l :y =-14a,曲线y =ax 2上任意一点P x 0,ax 02,又a >0,则点P x 0,ax 02 到直线l 的距离d =ax 02+14a,则PF =x 02+ax 02-14a 2=x 02+ax 02 2-x 022+14a 2=ax 02 2+x 022+14a 2=ax 02+14a 2=ax 02+14a =ax 02+14a=d ,即曲线y =ax 2上任意一点到点F 0,14a 的距离与到直线l :y =-14a的距离相等,且点F 0,14a 不在直线l :y =-14a上,所以曲线y =ax 2上的每一个点都在一条抛物线上,抛物线的方程即为y =ax 2,焦点坐标为F 0,14a,准线方程为y =-14a;(2)解:对于y =ax 2,则y =2ax ,所以y |x =x 1=2ax 1,y |x =x 2=2ax 2,即过点A x 1,y 1 、B x 2,y 2 的切线方程分别为y -y 1=2ax 1x -x 1 、y -y 2=2ax 2x -x 2 ,又y 1=ax 12,y 2=ax 22,所以y =2ax 1x -ax 12、y =2ax 2x -ax 22,由y =2ax 1x -ax 12y =2ax 2x -ax 22 ,解得x =x 1+x 22y =ax 2x 1,即P x 1+x 22,ax 2x 1 ,即x 0=x 1+x 22,y 0=ax 2x 1,又y 02=a 2x 22x 12=y 1⋅y 2,所以x 1、x 0、x 2成等差数列,y 1、y 0、y 2成等比数列;(3)解:由(2)可知k BP =2ax 2,k AP =2ax 1,F 0,14a ,所以k PF =y 0-14ax 0=ax 2x 1-14a x 1+x 22,如图,设AP ,PF ,PB 与x 轴分别交于点C 、D 、E ,则tan ∠ACx =2ax 1,tan ∠BEx =2ax 2,tan ∠FDx =ax 2x 1-14ax 1+x 22,又∠BPH =π2-π-∠BEx =∠BEx -π2,∠FPA =∠FDx -∠ACx ,所以tan ∠BPH =tan ∠BEx -π2 =-1tan ∠BEx=-12ax 2,tan ∠FPA =tan ∠FDx -∠ACx =tan ∠FDx -tan ∠ACx1+tan ∠FDx tan ∠ACx=ax 2x 1-14a x 1+x 22-2ax11+ax 2x 1-14a x 1+x 22⋅2ax 1=ax 2x 1-14a -2ax 1⋅x 1+x 22x 1+x 22+ax 2x 1-14a ⋅2ax 1=-14a-ax 12x 1+x 22+2a 2x 12x 2-x 12=-14a -ax 12x 22+2a 2x 12x 2=-14a-ax 1212x 2+4a 2x 12x 2 =-1+4a 2x 12 2ax 21++4a 2x 12 =-12ax 2,即tan ∠BPH =tan ∠FPA ,所以∠BPH =∠FPA ;11.已知抛物线x 2=2py (p >0)上的任意一点到P (0,1)的距离比到x 轴的距离大1.(1)求抛物线的方程;(2)若过点(0,2)的直线l 与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线的切线,两条切线交于点Q ,求△QAB 重心G 的轨迹方程.【解析】(1)由抛物线的定义可得p =2,∴抛物线的方程为x 2=4y ;(2)由题意可得直线AB 的斜率存在,设其为k ,设A x 1,y 1 ,B x 2,y 2 ,则直线AB 的方程为y =kx +2;代入抛物线方程得x 2-4kx -8=0,则有x 1+x 2=4k ,x 1x 2=-8,∵y =x 24,∴y=x 2,∴l AQ :y -y 1=x 12x -x 1 ,即y =x 12x -x 214①同理可得l BQ :y =x 22x -x 224②,①-②有x 1-x 22 x =x 21-x 224,得x Q =x 1+x 22=2k ,∴y Q =kx 1-x 214=kx 1-y 1=-2.∴Q (2k ,-2)又y 1+y 2=k x 1+x 2 +4=4k 2+4,设G (x ,y ),则x =x 1+x 2+x Q3=2ky =y 1+y 2+y Q 3=4k 2+23,消k 得y =x 2+23,所以G 的轨迹方程为y =13x 2+23.12.已知抛物线C :x 2=2py p >0 的焦点为F ,点P -2,y 0 为抛物线上一点,抛物线C 在点P 处的切线与y 轴相交于点Q ,且△FPQ 的面积为2.(1)求抛物线的方程.(2)若斜率不为0的直线l 过焦点F ,且交抛物线C 于A ,B 两点,线段AB 的中垂线与y 轴交于点M ,证明:MF AB为定值.【解析】(1)将P -2,y 0 代入x 2=2py 得,y 0=2p 设抛物线的切线方程为y =k (x +2)+2p,代入x 2=2py 整理得:x 2-2pkx -(4pk +4)=0由题知Δ=4p 2k 2+4pk +4=0,解得k =-2p又y Q =2k +2p ,所以FQ =p 2-2k -2p 所以S △FPQ =p 2-2k -2p =p 2+2p=2,解得p =2所以抛物线C 的方程为x 2=4y(2)记AB 中点为N ,A (x 1,y 1),B (x 2,y 2),N (x 3,y 3)设直线AB 方程为y =mx +1,代入x 2=4y 整理得:x 2-4mx -4=0,则x 1+x 2=4m ,x 1x 2=-4所以AB =m 2+1(x 1+x 2)2-4x 1x 2=4(m 2+1)因为N 为AB 中点,所以x 3=x 1+x 22=2m ,y 3=2m 2+1所以直线MN 的方程为y -(2m 2+1)=-1m(x -2m )则y M =2m 2+3所以MF =2m 2+2所以MF AB =2m 2+24(m 2+1)=1213.(2022届新未来4月联考)已知直线l :x -ky +k -1=0与抛物线C :y 2=2px (p >0)交于A ,B 两点,过A ,B 两点且与抛物线C 相切的两条直线相交于点D ,当直线l ⊥x 轴时,|AB |=4.(1)求抛物线C 的标准方程;(2)求|OD |的最小值.【解析】(1)当直线l ⊥x 轴时,x =1,代入y 2=2px 解得y =±2p ,∴|AB |=22p =4,得p =2,∴抛物线C 的标准方程为y 2=4x ;(2)设A x A ,y A ,B x B ,y B ,D x D ,y D .联立x -ky +k -1=0,y 2=4x ,得y 2-4ky +4k -4=0.∴y A +y B =4k ,y A ⋅y B =4k -4①,∵直线l :x -ky +k -1=0恒过点(1,1),且与抛物线有两个交点,点(1,1)在抛物线上,∴k ≠0,当直线AD 和直线BD 斜率存在时,设直线AD :y =mx +n ,联立y =mx +n ,y 2=4x ,∴my 2-4y +4n =0,Δ=16-4m ⋅4n =0,∴m ⋅n =1,∴y A =2m ,同理,设直线BD :y =ax +b ,则ab =1,y B =2a,联立y =mx +n ,y =ax +b , ∴x D =1am ,y D =1a +1m.由①可知2m +2a =4k ,2m ⋅2a =4k -4,∴1m +1a -2ma=2,即y D -2x D =2,∴点D 在直线2x -y +2=0上.当直线AD 或直线BD 斜率不存在时,即直线l 过原点时,k =1,过原点的切线方程为x =0,易知另外一点为(4,4),过点(4,4)的切线方程设为x -4=t (y -4),联立x -4=t (y -4)y 2=4x,得y 2-4ty +16t -16=0,Δ=16t 2-416t -16 =0,解得t =2,即切线方程y =12x +2.此时交点D 的坐标为(0,2),在直线2x -y +2=0上,故OD 的最小值为原点到直线2x -y +2=0的距离,即25=255.14.过原点O 的直线与拋物线C :y 2=2px (p >0)交于点A ,线段OA 的中点为M ,又点P 3p ,0 ,PM ⊥OA .在下面给出的三个条件中任选一个填在横线处,并解答下列问题:①OA =46,②PM =23;③△POM 的面积为62.(1)______,求拋物线C 的方程;(2)在(1)的条件下,过y 轴上的动点B 作拋物线C 的切线,切点为Q (不与原点O 重合),过点B 作直线l 与OQ 垂直,求证:直线l 过定点.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)由题意知直线OA 的斜率存在且不为0,设其方程为y =kx k ≠0 ,由y 2=2px ,y =kx 得x =0,y =0 或x =2p k 2,y =2p k,即O 0,0 ,A 2p k 2,2p k所以线段OA 的中点M p k 2,p k.因为PM ⊥OA ,所以直线PM 的斜率存在,k PM =p kpk 2-3p =k1-3k 2.所以k 1-3k2⋅k =-1,解得k =±22,所以直线OA 的方程为x ±2y =0,A 4p ,±22p .若选①,不妨令A 4p ,22p ,由OA =46,得4p2+22p 2=46,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .若选②,因为PM ⊥OA ,PM =23,所以点P 到直线OA 的距离为23,即3p12+±2 2=23,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .若选③,不妨令A 4p ,22p ,因为OM =12OA =124p 2+22p 2=6p ,点P 到直线OA 的距离PM =3p12+±22=3p ,所以S △POM =12OM ⋅PM =12×6p ×3p =62,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .(2)由题意可知切线BQ 的斜率存在且不为0.设B 0,b b ≠0 ,切线BQ 的方程为y =k 1x +b ,由y =k 1x +b ,y 2=4x得k 1y 2-4y +4b =0,(*)所以Δ=-4 2-4×k 1×4b =0,解得k 1=1b,所以方程(*)的根为y =2b ,代入y 2=4x 得x =b 2,所以切点b 2,2b ,于是k OQ =2b b2=2b ,则k l =-b2,所以直线l 的方程为y =-b 2x +b ,即y =-b2x -2 ,所以当b 变化时,直线l 恒过定点2,0 .15.已知抛物线x 2=2py (y >0),其焦点为F ,抛物线上有相异两点A x 1,y 1 ,B x 2,y 2 .(1)若AF ⎳x 轴,且经过点A 的抛物线的切线经过点(1,0),求抛物线方程;(2)若p =2,且|AF |+|BF |=4,线段AB 的中垂线交x 轴于点C ,求△ABC 面积的最大值.【解析】(1)抛物线x 2=2py (y >0),焦点坐标为0,p2,因为AF ⎳x ,所以y A =p 2,所以x A =p ,又y =x 22p ,所以y =x p,所以过A 点的切线的斜率k =1,所以切线方程为y -p 2=x -p ,令y =0得x =p2=1,所以p =2,所以x 2=4y(2)若p =2,则抛物线为x 2=4y ,焦点为0,1 ,准线方程为y =-1,因为|AF |+|BF |=4,所以y A +1+y B +1=4,所以y A +y B =2,设直线AB 的方程为y =kx +m ,联立x 2=4y 得x 2-4kx -4m =0,Δ=16k 2+16m >0所以x 1+x 2=4k ,x 1x 2=-4m ,所以y 1+y 2=kx 1+kx 2+2m =4k 2+2m =2,即m =1-2k 2,所以Δ=16k 2+161-2k 2 >0,解得-1<k <1,当k =0时,直线方程为y =1,则A 2,0 ,B -2,0 ,所以AB 的中垂线恰为y 轴,则C 0,0 ,所以S △ABC =12×4×1=2,当-1<k <1,且k ≠0时,又AB 的中点坐标为x 1+x 22,y 1+y 22 =2k ,1 ,所以AB 的中垂线l 的方程为y =-1kx -2k +1,令y=0得x =3k ,所以C 3k ,0 ,所以C 到AB 的距离d =3k 2+m k 2+1,又AB=k 2+116k 2+16m ,所以S △ABC =12AB d =2k 2+m ×3k 2+m =21-k 2×1+k 2 =21-k 2 1+k 2 2令1-k 2=t ,则t ∈0,1 ,f t =t 2-t 2=t 3-4t 2+4t ,因为f t =3t 2-8t +4=t -2 3t -2 ,所以当t ∈0,23 时f t >0,f t 在0,23 上单调递增,当t ∈23,1 时f t <0,f t 在23,1 上单调递减,所以f t max =f 23 =3227所以S △ABC max =23227=869>2所以S △ABC max =86916.设抛物线C :x 2=2py (p >0)的焦点为F ,点P m ,2 (m >0)在抛物线C 上,且满足PF =3.(1)求抛物线C 的标准方程;(2)过点G 0,4 的直线l 与抛物线C 交于A ,B 两点,分别以A ,B 为切点的抛物线C 的两条切线交于点Q ,求三角形PQG 周长的最小值.【解析】(1)由抛物线定义,得PF =2+p2=3,得p =2,∴抛物线C 的标准方程为x 2=4y ;(2)设A x 1,y 1 ,B x 2,y 2 ,直线l 的方程为y =kx +4,∴联立y =kx +4x 2=4y,消掉x ,得x 2-4kx -16=0,Δ>0,∴x 1+x 2=4k ,x 1x 2=-16,设A ,B 处的切线斜率分别为k 1,k 2,则k 1=x 12,k 2=x22,∴在点A 的切线方程为y -y 1=x 12x -x 1 ,即y =x 1x 2-x 124①,同理,在B 的切线方程为y =x 2x 2-x 224②,由①②得:x Q =x 1+x 22=2k ,代入①或②中可得:y Q =kx 1-x 214=y 1-4-y 1=-4,∴Q 2k ,-4 ,即Q 在定直线y =-4上,设点G 关于直线y =-4的对称点为G ,则G 0,-12 ,由(1)知P 22,2 ,∵PQ +GQ =PQ +G Q ≥G P =251,即P ,Q ,G 三点共线时等号成立,∴三角形PQG 周长最小值为GP +G P =251+23.17.已知圆C :x 2+y -2 2=1与定直线l :y =-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y =-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A 、B .①求证:直线AB 过定点;②求证:∠PCA =∠PCB .【解析】(1)依题意知:M 到C 0,2 的距离等于M 到直线y =-2的距离,∴动点M 的轨迹是以C 为焦点,直线y =-2为准线的抛物线,设抛物线方程为x 2=2py p >0 ,则p2=2,则p =4,即抛物线的方程为x 2=8y ,故:动圆圆心M 的轨迹E 的方程为:x 2=8y ;(2)①由x 2=8y 得:y =18x 2,∴y =14x ,设A x 1,18x 21、B x 2,18x 22 ,P t ,-2 ,其中x 1≠x 2,则切线PA 的方程为y -18x 21=x 14x -x 1 ,即y =14x 1x -18x 21,同理,切线PB 的方程为y =14x 2x -18x 22,由y =14x 1x -18x 21y =14x 2x -18x 22 ,解得x =x 1+x 22y =x 1x 28 ,∴t =x 1+x 22-2=x 1x 28,即x 1+x 2=2t x 1x 2=-16 ,∵A x 1,18x 21、B x 2,18x 22 x 1≠x 2 ,∴直线AB 的方程为y -18x 21=18x 22-18x 21x 2-x 1x -x 1 ,化简得y =x 1+x 28x -x 1x 28,即y =t4x +2,故直线AB 过定点0,2 ;②由①知:直线AB 的斜率为k AB =t4,(i )当直线PC 的斜率不存在时,直线AB 的方程为y =2,∴PC ⊥AB ,∴∠PCA =∠PCB ;(ii )当直线PC 的斜率存在时,∵P t ,-2 、C 0,2 ,∴直线PC 的斜率k PC =-2-2t -0=-4t ,∴k AB ⋅k PC =t 4×-4t=-1,∴PC ⊥AB ,∴∠PCA =∠PCB .综上所述:∠PCA =∠PCB 得证.18.设抛物线C :x 2=2py p >0 ,其焦点为F ,准线为l ,点P 为C 上的一点,过点P 作直线l 的垂线,垂足为M ,且MF =FP ,FM ⋅FP=2.(1)求抛物线C 的方程;(2)设点Q 为C 外的一点且Q 点不在坐标轴上,过点Q 作抛物线C 的两条切线,切点分别为A ,B ,过点Q 作y 轴的垂线,垂足为S ,连接AS ,BS ,证明:直线AS 与直线BS 关于y 轴对称.【解析】(1)∵PM =PF =FM ,∴△PFM 为等边三角形,∴∠FMP =∠PFM =60°,又FM ⋅FP=FM ⋅FP cos ∠PFM =FM 2cos60°=2,∴FM =2设直线l 交y 轴于N 点,则在Rt △MNF 中∠NMF =30°,NF =1=p ,∴C 的方程为x 2=2y(2)设点Q a ,b a ≠0,b ≠0 ,A x 1,y 1 ,B x 2,y 2 ,又C 的方程为x 2=2y 可化为y =x 22,∴y =x所以过点A 且与C 相切的直线的斜率为x 1,过点B 且与C 相切的直线的斜率为x 2,所以直线QA 的方程为y-y1=x1x-x1,直线QB的方程为y-y2=x2x-x2.又直线QA与QB均过点Q,b-y1=x1a-x1,b-y2=x2a-x2,又x21=2y1,x22=2y2,∴y1=ax1-b,y2=ax2-b,所以直线AB的方程为y=ax-b,联立方程y=ax-b和x2=2y得方程组x2=2y,y=ax-b,消去y得x2-2ax+2b=0,∵b≠0,∴x1≠0,x2≠0,∵x1x2=2b,又S0,b,则直线AS的斜率k1=y1-bx1;直线BS的斜率k2=y2-bx2,∴k1+k2=x1+x2x1x22-bx1x2,∵x1x22-b=0,∴k1+k2=0,所以直线AS与直线BS关于y轴对称.。
第5讲 导数切线方程11类【题型一】 求切线基础型:给切点求切线【典例分析】 已知函数()2sin 1xf x x =+,则曲线()y f x =在点()0,0处的切线的方程为__________. 【答案】20x y -=【解析】【分析】先求导函数,求得在切点处的直线斜率;再根据点斜率求得切线方程. 【详解】因为()()()221cos 2sin 1x x xf x x +-'=+,所以()02kf ='=,则所求切线的方程为2y x =.故答案为:20x y -=.【变式演练】1.曲线()()1xf x x e x =++在点()0,1处的切线方程为______.【答案】310x y -+=【分析】利用导数的几何意义求解,先对函数求导,然后将点()0,1的横坐标代入导函数所得的值就是切线的斜率,再利用点斜式可与出切线方程. 解:由()()1xf x x e x =++,得()'(1)1x x fx e x e =+++, 所以在点()0,1处的切线的斜率为()'000(01)13fe e =+++=,所以所求的切线方程为13(0)y x -=-,即310x y -+=, 故答案为:310x y -+=,2.已知点()1,1P -在曲线2x y x a =+上,则曲线在点P 处的切线方程为_________.【答案】32y x =-- 【分析】将点P 的坐标代入曲线方程,可求得a 的值,然后利用导数的几何意义可求得曲线在点P 处的切线方程.【详解】因为点()1,1P -在曲线2x y x a=+上,111a ∴=-,可得2a =,所以,22x y x =+,对函数求导得()()()222222422x x x x xy x x +-+'==++,则曲线在点P 处的切线斜率为13x k y =-'==-,因此,曲线在点P 处的切线方程为()131y x -=-+,即32y x =--. 故答案为:32y x =--.3.已知曲线2()ln x f x x a=+在点(1,(1))f 处的切线的倾斜角为3π4,则a 的值为( )A .1B .1-C .12-D .4-【答案】B【分析】求出函数()2ln x f x x a =+的导数'12()x f x x a ,利用函数f(x)在x=1处的倾斜角为34π得'(1)1f =-,由此可求a 的值. 解:函数()2ln x f x x a=+的导数'12()x f x x a ,函数f(x)在x=1处的倾斜角为34π,∴'(1)1f =-,∴211a,∴1a =-故选B.【题型二】 求切线基础型:有切线无切点求切点【典例分析】曲线()32f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A .()1,0B .()2,8C .()1,0和()1,4--D .()2,8和()1,4-- 【答案】C 【详解】令()'2314f x x =+=,解得1x =±,()()10,14f f =-=-,故0p 点的坐标为()()1,0,1,4--,故选C. 【点睛】本小题考查直线的斜率,考查导数与斜率的对应关系,考查运算求解能力,属于基础题.【变式演练】1.已知函数()xx af x e e=+为偶函数,若曲线()y f x =的一条切线与直线230x y +=垂直,则切点的横坐标为( ) A 2 B .2C .2ln 2D .ln 2【答案】D【分析】先根据偶函数求参数1a =,再求导数,根据导数几何意义得斜率,最后根据直线垂直关系得结果.【详解】()f x 为偶函数,则()()(1)0xxx x x x a a f x e e e e a e e----=+=+∴--=∴1a =,()x x f x e e -∴=+,'().x x f x e e -∴=-设切点得横坐标为0x ,则0003'().2x x f x e e -=-=解得02x e =,(负值舍去)所以0ln 2x =.故选:D2.过曲线cos y x =上一点π1,32P ⎛⎫⎪⎝⎭且与曲线在点P 处的切线垂直的直线的方程为( )A .2π32303x -=B 3π3210x y +-= C .2π32303x -= D 3π3210x y += 【答案】A 【分析】求出函数得导函数,根据导数得几何意义即可求得切线得斜率,从而可求得与切线垂直得直线方程. 【详解】解:∵cos y x =,∵sin y x '=-, 曲线在点π1,32P ⎛⎫⎪⎝⎭处的切线斜率是π3π3sin3x y ='=-= ∵过点P 且与曲线在点P 3∵所求直线方程为1π233y x ⎫-=-⎪⎭,即2π32303x -=. 故选:A.3.曲线sin 21y x x =++在点P 处的切线方程是310x y -+=,则切点P 的坐标是____________. 【答案】()0,1 【分析】由导数的几何意义,求得切点P 处的切线的斜率,得到0cos 1x =,求得02()x k k Z π=∈,分类讨论,即可求解.【详解】由函数sin 21y x x =++,则cos 2y x '=+,设切点P 的坐标为()00,x y ,则斜率00cos 23x x k y x ==+'==, 所以0cos 1x =,解得02()x k k Z π=∈,当0k =时,切点为()0,1,此时切线方程为310x y -+=; 当0k ≠,切点为(2,41)()k k k Z ππ+∈,不满足题意, 综上可得,切点为()0,1.故答案为:()0,1.【题型三】 求切线基础:无切点求参【典例分析】已知曲线3y x =在点(),a b 处的切线与直线310x y ++=垂直,则a 的取值是( )A .-1B .±1C .1D .3±【答案】B【分析】求导得到()2'3f x x =,根据垂直关系得到()2'33f a a ==,解得答案.【详解】()3y f x x ==,()2'3f x x =,直线310x y ++=,13k =-,故()2'33f a a ==,解得1a =±.故选:B .【变式演练】1.若曲线ln (0)y x x =>的一条切线是直线12y x b =+,则实数b 的值为___________ 【答案】1ln2-+ 【解析】 【分析】先设切点为00(,)x y ,对函数求导,根据切线斜率,求出切点坐标,代入切线方程,即可得出结果. 【详解】设切点为00(,)x y ,对函数ln y x =求导,得到1y x'=,又曲线ln (0)y x x =>的一条切线是直线12y x b =+, 所以切线斜率为0112x =,∴02x =, 因此0ln 2y =,即切点为()2,ln 2,代入切线12y x b =+,可得1ln 2b =-+. 故答案为:1ln2-+.2.已知曲线3y ax =与直线640x y --=相切,则实数a 的值为__________. 【答案】2【分析】先设出切点坐标(,)m n ,然后由切点是公共点和切点处的导数等于切的斜率列方程组可求得结果. 解:设切点为(,)m n ,由3y ax =得'23y ax =,则由题意得,2336640am m n n am ⎧=⎪--=⎨⎪=⎩,解得1,2,2m n a ===,故答案为:23.已知x 轴为曲线()()34411f x x a x =+-+的切线,则a 的值为________.【答案】14【分析】设x 轴与曲线()f x 的切点为()0,0x ,由题意结合导数的几何意义可得()()()3002004411012410x a x f x x a ⎧+-+=⎪⎨=+-='⎪⎩,解方程即可得解. 【详解】由题意()()21241f x x a '=+-,设x 轴与曲线()f x 的切点为()0,0x ,则()()()3002004411012410x a x f x x a ⎧+-+=⎪⎨=+-='⎪⎩,解得01214x a ⎧=⎪⎪⎨⎪=⎪⎩.故答案为:14.【题型四】 无切点多参【典例分析】若直线2y x b =+是曲线2ln y a x =的切线,且0a >,则实数b 的最小值是______. 【答案】2- 【解析】 【分析】求出2ln y a x =的导数,设切线为(,)m n ,由切点处的导数值为切线斜率求出m a =,再由切点坐标可把b 表示为a 的函数,再利用导数可求得b 的最小值. 【详解】2ln y a x =的导数为2a y x'=,由于直线2y x b =+是曲线2ln y a x =的切线,设切点为(),m n ,则22am =, ∴m a =,又22ln m b a m +=,∴2ln 2b a a a =-(0a >),()2ln 122ln b a a '=+-=, 当1a >时,0b '>,函数b 递增,当01a <<时,0b '<,函数b 递减, ∴1a =为极小值点,也为最小值点,∴b 的最小值为2ln122-=-. 故答案为:2-.【变式演练】1已知函数f (x )=axlnx ﹣bx (a ,b ∈R )在点(e ,f (e ))处的切线方程为y =3x ﹣e ,则a +b =_____. 【答案】0【分析】由题意()()'2,3f e e fe ==,列方程组可求,a b ,即求+a b .【详解】∵在点()(),e f e 处的切线方程为3y x e =-,()2f e e ∴=,代入()ln f x ax x bx =-得2a b -=①. 又()()()''1ln ,23f x a x b f e a b =+-∴=-=②.联立①②解得:1,1a b ==-.0a b ∴+=.故答案为:0.2.若曲线()xf x mxe n =+在()()1,1f 处的切线方程为y ex =,则m n +=__________【答案】12e + 解:将1x =代入y ex =,得切点为()1,e ,∴e me n =+①,又()()1xf x me x '=+,∴()12f me e '==,12m =②.联立①②解得:12m =,2e n =,故11222e e m n ++=+=.故答案为:12e +. 3.已知曲线e ln xy a x x =+在点()1,ae 处的切线方程为2y x b =+,则( ) A .,1a e b ==- B .,1a e b == C .1,1a e b -== D .1,1a e b -==-【答案】D【详解】ln 1,xy ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .【题型五】 “过点”型切线【典例分析】过原点作曲线ln y x =的切线,则切点的坐标为___________,切线的斜率为__________. 【答案】(),1e1e【分析】设切点坐标为(,)x lnx ;利用导数求切线方程并求切点坐标. 解:设切点坐标为(,)x lnx ;1y x '=;故由题意得,1lnx x x=;解得,x e =;故切点坐标为(,1)e ;切线的斜率为1e; 故切线方程为1()1y x e e =-+,整理得0x ey -=.故答案为:(,1)e ;1e.【变式演练】1.过点(1,1)--与曲线x y e x =+相切的直线方程为______________. 【答案】21y x =+.【详解】设切点坐标为()000,e x x x +,由xy e x =+得e 1x y '=+,∴切线方程为()()0000e 1e x x y x x x =+-++, 切线过点()1,1--,∴()()00001e 11e x x x x -=+--++,即00e 0xx =,∴00x =,即所求切线方程为21y x =+.故答案为:21y x =+. 2.过点(0,1)-作曲线)ln f x x =(0x >)的切线,则切点坐标为________.【答案】,1)e【分析】先求出曲线的方程,再根据导数值为切线斜率,求出切点坐标. 【详解】由(ln f x x =(0x >),则2()ln ,0f x x x =>,化简得()2ln ,0f x x x =>, 则2()f x x'=,设切点为00(,2ln )x x ,显然(0,1)-不在曲线上, 则0002ln 12x x x +=,得0x e =,则切点坐标为,1)e . 故答案为:(,1)e .3.已知直线y ax =是曲线ln y x =的切线,则实数a =( (A .12B .12eC .1eD .21e 【答案】C【分析】设切点为00(,ln )x x ∵求出切线方程00ln 1xy x x =+-,即得001ln 10a x x ⎧=⎪⎨⎪-=⎩,解方程即得a 的值.【详解】设切点为00(,ln )x x ∵∵切线方程是000001ln ()ln 1xy x x x y x x x -=-⇒=+-∵ ∴0011ln 10a x a e x ⎧=⎪⇒=⎨⎪-=⎩,故答案为:C【题型六】 判断切线条数【典例分析】已知曲线3:3S y x x =-,则过点()2,2P 可向S 引切线,其切线条数为( )A .1B .2C .3D .0【答案】C 【解析】 【分析】 设切点为()3,3t t t-,利用导数求出曲线S 在切点()3,3t t t -处的切线方程,再将点P 的坐标代入切线方程,可得出关于t 的方程,解出该方程,得出该方程根的个数,即为所求. 【详解】设在曲线S 上的切点为()3,3t t t -,33y x x =-,则233y x '=-,所以,曲线S 在点()3,3t t t-处的切线方程为()()()32333y t t t x t --=--,将点()2,2P 的坐标代入切线方程得32320t t -+=,即()()21220t t t ---=,解得11t =,213t =313t =因此,过点()2,2P 可向S 引切线,有三条.故选:C.【变式演练】1.已知过点A (a ,0)作曲线C :y =x•e x 的切线有且仅有两条,则实数a 的取值范围是( )A .(﹣∞,﹣4)∪(0,+∞)B .(0,+∞)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣∞,﹣1)【答案】A【详解】设切点为()000,e x x x ∵(1)xy x e =+'∵000(1)x x x y x e =∴=+⋅',则切线方程为:()00000=1()x x y x e x e x x -+⋅-,切线过点(,0)A a 代入得:()00000=1()x x x e x e a x -+⋅- 2001x a x ∴=+,即方程2000x ax a --=有两个解,则有2400a a a ∆=+>⇒>或4a.故答案为:A.2.已知函数()=-xa f x x e 存在单调递减区间,且()y f x =的图象在0x =处的切线l 与曲线xy e =相切,符合情况的切线l( ( A .有3条 B .有2条 C .有1条 D .不存在【答案】D 【解析】试题分析:()1x ae f x a=-',依题意,()0f x '<在R 上有解.当0a <时,()0f x '<在R 上无解,不符合题意;当0a >时,()0,,ln x af x a e x a a <'符合题意,故0a >.易知曲线()y f x =在0x =处的切线为111y x a ⎛⎫=-- ⎪⎝⎭.假设该直线与x y e =相切,设切点为00,x y ,即有0011111xe x a a ⎛⎫=-=-- ⎪⎝⎭,消去a 化简得0001x x ex e =-,分别画出,1x x e xe -的图像,观察可知它们交点横坐标01x >,0x e e >,这与111a-<矛盾,故不存在.3.已知函数()3291,f x x ax x a R =+-+∈,当01x ≠时,曲线()y f x =在点()()00,x f x 与点()()02,2x f x --处的切线总是平行时,则由点(),a a 可作曲线()y f x =的切线的条数为( )A .1B .2C .3D .无法确定【答案】C 【解析】分析:由曲线()y f x =在点()()00,x f x 与点()()002,2x f x --处的切线总是平行,可得导函数的对称轴,从而求出a 的值,设出切点坐标,可得关于切点横坐标的方程有三个解,从而可得结果. 详解:由()3291f x x ax x =+-+,得()2'329f x x ax =+-,曲线()y f x =在点()()00,x f x 与点()()002,2x f x --处的切线总是平行,()'y f x ∴=关于1x =对称,即133aa -=⇒=-,点(),a a ,即为()3,3--, 所以()32391f x x x x =--+,()2'329f x x ax =+-,设切点为()(),t f t 切线的方程为()()3'3y f t x +=+,将点()32,391t t t t --+代入切线方程可得()()3223933693t t t t t t --+=--+,化为322636310t t t ---=,设()32263631g t t t t =---()2'61218g t t t =--令()'0g t >得3t >或1t <-,令()'0g t <得10t -<<,()32263631g t t t t =---在()(),1,3,-∞-+∞上递增,在()1,3-上递减,t ∴在1-处有极大值,在3处有极小值,()110g ∴-=>且()31390g =-<, ()32263631g t t t t =---与x 有三个交点,∴方程()0g t =有三个根,即过(),a a 的切线有3条,故答案为3.【题型七】 多函数(多曲线)的公切线【典例分析】直线y kx b =+与曲线()y f x =相切也与曲线()y g x =相切,则称直线y kx b =+为曲线()y f x =和曲线()y g x =的公切线,已知函数2(),()ln ,f x x g x a x ==,其中0a ≠,若曲线()y f x =和曲线()y g x =的公切线有两条,则a 的取值范围为( ) A .0a < B .1a <- C .02e a << D .20a e<<【答案】C 【解析】 【分析】设切点求出两个函数的切线方程,根据这个两个方程表示同一直线,可得方程组,化简方程组,可以得到变量a 关于其中一个切点横坐标的函数形式,求导,求出函数的单调性,结合该函数的正负性,画出图象图形,最后利用数形结合求出a 的取值范围. 【详解】设曲线2()f x x =的切点为:2(,)s s ,2'()()2f x x f x x ⇒==,所以过该切点的切线斜率为'()2f s s =,因此过该切点的切线方程为:222()2y s s x s y sx s -=-⇒=-;设曲线()y g x =的切点为:(,ln )t a t ,'()ln ()a g x a x g x x =⇒=,所以过该切点的切线斜率为'()a g t t=,因此过该切点的切线方程为:ln ()ln a ay a t x t y x a a t t t-=-⇒=-+,则两曲线的公切线应该满足:2224(1ln )ln a s a t t t s a a t⎧=⎪⇒=-⎨⎪-=-+⎩, 构造函数2'()4(1ln )(0)()4(12ln )h t t t t h t t t =->⇒=-,当12t e >时,'()0,()h t h t <单调递减,当120t e <<时,'()0,()h t h t >单调递增,所以函数有最大值为:12()2h e e =,当t e >时,()0h t <,当0t e <<,()0h t >,函数的图象大致如下图所示:要想有若曲线()y f x =和曲线()y g x =的公切线有两条,则a 的取值范围为02e a <<. 故选:C【变式演练】1.函数()ln 1mx f x x x =++与2()1g x x =+有公切线,(0)y ax a =>,则实数m 的值为( ) A .4 B .2C .1D .12【答案】A 【解析】 【分析】设两个切点A ()11x y ,和B ()22x y ,,然后求函数的导函数(),()f x g x '',由()g x 的导函数()g x '分析求解参数2a =,再由()f x 的导函数和公切线分析得出关于m 的方程组,求解即可得出答案. 【详解】设公切线,(0)y ax a =>与两个函数()ln 1mx f x x x =++与2()1g x x =+图象的切点分别为A ()11x y ,和B ()22x y ,,由()21()1m f x x x '=++,()2g x x '=,可得()22222222()21g x x ay ax g x x y⎧==⎪=='⎨⎪+=⎩解得2a =,所以有()1211111111111()21()ln 12m f x a x x mx f x x y x y ax x ⎧=+==⎪+⎪⎪⎪=+'=⎨+⎪⎪==⎪⎪⎩化简得21112ln 10x x x -+-=,令()22ln 1h x x x x =-+-()0x >,则()11304h x x x'+-≥>=恒成立,即得函数()22ln 1h x x x x =-+-()0x >在定义域上为增函数,又因()10h =,则可解得方程21112ln 10x x x -+-=,11x =,则由()21(1)2111m f '=+=+解得4m =. 故选:A.2.曲线1()x f x e -=与曲线()ln g x x =有( )条公切线. A .1 B .2 C .3 D .4【答案】B 【详解】设()010,x x e -是曲线()f x 图像上任意一点,()'1x f x e-=,所以()01'0x fx e -=,所以过点()010,x x e -的切线方程为()00110x x y ee x x ---=-,整理得()001101x x y e x x e --=⋅+-①.令()01'1x g x e x-==,解得011x x e -=,则()101g x x =-,所以曲线()g x 上过点()010,1xe x --的切线方程为:()()001101x x y x e x e ----=-,整理得010x y e x x -=⋅-②.由于切线①②重合,故()01001x x e x --=-,即()010010x x e x --⋅-=③.构造函数()()11x h x x ex -=--,则()'11x h x xe -=-,()()''11x h x x e -=+,故当1x <-时()()'''0,h x h x <递减、当1x >-时()()'''0,h x h x >递增,注意到当0x <时()'0h x <,且()'10h =,所以当1x <时()()'0,h x h x <递减,当1x >时,()()'0,h x h x >递增,而()()()22110,110,220h h h e e -=->=-<=->, 根据零点存在性定理可知在区间()()1,1,1,2-各存在()h x 的一个零点,也即()h x 有两个零点,也即方程③有两个根,也即曲线()f x 和曲线()g x 有两条公切线.故选:B 3.若函数()ln (0)f x x x =>与函数2()g x x a =+有公切线,则实数a 的最小值为( ) A .11ln 222-- B .ln21--C .12-D .ln 2-【答案】A 【解析】 【分析】求出()f x 导数,设出切点,求出切线,将其与2()g x x a =+联立,通过判别式为零,可得切点坐标的关系式,整理得到关于一个坐标变量的方程,借助于函数的极值和最值,即可得到a 的最小值. 【详解】 解:'1()f x x=,设公切线与曲线()ln f x x =相切的切点为(),ln ,0m m m >, 则公共切线为()1ln y x m m m=-+, 即ln 0x my m m m --+=,其与2y x a =+相切, 联立消去y 得:2ln 0mx x am m m m -++-=, 则()14ln 0m am m m m ∆=-+-=有解, 即211ln 4a m m=-+有解, 令()211ln 4h m m m =-+,0m >, 则()2'33112122m h m m m m -=-+=,令232102m m -=,得2m =, 则()211ln 4h m m m =-+在20,2⎛ ⎝⎭上单调递减,在2,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增, 则()2min 21212411ln 222h m h ==-+=⎝⎭⎝--⎭, 则11ln 222a --≥,所以实数a 的最小值为11ln 222--.故选:A.【题型八】 切线的应用:距离最值【典例分析】点P 在函数ln y x =的图像上,若满足到直线y x a =+的距离为1的点P 有且仅有1个,则a =( ) A 21 B 21 C .21-- D .21【答案】B 【分析】先求导,设直线y x m =+与ln y x =相切于点00(,)x y ,利用导数几何意义和切点在曲线、直线上求得切点()1,0,再利用()1,0到直线y x a =+的距离为1,结合图象解得参数即可. 【详解】函数ln y x =的导函数为1y x=,设直线y x m =+与ln y x =相切于点00(,)x y ,则00000ln 11y x y x m x ⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩,解得切点为()1,0,由题可知()1,0到直线y x a =+的距离为1, 12=,解得21a =,结合图象可知,21a =. 故选:B.【变式演练】1.点A 在直线y =x 上,点B 在曲线ln y x =上,则AB 的最小值为( )A .22B .1C 2D .2【答案】A 【分析】设平行于直线y =x 的直线y =x +b 与曲线ln y x =相切,将题意转化为两平行线间的距离,由导数的几何意义可得b 的值,进而可得结果. 【详解】设平行于直线y =x 的直线y =x +b 与曲线ln y x =相切, 则两平行线间的距离即为AB 的最小值.设直线y =x +b 与曲线ln y x =的切点为(,ln )m m , 则由切点还在直线y =x +b 上可得ln m m b =+, 由切线斜率等于切点的导数值可得11m=, 联立解得m =1,b =-1,由平行线间的距离公式可得AB 2221(1)=+-, 故选:A.2.已知点M 在函数()x f x e =图象上,点N 在函数()ln g x x =图象上,则||MN 的最小值为( ) A .1 B 2C .2 D .3【答案】B 【分析】根据函数()x f x e =与函数()ln g x x =互为反函数,将问题转化为求函数()x f x e =的图象与直线y x =平行的切线的切点00(,)x y 到直线y x =的距离的两倍,利用导数求出切点坐标,根据点到直线的距离公式可得结果. 【详解】因为函数()x f x e =与函数()ln g x x =互为反函数,它们的图象关于直线y x =对称,所以||MN 的最小值为函数()x f x e =的图象上的点M 到直线y x =的距离的2倍,即为函数()x f x e =的图象与直线y x =平行的切线的切点00(,)x y 到直线y x =的距离的两倍,因为()x f x e '=,所以函数()x f x e =的图象上与直线y x =平行的切线的斜率01x k e ==,所以00x =,所以切点为(0,1),它到直线y x =的距离211d =+ 所以||MN 2 故选:B. 3.抛物线上的一动点到直线距离的最小值是A .B .C .D .【答案】A 【详解】试题分析:对y=x 2求导可求与直线x -y -1=0平行且与抛物线y=x 2相切的切线方程,然后利用两平行线的距离公司可得所求的最小距离d .解:(法一)对y=x 2求导可得y′=2x ,令y′=2x=1可得x=∵与直线x -y -1=0平行且与抛物线y=x 2相切的切点(,),切线方程为y -=x -即x -y -=0由两平行线的距离公司可得所求的最小距离d=,故选A.【题型九】 切线的应用:距离公式转化型【典例分析】若12,x x R ∈,则()()212212e e x x x x -+-的最小值是 A .1 B .2 C .3 D .4【答案】B 【分析】原题等价于函数x y e =上的点()11,x A x e 与函数ln y x =上的点()22,xB e x 间的距离最小值的平方,结合两个函数关于y x =对称,将其转化为函数ln y x =与y x =的距离的最小值2倍的平方,利用导数求切线方程最后转化求两平行线间的距离平方即可. 【详解】由题意可转化为点()11,x A x e 与点()22,xB e x 间的距离最小值的平方,点A 在函数x y e =上,点B 在函数ln y x =上,这两个函数关于y x =对称, 所以转化为函数ln y x =与y x =的距离的最小值2倍的平方,此时11y x '==,∵ln y x =斜率为1的切线方程为1y x =-,它与y x =2 故原式的最小值为2.故选:B .【变式演练】1.若12,x x R ∈,则()()212212e e x x x x -+-的最小值是 A .1 B .2 C .3 D .4【答案】B 【分析】原题等价于函数x y e =上的点()11,x A x e 与函数ln y x =上的点()22,xB e x 间的距离最小值的平方,结合两个函数关于y x =对称,将其转化为函数ln y x =与y x =的距离的最小值2倍的平方,利用导数求切线方程最后转化求两平行线间的距离平方即可. 【详解】由题意可转化为点()11,x A x e 与点()22,xB e x 间的距离最小值的平方,点A 在函数x y e =上,点B 在函数ln y x =上,这两个函数关于y x =对称, 所以转化为函数ln y x =与y x =的距离的最小值2倍的平方, 此时11y x'==, ∵ln y x =斜率为1的切线方程为1y x =-,它与y x =2 故原式的最小值为2. 故选:B .2.设0b <,当224()()a b a b++-取得最小值c 时,函数()||||f x x b x c =-+-的最小值为___________.【答案】10 【分析】224()()a b a b ++-表示点(,)a a 与点4(,)b b -距离的平方,而点(,)a a 是直线y x =上任一点,点4(,)b b-(0b <)是反比例函数4y x=-在第四象限上的点,然后由反比例函数和正比例函数的性质可求得0,2a b ==-,从而得8c =,再利用绝对值三角不等式可求出函数()f x 的最小值 【详解】解:224()()a b a b++-表示点(,)A a a 与点4(,)B b b -距离的平方,而点A 是直线y x =上任一点,点B 是反比例函数4y x =-在第四象限上的点,当B 是斜率为1的直线与4y x=-相切的切点时,点B 到直线y x =的距离即为||AB 的最小值, 由2244,|1,2(0),(2,2)x b y y b b B x b ='='==∴=>-, min ||22,82AB c ∴===, 所以()|||||2||8|(2)(8)10f x x b x c x x x x =-+-=++-≥+--=, 当且仅当28x -≤≤取等号,所以函数()||||f x x b x c =-+-的最小值为10, 故答案为:103.已知a R ∈,b R ∈()()221ba b a e -+--______.2【分析】利用算术根的几何意义,把所求转化为两个图形上点的距离最小值即可作答. 【详解】()()221ba b a e-+--(),1a a -到点(),bb e 的距离,而点(),1a a -的轨迹是直线1y x =-,点(),b b e 的轨迹是曲线()xf x e =,则所求最小值可转化为曲线()x f x e =上的点到直线1y x =-距离的最小值,而曲线()xf x e =在直线1y x =-上方,平移直线1y x =-使其与曲线()xf x e =相切,则切点到直线1y x =-距离即为所求,设切点00(,)xx e ,()x f x e '=,由()001x f x e '==得00x =,切点为(0,1)则(0,1)到直线1y x =-距离2221(1)d ==+-2【题型十】 切线的应用:恒成立求参等应用【典例分析】已知a 为实数,则“e x ax >对任意的实数x 恒成立”是“02a <<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【分析】先根据导数的几何意义求出直线y kx =与曲线x y e =相切时k 的值,再数形结合将e x ax >对任意的实数x 恒成立转化为0a e ≤<,最后判断充要关系即可得解. 【详解】设直线y kx =与曲线x y e =相切,且切点为()00,xx e , 则000xx k e e kx ⎧=⎪⎨=⎪⎩,解得01x =,所以切点为()1,e ,k e =,所以切线方程为y ex =.数形结合可知,e x ax >对任意的实数x 恒成立等价于0a e ≤<.而由0a e ≤<不能得到02a <<,故充分性不成立; 反之,由02a <<可得到0a e ≤<,故必要性成立.故选:B .【变式演练】1.已知函数()(0,1)x f x a a a =>≠的图象在(0,1)处的切线方程为21y x =+,若()f x mx x ≥+恒成立,则m 的取值范围为( ) A .[]1,21e -- B .(,21]e -∞- C .[]1,1e -- D .(,1]e -∞-【答案】A 【分析】由题意求得a ,代入函数解析式,把问题转化为2x e mx x +恒成立,对x 分类讨论,分离参数m ,再由导数求最值得答案. 【详解】解:因为()x f x a =,所以()ln x f x a a '=,又函数()f x 的图象在(0,1)处的切线方程为21y x =+,所以0(0)ln 2f a a '==,解得2e a =,所以2()e x f x =,因为()f x mx x ≥+恒成立,所以2e x mx x ≥+恒成立. 当0x =时,0e 0≥成立.当0x ≠时,令2e ()1x g x x =-,则22e (21)()x x g x x -'=. 当1(,0)0,2x ⎛⎫∈-∞⋃ ⎪⎝⎭时,()0g x '<,()g x 在(,0)-∞和10,2⎛⎫⎪⎝⎭上单调递减.当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,()g x 单调递增,当0x >时,e 1xm x ≤-恒成立,所以2mine 112e 12x m g x ⎛⎫⎛⎫≤-==- ⎪⎪⎝⎭⎝⎭; 当0x <时,2e 1xm x ≥-恒成立,而2e ()11xg x x=-<-,所以1m ≥-.综上,12e 1m ≤≤-一,所以m 的取值范围为[1,2e 1]--.故选:A 2.若曲线ln y x =在点()11,P x y 处的切线与曲线x y e =相切于点()22,Q x y ,则12111x x x ++=-__________. 【答案】0 【分析】利用导数的几何意义分别求解出ln y x =在点()11,P x y 处的切线方程以及x y e =在点()22,Q x y 处的切线方程,根据两切线重合,求解出12,x x 之间的关系式,由此可化简计算出12111x x x ++-的值. 【详解】ln y x =的导数为1y x'=,可得曲线ln y x =在点()11,P x y 处的切线方程为()1111ln y x x x x -=-, x y e =的导数为e x y '=,可得曲线x y e =在点()22,Q x y 处的切线的方程为()222x xy e e x x -=-,由两条切线重合的条件,可得211x e x =,且()212ln 11xx e x -=-,则21ln x x =-,即有()1111ln 11ln x x x -=+,可得1111ln 1x x x +=-,则121111ln ln 01x x x x x ++=-=-.故答案为:03.已知函数()ln f x x =,()1g x ax =+,若存在01x e≥使得()()00f x g x =-,则实数a 的取值范围是( ) A .212,e e ⎡⎤-⎢⎥⎣⎦B .21,2e e ⎡⎤-⎢⎥⎣⎦C .21,2e e ⎡⎤⎢⎥⎣⎦D .21,2e e ⎡⎤⎢⎥⎣⎦【答案】B 【分析】利用()()00f x g x =-,把问题转化为ln y x =与1y ax =-+在1x e≥有交点,利用数形结合进行分析,即可求解 【详解】()()00f x g x =-,所以,00ln 1x ax =-+,即ln y x =与1y ax =-+在1x e≥有交点,分情况讨论:∵直线1y ax =-+过点1(,1)e -,即11ae-=-+,得2a e =;∵直线1y ax =-+与ln y x =相切,设切点为(,)m n ,得1ln 1am ma m -+=⎧⎪⎨-=⎪⎩⇒221m e a e ⎧=⎪⎨=-⎪⎩,切点为2(,2)e ,故实数a 的取值范围是21,2e e ⎡⎤-⎢⎥⎣⎦故选:B【题型十一】 切线的应用:零点等【典例分析】已知函数()f x 满足1()()f x f x =,当[1,3]x ∈时,()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax =-与x 轴有三个不同的交点,则实数a 的取值范围是 .【答案】ln 31[,)3e 【解析】试题分析:由题意知,ln ,[1,3]()12ln ,[,1)3x x f x x x ∈⎧⎪=⎨-∈⎪⎩, ∵在区间1[,3]3内,函数()()g x f x ax =-与x 轴有三个不同的交点,∴函数ln ,[1,3]()12ln ,[,1)3x x f x x x ∈⎧⎪=⎨-∈⎪⎩与y ax =在区间1[,3]3内有三个不同的交点,合图象可知,当直线y ax =与()ln f x x =相切时,ln 1x x x =,解得:x e =;此时1a e =;当直线y ax =过点(3,ln 3)时,ln 33a =;故ln 313a e≤<.【变式演练】1.已知函数sin(),2,2()2223sin(),2,2()222x x k k k z y x x k k k z ππππππππππ⎧⎡⎫+∈-+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎫⎪-+∈++∈⎪⎢⎪⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,其中1334x x x x <<<,则44(2)tan x x +=______. 【答案】1-函数的图象如下图所示:直线(2)(0)y m x m =+>过定点(2,0)-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()cos f x x =-,()sin f x x '=,由图象可知切点坐标为()44,cos x x -, 切线方程为:()444cos sin y x x x x +=-,又因为切线过点(2,0)-,则有()444cos sin 2x x x =--,即44(2)tan 1.x x +=-2.关于x 的方程sin ((0,1))kx x k =∈在(3,3)ππ-内有且仅有5个根,设最大的根是α,则α与tan α的大小关系是 A .tan αα> B .tan αα<C .tan αα=D .以上都不对【答案】C 【分析】由题,先做出图像,然后找到最大根α,利用斜率公式可得α与tan α的大小关系. 【详解】由题意作出y kx =与sin y x =在(3,3)ππ-的图象,如图所示:∵方程sin ((0,1))kx x k =∈在(3,3)ππ-内有且仅有5个根,最大的根是α. ∵α必是y kx =与sin y x =在(2,3)ππ内相切时切点的横坐标设切点为()00,x y , 052,2x ππ⎛⎫∈ ⎪⎝⎭,则0x α=,斜率0cos k x =则000sin cos cos tan y x x ααααα=∴=⋅∴= 故选C.3.已知函数()f x 满足()()11f x f x +=-,且21,x e ⎡⎤∈⎣⎦时,()ln f x x =,若22,1x e ⎡⎤∈-⎣⎦时,方程()()2f x k x =-有三个不同的根,则k 的取值范围为( ) A .221,e e ⎛⎤ ⎥⎝⎦B .1,e ⎛⎫-∞ ⎪⎝⎭C .212,e e ⎛⎤-- ⎥⎝⎦D .1,e ⎛⎫-+∞ ⎪⎝⎭【答案】C 【分析】由()()11f x f x +=-,可得函数()f x 的图像关于直线1x =对称,由此可画出函数图像,而直线()2y k x =-为过定点()2,0的一条直线,当直线与当22,1x e ⎡⎤∈-⎣⎦时的函数()f x 的图像相切时,直线与()f x 在22,1e ⎡⎤-⎣⎦的图像有两个公共点,然后利用导数求出切线的斜率,再结合图像可得答案 【详解】因为()()11f x f x +=-,所以函数()f x 的图像关于直线1x =对称.当21,x e ⎡⎤∈⎣⎦时,()ln f x x =,则当22,1x e ⎡⎤∈-⎣⎦时,()f x 的图像如图所示,直线()2y k x =-为过定点()2,0的一条直线.当直线与当22,1x e ⎡⎤∈-⎣⎦时的函数()f x 的图像相切时,直线与()f x 在22,1e ⎡⎤-⎣⎦的图像有两个公共点.当22,1x e ⎡⎤∈-⎣⎦时,函数()()()2ln 2f x f x x =-=-,()12x f x '=-, 设切点为()()00,ln 2x x -,切线的斜率012k x =-, 则切线方程为()()0001ln 22y x x x x --=--,把点()2,0代入得02x e =-,所以1k e=-; 当直线过点()22,2e -时,22k e =-,所以k 的取值范围为212,e e ⎛⎤-- ⎥⎝⎦,故选:C.【课后练习】1.已知函数()ln()f x a x =+在()()0,0f 处的切线方程为y x =,则满足()021f x ≤-≤的x 的取值范围为_________. 【答案】[2,1]e + 【分析】 因为1()f x a x'=+,可得1(0)1f a '==,即1a =,所以()ln(1)f x x =+,()f x 是(1,)-+∞上的增函数,结合已知,即可求得答案. 【详解】1()f x a x '=+,1(0)1f a'∴==,1a ,∴()ln(1)f x x =+,()f x 是(1,)-+∞上的增函数,又()00f =,(1)ln(11)1f e e -=-+=,∴021x e ≤-≤-,21x e ∴≤≤+.即[2,1]e +故答案为:[2,1]e +2.已知函数()2ln xf x ax x=-,若曲线()y f x =在()()1,1f 处的切线与直线210x y -+=平行,则a =______. 【答案】12-【分析】根据函数()2ln xf x ax x=-,求导,再根据曲线()y f x =在()()1,1f 处的切线与直线210x y -+=平行,由()1122f a '=-=求解.【详解】因为函数()2ln x f x ax x =-,所以()21ln 2xf x ax x-'=-, 又因为曲线()y f x =在()()1,1f 处的切线与直线210x y -+=平行, 所以()1122f a '=-=,解得12a =-,故答案为:12-3.已知过点(,0)A a 作曲线:x C y x e =⋅的切线有且仅有1条,则实数a 的取值是( ) A .0 B .4 C .0或-4 D .0或4【答案】C 【解析】 【分析】求出导函数,转化求解切线方程,通过方程2000x ax a --=有两个相等的解,推出结果即可.【详解】设切点为000(,)xx x e ,且函数x y x e =⋅的导数(1)xy x e '=+⋅,所以000|(1)xx x y x e ='=+⋅,则切线方程为00000(1)()x x y x e x e x x -=+⋅-,切线过点(,0)A a ,代入得00000(1)()x x x ex e a x -=+⋅-,所以2001x a x =+,即方程2000x ax a --=有两个相等的解,则有240a a ∆=+=,解得0a =或4a =, 故选C .4.已知直线0x y -=是函数ln ()a xf x x=图像的一条切线(且关于x 的方程(())f f x t =恰有一个实数解(则( ( A .{}ln 2t e ∈ B .[0,ln 2]t e ∈C .[0,2]t ∈D .(,0]t ∈-∞【答案】A【解析】设切点坐标000alnx x x ⎛⎫ ⎪⎝⎭,2a alnx y x -='则切线方程为()000200alnx a alnx y x x x x --=- 又直线0x y -=是函数()alnxf x x=图像的一条切线∵切线过()00,代入 解得0x e =,则切点坐标为e e ,代入解得2a e =故()2ln e xf x x =∵()()221e lnx f x x'-=令()0f x '=∵x e =为()f x 的极大值 又()()f f x t =恰有一个实数解∵则()() 2t f f e eln ==故选A5..函数()ln f x x =在点()()00,P x f x 处的切线l 与函数()xg x e =的图象也相切,则满足条件的切点P 的个数有( )A.0个B.1个C.2个D.3个 【答案】C 【解析】试题分析:设切点分别为),(11y x P 或),(22y x P ,因x e x g xx f ==)(,1)(//,故211x e x k ==,由此可得k x k x ln ,121==,切线方程分别为)1(1ln kx k k y -=-和)ln (k x k k y -=-.由题设可得k k k k ln 1ln +-=+,即1ln )1(+=-k k k ,也即11ln -+=k k k ,由题意这个方程解的个数就是点P 的个数.在平面直角坐标系中画出函数k y ln =和函数11-+=k k y 的图象,结合图象可以看出两函数的图象有两个不同的正根,故切点的个数有两个,应选C.考点:导数的几何意义及函数的图象和性质的综合运用.6.已知过点(),0M m 作曲线C :ln y x x =⋅的切线有且仅有两条,则实数m 的取值范围是______. 【答案】()1,+∞ 【分析】设切点为()00,x y ,求导得斜率,然后利用点斜式得切线方程,将点M 代入整理得00ln 1x m x =+,使得方程关于0x 有两解,构造函数()()0ln 1xg x x x =>+,利用导数研究函数的单调性和极值,求出()min g x ,即可求得实数m 的取值范围.解:由题可知,曲线C :ln y x x =⋅,定义域为()0,∞+,则ln 1yx ,设切点为()00,x y ,则切线斜率为:0ln 1k x =+,切线方程为:()()000ln 1y y x x x -=+-, 将(),0M m 代入切线方程得:()()000ln 1y x m x -=+-, 又因为000ln y x x =⋅,所以00ln 0m x m x +-=,整理得:00ln 1x m x =+,由于过点(),0M m 作曲线C :ln y x x =⋅的切线有且仅有两条,即00ln 1x m x =+有两个解,可设()()0ln 1x g x x x =>+,则()()2ln ln 1x g x x '=+,令()0g x '=,即ln 0x =,解得:1x =, 令()0g x '<,即ln 0x <,得:1x <,所以()0,1x ∈时,()f x 单调递减, 令()0g x '>,即ln 0x >,得:1x >,所以()1,x ∈+∞时,()f x 单调递增,Oyk所以()()min 11g x g ==, 所以当1m 时,00ln 1x m x =+有两个解,即过点(),0M m 作曲线C :ln y x x =⋅的切线有且仅有两条, 则实数m 的取值范围是:()1,+∞. 故答案为:()1,+∞.7..已知函数21()44,()f x x x g x x -=-+=(则()f x 和()g x 的公切线的条数为 A .三条 B .二条C .一条D .0条【答案】A 【解析】 【分析】分别设出两条曲线的切点坐标,根据斜率相等得到方程328810n n -+=,构造函数()()()32881,832f x x x f x x x +='=--,研究方程的根的个数,即可得到切线的条数.【详解】设公切线与()f x 和()g x 分别相切于点()()()()(),,,,24m f m n f n f x x =-',()()()()()2,g n f m g x x g n f m n m--=-==''-',解得222n m -=-+,代入化简得328810n n -+=,构造函数()()()32881,832f x x x f x x x +='=--,原函数在()22-00+33⎛⎫⎛⎫∞∞ ⎪ ⎪⎝⎭⎝⎭,,,,,,极大值()200,03f f ⎛⎫>< ⎪⎝⎭极小值,故函数和x 轴有交3个点,方程328810n n -+=有三解,故切线有3条. 故选A.8.若两曲线21y x =-与ln 1y a x =-存在公切线,则正实数a 的取值范围是__________. 【答案】(0,2]e 【解析】设两个切点分别为1122(,),(,)A x y B x y ,两个切线方程分别为2111(1)2()y x x x x --=-,222(ln 1)()a y a x x x x --=-,化简得2112221,ln 1ay x x x y x a x a x =--=+--两条切线为同一条.可得122212{ln a x x a x a x =-=-, ,2224(ln 1)a x x =--,令22()44ln (0)g x x x x x =->,()4(12ln )g x x x =-',所以g(x)在)e 递增,,)e +∞递减,max ()()2g x g e e ==. 所以a ∈(]0,2e ,填(]0,2e .9.已知函数()21f x x =+,()ln g x x =,若曲线()y f x =与()y g x =的公切线与曲线()y f x =切于点()11,x y ,则()211ln 2x x -=___________.【答案】2 【解析】 【分析】根据导数的几何意义,可求出函数的切线,又由切线为公切线,故两切线重合,即可求解. 【详解】设公切线与曲线()y g x =切于点()22,ln x x ,()()1'2,f x x g x x'==则曲线()y f x =在点()211,1x x +处的切线方程为()()211112y x x x x -+=-,即21121y x x x =-+,曲线()y g x =在点()22,ln x x 处的切线方程为22ln 1xy x x =+-, 所以12212121ln 1x x x x ⎧=⎪⎨⎪-+=-⎩,所以()211ln 22x x -=.故答案为:210.已知ln 0a b -=,1c d -=,求22()()a c b d -+-的最小值________. 【答案】2 【分析】将问题转化为曲线ln y x =上的点到直线10x y -+=上的点的距离的平方的最小值,结合导数以及点到直线距离公式求得最小值. 【详解】依题意得ln a b =,10d c -+=,则(),b a 是曲线ln y x =上的点,(),d c 是直线10x y -+=上的点,所以22()()a c b d -+-可看成曲线ln y x =上的点到直线10x y -+=上的点的距离的平方. 直线10x y -+=的斜率为1, '1ln y x y x =⇒=,令'111y x x==⇒=,所以过曲线ln y x =上一点()1,0的切线与直线10x y -+=平行, 点()1,0到直线10x y -+=10122-+=因此22()()a c b d -+-的最小值为222=.故答案为:2 11.已知方程cos (0)x k k x=>有且仅有两个不同的实数解θ,()ϕθϕ>,则以下有关两根关系的结论正确的是A .cos sin ϕϕθ=B .sin cos ϕϕθ=-C .cos cos θθϕ=D .sin sin θθϕ=-【答案】A 【分析】 方程cos (0)x k k x=>有且仅有两个不同的实数解,等价于()cos ,,0y x y kx k ==>的图象有且仅有两个不同的交点(原点除外),数形结合可得y kx =与cos y x =-相切时符合题意,根据导数的几何意义以及直线的斜率公式可得结果. 【详解】方程cos (0)x k k x=>有且仅有两个不同的实数解,等价于()cos ,0x kx k =>有且仅有两个不同的实数解,即()cos ,,0y x y kx k ==>,有且仅有两个不同的交点(原点除外). 画图cos y x =,y kx =的图象.由图可知,y kx =与cos y x =-相切时符合题意, 设()cos f x x =-, ()'sin ,f x x =因为θϕ>,所以θ为切点横坐标,且ϕ是直线y kx =与cos y x =的交点横坐标, 因为切线过原点,所以切线斜率k cos cos sin θϕθθϕ-===,所以cos sin ϕθϕ=,故选A.。
第十二讲 导数的切线方程1. 导数的几何意义:切线的斜率2. 求斜率的方法(1)公式:/12012tan ()y y k f x x x α-===- 0απ为直线的倾斜角,范围[0,),x 是切点的横坐标(2)当直线l 1、l 2的斜率都存在时:1212l l k k ⇔=,12120l l k k ⊥⇔•=3. 切线方程的求法(1)求出直线的斜率(2)求出直线上的一点或切点(3)利用点斜式00()y y k x x -=-写出直线方程。
考向一 斜率(或倾斜角)与切点互求【例1】(1)曲线y =13x 3在x =1处切线的倾斜角为 。
(2)设函数()ln f x x x =,若0()2f x '=,则0x =______________.【答案】(1)π4.(2)e 【解析】(1)∵y ′=x 2,∴y ′|x =1=1,∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=π4. (3)由题意得()ln 1f x x '=+,又00()ln 12f x x '=+=,解得0e x =.【举一反三】1.已知在曲线2y x =上过点00(),P x y 的切线为l .(1)若切线l 平行于直线45y x =-,求点P 的坐标;(2)若切线l 垂直于直线2650x y -+=,求点P 的坐标;(3)若切线l 的倾斜角为135︒,求点P 的坐标.【答案】(1)(2,4);(2)39(,)24-;(3)11(,)24-.【解析】(1)两条直线平行斜率相等,2x 0=4,x 0=2,代入曲线y 0=4,切点P (2,4)(2)直线直线垂直,斜率相乘等于- 1.0000139392x =-1,x =-,将x 代入曲线y =,故P (-,)32424(3)因为切线l 的倾斜角为135︒,所以其斜率为1-.即021x =-,得012x =-,014y =,故11(,)24P -.考向二 在某点处求切线方程【例2】设函数f (x )=x ln x ,则点(1,0)处的切线方程是________.【解析】因为f ′(x )=ln x +1,所以f ′(1)=1,所以切线方程为x -y -1=0.【答案】x -y -1=0【举一反三】1.函数f (x )=e x cos x 在点(0,f (0))处的切线方程为 。
考点49:利用导数求切线方程【思维导图】【常见考法】考点一:求切线的斜率或倾斜角1.曲线1x y xe -=在点(1,1)处切线的斜率等于 . 【答案】2【解析】由1x y xe -=,得,故,故切线的斜率为.2.点P在曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围为 . 【答案】2,3ππ⎡⎫⎪⎢⎣⎭【解析】根据题意可知:''1xy e ==+⎝⎭ 则()()()221111'111x xxx e y e e e ⎫+-⎪=-=-⎪+++⎝⎭令()1,0,11x t t e =∈+所以)()2',0,1y t t t =-∈可知)'y ⎡∈⎣ 曲线在点P 处的切线的斜率范围为)⎡⎣,所以)tan α⎡∈⎣故2,3παπ⎡⎫∈⎪⎢⎣⎭3.已知函数()()21,.f x g x xx==若直线l 与曲线()f x ,()g x 都相切,则直线l的斜率为 . 【答案】4-【解析】设直线l 的斜率为k ,则()21'k f x x ==-,解得x =,切点为⎛⎝;且()'2kg x x ==,解得2kx =,切点为2,24k k ⎛⎫⎪⎝⎭; 因为l 与曲线()f x ,()g x 都相切,所以2k k +=,解得4k =-.考法二:在某点处求切线方程1.设曲线3ln(1)y x x =-+ 在点(0,0)处的切线方程_________________. 【答案】20x y -=【解析】由题意,函数3ln(1)y x x =-+的导数为131y x '=-+, 可得曲线3ln(1)y x x =-+在点(0,0)处的切线斜率为312-=,即切线的斜率为2, 则曲线在点(0,0)处的切线方程为02(0)y x -=-,即为2y x =,即20x y -=. 故答案为:20x y -=.2.函数3()2ln 2f x x x =-+的图象在1x =处的切线方程为______________________. 【答案】20x y -+=【解析】由题3(1)12ln123f =-+=,又22'()3f x x x=-,故3()2ln 2f x x x =-+在(1,3)处的斜率为2'(1)311f =-=,故在(1,3)处的切线方程为31(1)20y x x y -=⨯-⇒-+= 故答案为:20x y -+= 3.已知函数()2()1xf x x x e =++,则()f x 在(0, (0))f 处的切线方程为 .【答案】210x y -+=【解析】因为()2()32x f x e x x '=++,所以(0)2f '=,又因为(0)1f =,所以切点为(0)1,, 所以曲线()f x 在(0, (0))f 处的切线方程为210x y -+=.4.已知()()221f x x xf '=+,则曲线()y f x =在点()()00f ,处的切线方程为 .【答案】40x y +=【解析】由题:()()221f x x xf =+',所以()()'221f x x f +'=,()()'1221f f =+',所以()'12f =-,所以()24f x x x =-,()24f x x '=-,()00f =,()04f '=-所以切线方程为40x y +=.5.设a 为实数,函数()()322f x x ax a x =++-的导函数是fx ,且fx 是偶函数,则曲线()y f x =在原点处的切线方程为 . 【答案】2y x =-【解析】由()()322f x x ax a x =++-所以()()2'322f x x ax a =++-,又()f x '是偶函数,所以20a =,即0a =所以()2'32f x x =-则()'02f =-,所以曲线()y f x =在原点处的切线方程为2y x =-考法三:过某点求切线方程1.曲线ln y x =过点(0,1)-的切线方程为_________. 【答案】10x y --= 【解析】由题, 1'y x=,设切点为()00,ln x x ,则在切点处的切线斜率为01x ,又切线过点(0,1)-,故0000ln (1)11x x x x --=⇒=.故切点为()1,0. 故切线方程为()101101x y y x -=---=⇒.故答案为:10x y --= 2.求函数()32f x x x x =-+的图象经过原点的切线方程为 . 【答案】0x y -=【解析】由函数()32f x x x x =-+,则()2321f x x x '=-+,所以()01f '=,所以函数()32f x x x x =-+的图象经过原点的切线方程为()010y x -=-,即0x y -=.3.若过原点的直线l 与曲线2ln y x =+相切,则切点的横坐标为 . 【答案】1e【解析】设切点坐标为()00,2ln x x +,由1y x'=,切线方程为00012ln ()y x x x x --=-, 原点坐标代入切线方程,得02ln 1x +=,解得01ex =.4.已知函数()3f x x x =-,则曲线()y f x =过点()1,0的切线条数为 .【答案】2【解析】设切点坐标 3000(,)P x x x -,由()3f x x x =-,得2()31x f x '=-,∴切线斜率2031k x =-,所以过3000(,)P x x x -的切线方程为320000(31)()y x x x x x -+=--,即2300(31)2y x x x =--,切线过点()1,0,故32002310x x -+=,令()32000231h x x x =-+,则()200066h x x x '=-,由()00h x '=,解得00x =或01x =,当0(,0),(2,)x ∈-∞+∞时,()00h x '>,当0(0,2)x ∈时,()00h x '<,所以()0h x 的极大值极小值分别为 h (0)10=>,(1)0h =, 故其图像与x 轴交点2个,也就是切线条数为2.考法四:已知切线求参数1.已知函数()()e xf x x a =+的图象在1x =和1x =-处的切线相互垂直,则a = .【答案】-1 【解析】因为'()(1)xf x x a e =++ ,所以1'(1)(2)'(1)af a e f aee,-=+-==,由题意有(1)'(1)1f f -=- ,所以1a =-.2.已知在曲线()21ax f x x =+在点()()1,1f 处切线的斜率为1,则实数a 的值为 .【答案】43【解析】当0x >时,()()2221ax axf x x +'=+,()11f '=,即314a=,得43a =.. 3.已知函数()ln f x x x ax =+,过点()1,1P 可作两条直线与()f x 的图象相切,则a 的取值范围是 。
导数中的公切线问题知识点梳理一、公切线问题一般思路两个曲线的公切线问题,主要考查利用导数的几何意义进行解决,关键是抓住切线的斜率进行转化和过渡.主要应用在求公切线方程,切线有关的参数,以及与函数的其他性质联系到一起.处理与切线有关的参数,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.考法1:求公切线方程已知其中一曲线上的切点,利用导数几何意义求切线斜率,进而求出另一曲线上的切点;不知切点坐标,则应假设两切点坐标,通过建立切点坐标间的关系式,解方程.具体做法为:设公切线在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f x 1 -g x 2x 1-x 2.考法2:由公切线求参数的值或范围问题由公切线求参数的值或范围问题,其关键是列出函数的导数等于切线斜率的方程.题型精讲精练1若直线y =kx +b 是曲线y =e x 的切线,也是曲线y =ln x +2 的切线,则k =______.【解析】设y =kx +b 与y =e x 和y =ln x +2 ,分别切于点x 1,e x 1,x 2,ln x 2+2 ,由导数的几何意义可得:k =e x 1=1x 2+2,即x 2+2=1ex 1,①则切线方程为y -e x 1=e x 1x -x 1 ,即y =e x 1x -e x 1x 1+e x 1,或y -ln x 2+2 =1x 2+2x -x 2 ,即y -ln x 2+2 =1x 2+2x -x 2 ,②将①代入②得y =e x 1x +2e x 1-1-x 1,又直线y =kx +b 是曲线y =e x 的切线,也是曲线y =ln x +2 的切线,则-e x 1x 1+e x 1=2e x 1-1-x 1,即e x 1-1 x 1+1 =0,则x 1=-1或x 1=0,即k =e 0=1或k =e -1=1e ,故答案为1或1e.2已知直线y =kx +b 与函数y =e x 的图像相切于点P x 1,y 1 ,与函数y =ln x 的图像相切于点Q x 2,y 2 ,若x 2>1,且x 2∈n ,n +1 ,n ∈Z ,则n =______.【解析】依题意,可得e x 1=k =1x 2y 1=e x 1=kx 1+by 2=ln x 2=kx 2+b,整理得x 2ln x 2-ln x 2-x 2-1=0令f x =x ln x -ln x -x -1x >1 ,则f x =ln x -1x在1,+∞ 单调递增且f 1 ⋅f 2 <0,∴存在唯一实数m ∈1,2 ,使f m =0f x min =f m <f 1 <0,f 2 =ln2-3<0,f 3 =2ln3-4<0,f 4 =3ln4-5<0,f 5 =4ln5-6>0,∴x 2∈4,5 ,故n =4.【题型训练】1.求公切线方程一、单选题1(2023·全国·高三专题练习)曲线y =1x与曲线y =-x 2的公切线方程为()A.y =-4x +4B.y =4x -4C.y =-2x +4D.y =2x -4【答案】A【分析】画出图象,从而确定正确选项.【详解】画出y =1x,y =-x 2以及四个选项中直线的图象如下图所示,由图可知A 选项符合.故选:A2(2023·全国·高三专题练习)对于三次函数f (x ),若曲线y =f (x )在点(0,0)处的切线与曲线y =xf (x )在点(1,2)处点的切线重合,则f ′(2)=()A.-34B.-14C.-4D.14【答案】B【分析】由f(0)=0得d=0,然后求得f (x),由f (0)=2-01-0求得c=2,设g(x)=xf(x),由g(1)=2得f(1)=2及a+b=0,再由g (1)=2得3a+2b+2=0,解得a,b后可得f (2).【详解】设f(x)=ax3+bx2+cx+d(a≠0),∵f(0)=d=0,∴f(x)=ax3+bx2+cx,∴f′(x)=3ax2+2bx+c∴f′(0)=c=2-01-0=2,设g(x)=xf(x),则g(1)=f(1)=a+b+2=2,即a+b=0⋯⋯①又∵g′(x)=f(x)+xf′(x),∴g′(1)=f(1)+f′(1)=2,∴f′(1)=0,即3a+2b+2=0⋯⋯②由①②可得a=-2,b=2,c=2,∴f′(2)=-14.故选:B.3(2023·全国·高三专题练习)已知函数f x =x ln x,g x =ax2-x.若经过点A1,0存在一条直线l与曲线y=f x 和y=g x 都相切,则a=()A.-1B.1C.2D.3【答案】B【分析】先求得f(x)在A(1,0)处的切线方程,然后与g x =ax2-x联立,由Δ=0求解【详解】解析:∵f x =x ln x,∴f x =1+ln x,∴f 1 =1+ln1=1,∴k=1,∴曲线y=f x 在A1,0处的切线方程为y=x-1,由y=x-1y=ax2-x得ax2-2x+1=0,由Δ=4-4a=0,解得a=1.故选:B4(2023·全国·高三专题练习)已知函数f(x)=x2-4x+4,g(x)=x-1,则f(x)和g(x)的公切线的条数为A.三条B.二条C.一条D.0条【答案】A【分析】分别设出两条曲线的切点坐标,根据斜率相等得到方程8n3-8n2+1=0,构造函数f x =8x3-8x2+1,f x =8x3x-2,研究方程的根的个数,即可得到切线的条数.【详解】设公切线与f x 和g x 分别相切于点m,f m,n,f n,f x =2x-4,g x =-x -2,gn =fm =g n -f m n -m ,解得m =-n -22+2,代入化简得8n 3-8n 2+1=0,构造函数f x =8x 3-8x 2+1,f x =8x 3x -2 ,原函数在-∞,0 ↗,0,23 ↘,23,+∞ ↗,极大值f 0 >0,极小值,f 23<0故函数和x 轴有交3个点,方程8n 3-8n 2+1=0有三解,故切线有3条.故选A .【点睛】这个题目考查了利用导数求函数在某一点处的切线方程;步骤一般为:一,对函数求导,代入已知点得到在这一点处的斜率;二,求出这个点的横纵坐标;三,利用点斜式写出直线方程.考查了函数零点个数问题,即转化为函数图像和x 轴的交点问题.5(2023·全国·高三专题练习)已知函数f x =x 2-2m ,g x =3ln x -x ,若y =f x 与y =g x在公共点处的切线相同,则m =()A.-3B.1C.2D.5【答案】B【分析】设曲线y =f x 与y =g x 的公共点为x 0,y 0 ,根据题意可得出关于x 0、m 的方程组,进而可求得实数m 的值.【详解】设函数f x =x 2-2m ,g x =3ln x -x 的公共点设为x 0,y 0 ,则f x 0 =g x 0 f x 0 =g x 0 ,即x 20-2m =3ln x 0-x 02x 0=3x 0-1x 0>0,解得x 0=m =1,故选:B .【点睛】本题考查利用两函数的公切线求参数,要结合公共点以及导数值相等列方程组求解,考查计算能力,属于中等题.6(2023·全国·高三专题练习)函数f (x )=ln x 在点P (x 0,f (x 0))处的切线与函数g (x )=e x 的图象也相切,则满足条件的切点的个数有A.0个B.1个C.2个D.3个【答案】C【分析】先求直线l 为函数的图象上一点A (x 0,f (x 0))处的切线方程,再设直线l 与曲线y =g (x )相切于点(x 1,e x 1),进而可得ln x 0=x 0+1x 0-1,根据函数图象的交点即可得出结论.【详解】解:∵f (x )=ln x ,∴f ′(x )=1x ,∴x =x 0,f ′(x 0)=1x 0,∴切线l的方程为y-ln x0=1x0(x-x0),即y=1x0x+ln x0-1,①设直线l与曲线y=g(x)相切于点(x1,e x1),∵g (x)=e x,∴e x1=1x0,∴x1=-ln x0.∴直线l也为y-1x0=1x0(x+ln x0)即y=1x0x+ln x0x0+1x0,②由①②得ln x0=x0+1 x0-1,如图所示,在同一直角坐标系中画出y=ln x,y=x+1x-1的图象,即可得方程有两解,故切点有2个.故选:C二、填空题7(2023·吉林长春·长春吉大附中实验学校校考模拟预测)与曲线y=e x和y=-x24都相切的直线方程为.【答案】y=x+1【分析】分别设出直线与两曲线相切的切点,然后表示出直线的方程,再根据切线是同一条直线建立方程求解.【详解】设直线与曲线y=e x相切于点x1,e x1,因为y =e x,所以该直线的方程为y-e x1=e x1x-x 1,即y=e x1x+e x11-x1,设直线与曲线y=-x24相切于点x2,-x224,因为y =-x2,所以该直线的方程为y+x224=-x22x-x2,即y=-x22x+x224,所以e x1=-x22e x11-x1=x224,解得x1=0,x2=-2,所以该直线的方程为y=x+1,故答案为:y=x+1.8(2023·全国·高三专题练习)已知f x =e x-1(e为自然对数的底数),g x =ln x+1,请写出f x 与g x 的一条公切线的方程.【答案】y=ex-1或y=x【分析】假设切点分别为m,e m-1,n,ln n+1,根据导数几何意义可求得公切线方程,由此可构造方程求得m,代入公切线方程即可得到结果.【详解】设公切线与f x 相切于点m,e m-1,与g x 相切于点n,ln n+1,∵f x =e x,g x =1x,∴公切线斜率k=e m=1n;∴公切线方程为:y-e m+1=e m x-m或y-ln n-1=1nx-n,整理可得:y=e m x-m-1e m-1或y=1nx+ln n,∴e m=1nm-1e m+1=-ln n,即m=-ln nm-1e m +1=-ln n,∴m-1e m+1-m=m-1e m-1=0,解得:m=1或m=0,∴公切线方程为:y=ex-1或y=x.故答案为:y=ex-1或y=x.9(2023春·安徽·高三合肥市第六中学校联考开学考试)已知直线l与曲线y=e x、y=2+ln x都相切,则直线l的方程为.【答案】y=x+1或y=ex【分析】分别求出两曲线的切线方程是y=e x1x+e x11-x1和y=1x2x+1+ln x2,解方程e x1=1x2,e x11-x1=1+ln x2,即得解.【详解】解:由y=e x得y =e x,设切点为x1,e x1,所以切线的斜率为e x1,则直线l的方程为:y=e x1x+e x11-x1;由y =2+ln x 得y =1x ,设切点为x 2,2+ln x 2 ,所以切线的斜率为1x 2,则直线l 的方程为:y =1x 2x +1+ln x 2.所以e x 1=1x 2,e x 11-x 1 =1+ln x 2,消去x 1得1x 2-11+ln x 2 =0,故x 2=1或x 2=1e,所以直线l 的方程为:y =x +1或y =ex .故答案为:y =x +1或y =ex 10(2023春·浙江金华·高三浙江金华第一中学校考阶段练习)已知直线y =kx +b 是曲线y =ln 1+x 与y =2+ln x 的公切线,则k +b =.【答案】3-ln2【分析】分别设两条曲线上的切点,写出切线方程,建立方程组,解出切点,计算k +b .【详解】设曲线y =ln 1+x 上切点A x 1,ln 1+x 1 ,y =11+x,切线斜率k =11+x 1,切线方程y -ln 1+x 1 =11+x 1x -x 1 ,即y =11+x 1x -x 11+x 1+ln 1+x 1同理,设曲线y =2+ln x 上切点B x 2,2+ln x 2 ,y =1x,切线斜率k =1x 2,切线方程y -2+ln x 2 =1x 2x -x 2 ,即y =1x 2x +1+ln x 2,所以11+x 1=1x 2-x11+x 1+ln (1+x 1)=1+ln x 2,解得x 1=-12x 2=12,所以k =2,b =1-ln2,k +b =3-ln2.故答案为:3-ln2.2.公切线中的参数问题一、单选题1(2023·陕西渭南·统考一模)已知直线y =ax +b (a ∈R ,b >0)是曲线f x =e x 与曲线g x =ln x +2的公切线,则a +b 等于()A.e +2B.3C.e +1D.2【答案】D【分析】由f x 求得切线方程,结合该切线也是g x 的切线列方程,求得切点坐标以及斜率,进而求得直线y =ax +b ,从而求得正确答案.【详解】设t ,e t 是f x 图象上的一点,f x =e x ,所以f x 在点t ,e t 处的切线方程为y -e t =e t x -t ,y =e t x +1-t e t ①,令g x =1x=e t ,解得x =e -t ,g e -t=ln e -t+2=2-t ,所以2-t -e te -t-t=e t ,1-t =1-t e t ,所以t =0或t =1(此时①为y =ex ,b =0,不符合题意,舍去),所以t =0,此时①可化为y -1=1×x -0 ,y =x +1,所以a +b =1+1=2.故选:D2(2023·陕西榆林·校考模拟预测)若直线l 与曲线y =e x 相切,切点为M x 1,y 1 ,与曲线y =x +32也相切,切点为N x 2,y 2 ,则2x 1-x 2的值为()A.-2B.-1C.0D.1【答案】B【分析】根据导数求出切线的斜率,得到切线方程,根据两切线方程即可得解.【详解】因为直线l 与曲线y =e x 相切,切点为M x 1,y 1 ,可知直线l 的方程为y =e x 1x -x 1 +e x 1=e x 1x +1-x 1 e x 1,又直线l 与曲线y =x +3 2也相切,切点为N x 2,y 2 ,可知直线l 的方程为y =2x 2+3 x -x 2 +x 2+3 2=2x 2+3 x -x 22+9,所以e x 1=2x 2+3 1-x 1 e x 1=-x 22+9,两式相除,可得21-x 1 =3-x 2,所以2x 1-x 2=-1.故选:B3(2023春·河南·高三校联考阶段练习)已知曲线y =x 在点x 0,x 0 0<x 0<14处的切线也与曲线y =e x 相切,则x 0所在的区间是()A.0,14e 4B.14e 4,14e 2C.14e 2,14eD.14e ,14【答案】C【分析】设切线l与曲线y=e x的切点为m,e m,通过导数分别写出切线方程,由两条切线重合得出方程,再通过此方程有解得出结果.【详解】设该切线为l,对y=x求导得y =12x,所以l的方程为y-x0=12x0x-x0,即y=12x0x+x02.设l与曲线y=e x相切的切点为m,e m,则l的方程又可以写为y-e m=e m x-m,即y=e m x+1-me m.所以e m=12x0,x02=1-me m.消去m,可得x0=1+ln2x0,0<x0<1 4,令t=2x0∈0,1,则ln t-t24+1=0.设h t =ln t-t24+1,当0<t<1时,h t =1t-t2>0,所以h t 在0,1上单调递增,又h1e=-14e2<0,h1e=12-14e>0,所以t0=2x0∈1e,1e,所以x0∈14e2,14e.故选:C.4(2023·全国·高三专题练习)若函数f x =2a ln x+1与g x =x2+1的图像存在公共切线,则实数a的最大值为()A.eB.2eC.e22D.e2【答案】A【分析】分别设公切线与g x =x2+1和f(x)=2a ln x+1的切点x1,x21+1,x2,2a ln x2+1,根据导数的几何意义列式,再化简可得a=2x22-2x22ln x2,再求导分析h(x)=2x2-2x2⋅ln x(x >0)的最大值即可【详解】g x =2x,f x =2a x,设公切线与g x =x2+1的图像切于点x1,x21+1,与曲线f(x)=2a ln x+1切于点x2,2a ln x2+1,所以2x1=2ax2=2a ln x2+1-x21+1x2-x1=2a ln x2-x21x2-x1,故a=x1x2,所以2x1=2x1x2ln x2-x21x2-x1,所以x1=2x2-2x2⋅ln x2,因为a=x1x2,故a=2x22-2x22ln x2,设h(x)=2x2-2x2⋅ln x(x>0),则h (x)=2x(1-2ln x),令h (x)=0⇒x=e当h (x)>0时,x∈(0,e),当h (x)<0时,x∈(e,+∞),所以h x 在(0,e)上递增,在(e,+∞)上递减,所以h(x)max=h(e)=e,所以实数a的最大值为e,故选:A.5(2023·湖南郴州·统考模拟预测)定义:若直线l与函数y=f x ,y=g x 的图象都相切,则称直线l为函数y=f x 和y=g x 的公切线.若函数f x =a ln x a>0和g x =x2有且仅有一条公切线,则实数a的值为()A.eB.eC.2eD.2e【答案】C【分析】设直线与g x =x2的切点为x1,x21,然后根据导数的几何意义可推得切线方程为y=2x1x-x21,y=ax2x+a ln x2-1.两条切线重合,即可得出a=4x22-4x22ln x2有唯一实根.构造h x =4x2-4x2ln x x>0,根据导函数得出函数的性质,作出函数的图象,结合图象,即可得出答案.【详解】设直线与g x =x2的切点为x1,x21,因为g x =2x,根据导数的几何意义可知该直线的斜率为2x1,即该直线的方程为y-x21=2x1x-x1,即y=2x1x-x21.设直线与f x =a ln x的切点为(x2,a ln x2),因为f x =ax,根据导数的几何意义可知该直线的斜率为ax2,即该直线的方程为y-a ln x2=ax2x-x2,即y=ax2x+a ln x2-1.因为函数f x =a ln x a>0和g x =x2有且只有一条公切线,所以有2x1=ax2a ln x2-1=-x21 ,即a=4x22-4x22ln x2有唯一实根.令h x =4x2-4x2ln x x>0,则h x =8x-8x ln x-4x=4x1-2ln x.解h x =0,可得x= e.当4x1-2ln x>0时,0<x<e,所以h x 在0,e上单调递增;当4x1-2ln x<0时,x>e,所以h x 在e,+∞上单调递减.所以h x 在x=e处取得最大值h e=4e-4e×12=2e.当x→0时,h x →0,h e =4e2-4e2ln e=0,函数h x 图象如图所示,因为a>0,a=4x2-4x2ln x有唯一实根,所以只有a=2e.故选:C6(2023春·广东汕头·高三汕头市潮阳实验学校校考阶段练习)已知函数f x =2+ln x,g x = a x,若总存在两条不同的直线与函数y=f x ,y=g x 图象均相切,则实数a的取值范围为()A.0,1B.0,2C.1,2D.1,e【答案】B【分析】设函数y=f x ,y=g x 的切点坐标分别为x1,2+ln x1,x2,a x2,根据导数几何意义可得a2=4ln x1+4x1,x1>0,即该方程有两个不同的实根,则设h x =4ln x+4x,x>0,求导确定其单调性与取值情况,即可得实数a的取值范围.【详解】解:设函数f x =2+ln x上的切点坐标为x1,2+ln x1,且x1>0,函数g x =a x 上的切点坐标为x2,a x2,且x2≥0,又f x =1x,g x =a2x,则公切线的斜率k=1x1=a2x2,则a>0,所以x2=a24x21,则公切线方程为y-2+ln x1=1x1x-x1,即y=1x1x+ln x1+1,代入x 2,a x 2 得:a x 2=1x 1x 2+ln x 1+1,则a 22x 1=1x 1⋅a 24x 21+ln x 1+1,整理得a 2=4ln x 1+4x 1,若总存在两条不同的直线与函数y =f x ,y =g x 图象均相切,则方程a 2=4ln x 1+4x 1有两个不同的实根,设h x =4ln x +4x,x >0,则h x =4x⋅x -4ln x +4x2=-4ln xx,令h x =0得x =1,当x ∈0,1 时,h x >0,h x 单调递增,x ∈1,+∞ 时,h x <0,h x 单调递减,又h x =0可得x =1e,则x →0时,h x →-∞;x →+∞时,h x →0,则函数h x 的大致图象如下:所以a >00<a 2<4,解得0<a <2,故实数a 的取值范围为0,2 .故选:B .【点睛】本题考查了函数的公切线、函数方程与导数的综合应用,难度较大.解决本题的关键是,根据公切线的几何意义,设切点坐标分别为x 1,2+ln x 1 ,且x 1>0,x 2,a x 2 ,且x 2≥0,可得k =1x 1=a 2x 2,即有x 2=a 24x 21,得公切线方程为y =1x 1x +ln x 1+1,代入切点x 2,a x 2 将双变量方程a x 2=1x 1x 2+ln x 1+1转化为单变量方程a 22x 1=1x 1⋅a 24x 21+ln x 1+1,根据含参方程进行“参变分离”得a 2=4ln x 1+4x 1,转化为一曲一直问题,即可得实数a 的取值范围.7(2023·全国·高三专题练习)若曲线y =ln x +1与曲线y =x 2+x +3a 有公切线,则实数a 的取值范围()A.2ln2-36,3-ln22B.1-4ln212,3-ln22C.2ln2-36,+∞ D.1-4ln212,+∞【答案】D【分析】分别求出两曲线的切线方程,则两切线方程相同,据此求出a 关于切点x 的解析式,根据解析式的值域确定a 的范围.【详解】设x 1,y 1 是曲线y =ln x +1的切点,设x 2,y 2 是曲线y =x 2+x +3a 的切点,对于曲线y =ln x +1,其导数为y =1x ,对于曲线y =x 2+x +3a ,其导数为y =2x +1,所以切线方程分别为:y -ln x 1+1 =1x 1x -x 1 ,y -x 22+x 2+3a =2x 2+1 x -x 2 ,两切线重合,对照斜率和纵截距可得:1x 1=2x 2+1ln x 1=-x 22+3a,解得3a =ln x 1+x 22=ln 12x 2+1+x 22=-ln 2x 2+1+x 22x 2>-12 ,令h x =-ln 2x +1 +x 2x >-12,hx =-22x +1+2x =4x 2+2x -22x +1=2x +1 2x -1 2x +1=0,得:x =12,当x ∈-12,12时,h x <0,h x 是减函数,当x ∈12,+∞时,h x >0,h x 是增函数,∴h min x =h 12 =14-ln2且当x 趋于-12时,,h x 趋于+∞;当x 趋于+∞时,h x 趋于+∞;∴3a ≥14-ln2,∴a ≥1-4ln212;故选:D .8(2023·河北·统考模拟预测)若曲线f (x )=3x 2-2与曲线g (x )=-2-m ln x (m ≠0)存在公切线,则实数m 的最小值为()A.-6eB.-3eC.2eD.6e【答案】A【分析】求出函数的导函数,设公切线与f x 切于点x 1,3x 21-2 ,与曲线g x 切于点x 2,-2-m ln x 2 ,x 2>0 ,即可得到m =-6x 1x 2,则x 1=0或x 1=2x 2-x 2ln x 2,从而得到m =12x 22ln x 2-12x 22,在令h x =12x 2ln x -12x 2,x >0 ,利用导数求出函数的最小值,即可得解;【详解】因为f (x )=3x 2-2,g (x )=-2-m ln x (m ≠0),所以f (x )=6x ,g (x )=-mx,设公切线与f x 切于点x 1,3x 21-2 ,与曲线g x 切于点x 2,-2-m ln x 2 ,x 2>0 ,所以6x 1=-m x 2=-2-m ln x 2-3x 21-2 x 2-x 1=-m ln x 2-3x 21x 2-x 1,所以m =-6x 1x 2,所以6x 1=6x 1x 2ln x 2-3x 21x 2-x 1,所以x 1=0或x 1=2x 2-x 2ln x 2,因为m ≠0,所以x 1≠0,所以x 1=2x 2-x 2ln x 2,所以m =-62x 2-x 2ln x 2 x 2=12x 22ln x 2-12x 22,令h x =12x 2ln x -12x 2,x >0 ,则h x =12x 2ln x -1 ,所以当0<x <e 时h x <0,当x >e 时h x >0,所以h x 在0,e 上单调递减,在e ,+∞ 上单调递增,所以h x min =h e =-6e ,所以实数m 的最小值为-6e.故选:A【点睛】思路点睛:涉及公切线问题一般先设切点,在根据斜率相等得到方程,即可找到参数之间的关系,最后构造函数,利用导数求出函数的最值.二、多选题9(2023·湖北·统考模拟预测)若存在直线与曲线f x =x 3-x ,g x =x 2-a 2+a 都相切,则a 的值可以是()A.0B.-24C.log 27D.e π+πe【答案】ABC【分析】设该直线与f x 相切于点x 1,x 31-x 1 ,求出切线方程为y =3x 21-1 x -2x 31,设该直线与g x 相切于点x 2,x 22-a 2+a ,求出切线方程为y =2x 2x -x 22-a 2+a ,联立方程组,得到-a 2+a =94x 41-2x 31-32x 21+14,令h x =94x 4-2x 3-32x 2+14,讨论h x 的单调性,从而得到最值,则可得到-a 2+a ≥-1,解出a 的取值范围,四个选项的值分别比较与区间端点比较大小即可判断是否在区间内.【详解】设该直线与f x 相切于点x 1,x 31-x 1 ,因为f x =3x 2-1,所以f x 1 =3x 21-1,所以该切线方程为y -x 31-x 1 =3x 21-1 x -x 1 ,即y =3x 21-1 x -2x 31.设该直线与g x 相切于点x 2,x 22-a 2+a ,因为g x =2x ,所以g x 2 =2x 2,所以该切线方程为y -x 22-a 2+a =2x 2x -x 2 ,即y =2x 2x -x 22-a 2+a ,所以3x 21-1=2x 2-2x 31=-x 22-a 2+a ,所以-a 2+a =x 22-2x 31=3x 21-122-2x 31=94x 41-2x 31-32x 21+14,令h x =94x 4-2x 3-32x 2+14,∴h x =9x 3-6x 2-3x ,所以当x ∈-∞,-13 ∪0,1 时,hx <0;当x ∈-13,0 ∪1,+∞ 时,h x >0;∴h x 在-∞,-13和0,1 上单调递减;在-13,0 和1,+∞ 上单调递增;又h -13 =527,h 1 =-1,所以h x ∈-1,+∞ ,所以-a 2+a ≥-1,解得1-52≤a ≤1+52,所以a 的取值范围为1-52,1+52,所以A 正确;对于B ,-24-1-52=25-2+2 4>0,所以1-52<-24<0,所以B 正确;对于C ,因为0<log 27<log 222=32<1+52,所以C 正确;对于D ,因为e π+πe>2e π⋅πe=2>1+52,所以D 不正确.故选:ABC10(2023·全国·高三专题练习)函数f x =ln x +1,g x =e x -1,下列说法正确的是( ).(参考数据:e 2≈7.39,e 3≈20.09,ln2≈0.69,ln3≈1.10)A.存在实数m ,使得直线y =x +m 与y =f x 相切也与y =g x 相切B.存在实数k ,使得直线y =kx -1与y =f x 相切也与y =g x 相切C.函数g x -f x 在区间23,+∞ 上不单调D.函数g x -f x 在区间23,+∞上有极大值,无极小值【答案】AB【分析】对AB ,设直线与y =f x 、y =g x 分别切于点P x 1,y 1 ,Q x 2,y 2 ,利用点在线上及斜率列方程组,解得切点即可判断;对CD ,令h x =g x -f x ,由二阶导数法研究函数单调性及极值.【详解】对AB ,设直线l 与y =f x 、y =g x 分别切于点P x 1,y 1 ,Q x 2,y 2 ,f x =1x,gx =ex,则有y1=f x1=ln x1+1y2=g x2=e x2-1y1-y2x1-x2=1x1=e x2⇒ln x1+1-e x2-1x1-x2=e x2⇒-x2+1-e x2-11e x2-x2=e x2⇒e x2-1x2-1=0,解得x2=0或x2=1.当x2=0,则y2=0,x1=1,y1=1,公切线为y=x,此时存在实数m=0满足题意;当x2=1,则y2=e-1,x1=1e,y1=0,公切线为y=e x-1e=ex-1,此时存在实数k=1满足题意,AB对;对CD,令h x =g x -f x =e x-ln x-2,x∈0,+∞,则m x =h x =e x-1 x,由m x =e x+1x2>0得h x 在0,+∞单调递增,由h23=e23-32=e2-278e232+32e23+94>0得,x∈23,+∞时,h x >0,h x 单调递增,CD错.故选:AB.三、填空题11(2023·全国·高三专题练习)若曲线y=ax2与y=ln x有一条斜率为2的公切线,则a= .【答案】1ln2e【分析】根据导数的几何意义以及切线方程的求解方法求解.【详解】设公切线在曲线y=ax2与y=ln x上的切点分别为A(x1,y1),B(x2,y2),由y=ln x可得y =1x,所以1x2=2,解得x2=12,所以y2=ln x2=-ln2,则B12,-ln2 ,所以切线方程为y+ln2=2x-1 2,又由y=ax2,可得y =2ax,所以2ax1=2,即ax1=1,所以y1=ax21=x1,又因为切点A(x1,y1),也即A(x1,x1)在切线y+ln2=2x-1 2上,所以x1+ln2=2x1-1 2,解得x1=ln2+1,所以a =1x 1=1ln2+1=1ln2e .故答案为:1ln2e.12(2023·河北唐山·统考三模)已知曲线y =ln x 与y =ax 2a >0 有公共切线,则实数a 的取值范围为.【答案】12e,+∞【分析】设公切线与曲线的切点为x 1,ln x 1 ,x 2,ax 22 ,利用导数的几何意义分别求y =ln x 和y =ax 2上的切线方程,由所得切线方程的相关系数相等列方程求参数关系,进而构造函数并利用导数研究单调性求参数范围.【详解】设公切线与曲线y =ln x 和y =ax 2的切点分别为x 1,ln x 1 ,x 2,ax 22 ,其中x 1>0,对于y =ln x 有y =1x ,则y =ln x 上的切线方程为y -ln x 1=1x 1x -x 1 ,即y =xx 1+ln x 1-1 ,对于y =ax 2有y =2ax ,则y =ax 2上的切线方程为y -ax 22=2ax 2x -x 2 ,即y =2ax 2x -ax 22,所以1x 1=2ax 2ln x 1-1=-ax 22,有-14ax21=ln x 1-1,即14a=x 21-x 21ln x 1x 1>0 ,令g x =x 2-x 2ln x ,g x =x -2x ln x =x 1-2ln x ,令gx =0,得x =e 12,当x ∈0,e12时,g x >0,g x 单调递增,当x ∈e 12,+∞ 时,g x <0,g x 单调递减,所以g x max =g e12=12e ,故0<14a ≤12e ,即a ≥12e.∴正实数a 的取值范围是12e,+∞.故答案为:12e,+∞.13(2023·浙江金华·统考模拟预测)若存在直线l 既是曲线y =x 2的切线,也是曲线y =a ln x 的切线,则实数a 的最大值为.【答案】2e【分析】设切线与两曲线的切点分别为(n ,n 2),(m ,a ln m ),根据导数的几何意义分别求出切线方程,可得a4m2=1-ln m,由题意可知a4=m2(1-ln m)有解,故令g(x)=x2(1-ln x),(x>0),利用导数求得其最值,即可求得答案.【详解】由题意知两曲线y=x2与y=a ln x,(x>0)存在公切线,a=0时,两曲线y=x2与y=0,(x>0),不合题意;则y=x2的导数y =2x,y=a ln x的导数为y =a x,设公切线与y=x2相切的切点为(n,n2),与曲线y=a ln x相切的切点为(m,a ln m),则切线方程为y-n2=2n(x-n),即y=2nx-n2,切线方程也可写为y-a ln m=am(x-m),即y=amx-a+a ln m,故2n=am-n2=-a+a ln m,即a24m2=a-a ln m,即a4m2=1-ln m,即a4=m2(1-ln m)有解,令g(x)=x2(1-ln x),(x>0),则g (x)=2x(1-ln x)+x2-1 x=x(1-2ln x),令g (x)=0可得x=e,当0<x<e时,g (x)>0,当x>e时,g (x)<0,故g(x)在(0,e)是增函数,在(e,+∞)是减函数,故g(x)的最大值为g(e)=e 2,故a4≤e2,所以a≤2e,即实数a的最大值为2e,故答案为:2e。