高考数学人教理科 讲义 第二章 函数、导数及其应用(必记知识点+必明易错点+必会方法)含答案 教师用书
- 格式:doc
- 大小:2.76 MB
- 文档页数:100
1 第二章 函数、导数及其应用 第一节函数及其表示 1.解决函数的一些问题时,易忽视“定义域优先”的原则.
2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.
3.误把分段函数理解为几种函数组成.
第二节函数的单调性与最值 1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.
2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),1fx等的单调性与其正负有关,切不可盲目类比.
第三节函数的奇偶性及周期性 1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.
2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x),而不能说存在x0使f(-x0)=-f(x0)、f(-x0)=f(x0).
3.分段函数奇偶性判定时,f(-x0)=f(x0)利用函数在定义域某一区间上不是奇偶函数而否2
定函数在整个定义域上的奇偶性是错误的. 第四节函数的图像 1.在解决函数图像的变换问题时,要遵循“只能对函数关系式中的x,y变换”的原则,写出每一次的变换所得图像对应的解析式,这样才能避免出错.
2.明确一个函数的图像关于y轴对称与两个函数的图像关于y轴对称的不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.
第五节二次函数与幂函数 1.研究函数f(x)=ax2+bx+c的性质,易忽视a的取值情况而盲目认为f(x)为二次函数.
2.形如y=xα(α∈R)才是幂函数,如y=3x12不是幂函数. 第六节指数与指数函数 1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.
2.4二次函数与幂函数[知识梳理]1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③两根式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质2.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)常见的5种幂函数的性质[诊断自测]1.概念思辨(1)当α<0时,幂函数y=xα是定义域上的减函数.()(2)关于x的不等式ax2+bx+c>0恒成立的充要条件是错误!()(3)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.()(4)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.()答案(1)×(2)×(3)×(4)√2.教材衍化(1)(必修A1P44T9)函数y=(x2-3x+10)-1的递增区间是()A.(-∞,-2) B.(5,+∞)C.错误!D。
错误!答案C解析由于x2-3x+10〉0恒成立,即函数的定义域为(-∞,+∞).设t=x2-3x-10,则y=t-1是(0,+∞)上的减函数,根据复合函数单调性的性质,要求函数y=(x2-3x+10)-1的递增区间,即求t=x2-3x+10的单调递减区间,∵t=x2-3x+10的单调递减区间是错误!,∴所求函数的递增区间为错误!.故选C。
(2)(必修A1P78探究)若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图,则a,b,c,d的大小关系是()A.d〉c>b〉a B.a〉b>c>dC.d>c>a〉b D.a〉b〉d>c答案B解析幂函数a=2,b=错误!,c=-错误!,d=-1的图象,正好和题目所给的形式相符合,在第一象限内,x=1的右侧部分的图象,图象由下至上,幂指数增大,所以a>b>c>d。
第二讲 函数的定义域、值域知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点一 函数的定义域 函数y =f(x)的定义域1.求定义域的步骤:(1)写出使函数式有意义的不等式(组); (2)解不等式(组);(3)写出函数定义域.(注意用区间或集合的形式写出) 2.求函数定义域的主要依据 (1)整式函数的定义域为R. (2)分式函数中分母不等于0.(3)偶次根式函数被开方式大于或等于0. (4)一次函数、二次函数的定义域均为R . (5)函数f(x)=x 0的定义域为{x|x≠0}. (6)指数函数的定义域为R . (7)对数函数的定义域为(0,+∞). 知识点二 函数的值域 基本初等函数的值域:1.y =kx +b(k≠0)的值域是R .2.y =ax 2+bx +c(a≠0)的值域是:当a>0时,值域为⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≥4ac -b 24a ;当a<0时,值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≤4ac -b 24a . 3.y =kx (k≠0)的值域是{y|y≠0}.4.y =a x(a>0且a≠1)的值域是(0,+∞). 5.y =log a x(a>0且a≠1)的值域是R .重要结论1.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集. 3.函数f(x)与f(x +a)(a 为常数a≠0)的值域相同.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (2)函数y =xx -1定义域为x>1.( × ) (3)函数y =f(x)定义域为[-1,2],则y =f(x)+f(-x)定义域为[-1,1].( √ ) (4)函数y =log 2(x 2+x +a)的值域为R ,则a 的取值范围为⎝ ⎛⎦⎥⎤-∞,14.( √ ) (5)求函数y =x 2+3x 2+2的值域时有以下四种解法.判断哪种解法是正确的.[解法一](不等式法):y =x 2+3x 2+2=x 2+2+1x 2+2≥2,∴值域为[2,+∞).( × ) [解法二](判别式法):设x 2+2=t(t≥2),则y =t +1t ,即t 2-ty +1=0,∵t∈R,∴Δ=y 2-4≥0,∴y≥2或y ≤-2(舍去).( × )[解法三](配方法):令x 2+2=t(t≥2),则y =t +1t =⎝ ⎛⎭⎪⎫t -1t 2+2≥2.( × )[解法四](单调性法):易证y =t +1t 在t≥2时是增函数,所以t =2时,y min =322,故y∈⎣⎢⎡⎭⎪⎫322,+∞.( √ ) [解析] (4)y =log 2(x 2+x +a)值域为R 应满足Δ≥0,即1-4a≥0,∴a≤14.题组二 走进教材2.(必修1P 17例1改编)函数f(x)=2x-1+1x -2的定义域为( C )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)[解析] 使函数有意义满足⎩⎪⎨⎪⎧2x-1≥0x -2≠0,解得x≥0且x≠2,故选C .3.(必修1P 32T5改编)函数f(x)的图象如图,则其最大值、最小值分别为( B )A .f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫-32B .f(0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32,f(0) D .f(0),f(3)4.(必修1P 39BT1改编)已知函数f(x)=x +9x ,x∈[2,4]的值域为⎣⎢⎡⎦⎥⎤6,132.[解析] 当x =3时取得最小值6,当x =2取得最大值132,值域为⎣⎢⎡⎦⎥⎤6,132.题组三 走向高考5.(2020·北京,11,5分)函数f(x)=1x +1+ln x 的定义域是(0,+∞).[解析] 要使函数f(x)有意义,则⎩⎪⎨⎪⎧x +1≠0,x>0,故x>0,因此函数f(x)的定义域为(0,+∞).6.(2016·北京,5分)函数f(x)=xx -1(x≥2)的最大值为2.[解析] 解法一:(分离常数法)f(x)=x x -1=x -1+1x -1=1+1x -1,∴x≥2,∴x-1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f(x)=xx -1取得最大值2.解法二:(反解法)令y =x x -1,∴xy-y =x ,∴x=y y -1.∵x ≥2,∴y y -1≥2,∴y y -1-2=2-yy -1≥0,解得1<y≤2,故函数f(x)的最大值为2.解法三:(导数法)∵f(x)=x x -1,∴f′(x)=x -1-x (x -1)2=-1(x -1)2<0,∴函数f(x)在[2,+∞)上单调递减,故当x =2时,函数f(x)=xx -1取得最大值2.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一 求函数的定义域——多维探究 角度1 求具体函数的定义域例1 (1)(2021·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( D )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)(2021·宣城八校联考期末)函数y =-x 2+2x +3lg (x +1)的定义域为( B )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3][解析] (1)由题意得⎩⎪⎨⎪⎧1-x>0,x +1>0,x≠0,解得-1<x<0或0<x<1.所以原函数的定义域为(-1,0)∪(0,1).(2)要使函数有意义,x 需满足⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x<0或0<x≤3,所以函数的定义域为(-1,0)∪(0,3]. 角度2 求抽象函数的定义域例2 已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( B ) A .(-1,1) B .⎝⎛⎭⎪⎫-1,-12C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1[解析] 由函数f(x)的定义域为(-1,0),则使函数f(2x +1)有意义,需满足-1<2x +1<0,解得-1<x<-12,即所求函数的定义域为⎝⎛⎭⎪⎫-1,-12. [引申1]若将本例中f(x)与f(2x +1)互换,结果如何? [解析] f(2x +1)的定义域为(-1,0),即-1<x<0, ∴-1<2x +1<1,∴f(x)的定义域为(-1,1).[引申2]若将本例中f(x)改为f(2x -1)定义域改为[0,1],求y =f(2x +1)的定义域,又该怎么办? [解析] ∵y=f(2x -1)定义域为[0,1].∴-1≤2x-1≤1,要使y =f(2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x≤0, 因此y =f(2x +1)定义域为[-1,0]. 名师点拨 MING SHI DIAN BO函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f(x)的定义域为[a ,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 求出; ②若已知函数f[g(x)]的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域. 〔变式训练1〕(1)(角度1)函数f(x)=1ln (x +1)+4-x 2的定义域为( B )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)(角度1)(2021·安徽芜湖检测)如果函数f(x)=ln(-2x +a)的定义域为(-∞,1),那么实数a 的值为( D )A .-2B .-1C .1D .2(3)(角度2)已知函数y =f(x 2-1)的定义域为[-3,3],则函数y =f(x)的定义域为[-1,2]. [解析] (1)由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x≤2,且x≠0.故选B .(2)因为-2x +a>0,所以x<a 2,所以a2=1,得a =2.故选D .(3)因为y =f(x 2-1)的定义域为[-3,3],所以x∈[-3,3],x 2-1∈[-1,2],所以y =f(x)的定义域为[-1,2].考点二,求函数的值域——师生共研例3 求下列函数的值域. (1)y =1-|x|1+|x|;(2)y =-2x 2+x +3; (3)y =x 2+x +1x ;(4)y =x -1-2x ; (5)y =x +1-x 2;(6)y =|x +1|+|x -2|.[解析] (1)解法一:分离常数法: y =1-|x|1+|x|=-1+21+|x|, ∵|x|≥0,∴|x|+1≥1,∴0<2|x|+1≤2.∴-1<-1+21+|x|≤1.即函数值域为(-1,1].解法二:反解法:由y =1-|x|1+|x|,得|x|=1-y 1+y.∵|x|≥0,∴1-y 1+y ≥0,∴-1<y≤1,即函数值域(-1,1].(2)解法一:配方法:y =-2⎝ ⎛⎭⎪⎫x -142+258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.解法二:复合函数法: y =t ,t =-2x 2+x +3, 由t =-2x 2+x +3,解得t≤258,又∵y=t 有意义,∴0≤t≤258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.(3)y =x 2+x +1x =x +1x +1解法一:基本不等式法由y =x +1x +1(x≠0),得y -1=x +1x.∵⎪⎪⎪⎪⎪⎪x +1x =|x|+⎪⎪⎪⎪⎪⎪1x ≥2|x|·⎪⎪⎪⎪⎪⎪1x =2,∴|y -1|≥2,即y≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞)解法二:判别式法由y =x 2+x +1x ,得x 2+(1-y)x +1=0.∵方程有实根,∴Δ=(1-y)2-4≥0.即(y -1)2≥4,∴y-1≤-2或y -1≥2.得y≤-1或y≥3.即函数的值域为(-∞,-1]∪[3,+∞). 解法三:导数法(单调性法)令y′=1-1x 2=(x +1)(x -1)x 2<0, 得-1<x<0或0<x<1.∴函数在(0,1)上递减,在(1,+∞)上递增,此时y≥3; 函数在(-1,0)上递减,在(-∞,-1)上递增,此时y≤-1. ∴y ≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞). (4)解法一:换元法设1-2x =t(t≥0),得x =1-t22,∴y =1-t 22-t =-12(t +1)2+1≤12(t≥0),∴y ∈⎝ ⎛⎦⎥⎤-∞,12.即函数的值域为⎝ ⎛⎦⎥⎤-∞,12.解法二:单调性法∵1-2x≥0,∴x≤12,∴定义域为⎝ ⎛⎦⎥⎤-∞,12.又∵函数y =x ,y =-1-2x 在⎝ ⎛⎭⎪⎫-∞,12上均单调递增,∴y≤12-1-2×12=12,∴y∈⎝⎛⎦⎥⎤-∞,12. (5)三角换元法:设x =sin θ,θ∈⎣⎢⎡⎦⎥⎤-π2,π2,y =sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4, ∵θ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴θ+π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,∴sin ⎝ ⎛⎭⎪⎫θ+π4∈⎣⎢⎡⎦⎥⎤-22,1,∴y∈[-1,2].(6)解法一:绝对值不等式法:由于|x +1|+|x -2|≥|(x+1)-(x -2)|=3, 所以函数值域为[3,+∞).解法二:数形结合法: y =⎩⎪⎨⎪⎧-2x +1(x<-1),3(-1≤x≤2),2x -1(x>2).画出此分段函数的图象如图,可知值域为[3,+∞). 名师点拨 MING SHI DIAN BO求函数值域的一般方法(1)分离常数法:形如y =cx +d ax +b(a≠0)的函数;如例3(1).(2)反解法:形如y =cf (x )+daf (x )+b (a≠0,f(x)值域易求)的函数;如例3(1).(3)配方法:形如y =af 2(x)+bf(x)+c(a≠0)的函数;如例3(2). (4)不等式法;如例3(3).(5)单调性法:通过研究函数单调性,求出最值,进而确定值域.(6)换元法:形如y =ax +b±cx +d (c≠0)的函数;如例3(4);形如y =ax +b±c 2-x 2(c≠0)的函数采用三角换元,如例3(5).(7)数形结合法:借助函数图象确定函数的值域,如例3(6). (8)导数法. 〔变式训练2〕 求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x +41-x ;(3)y =2x 2-x +12x -1⎝ ⎛⎭⎪⎫x>12.[解析] (1)解法一:y =1-x 21+x 2=-1+21+x 2,因为x 2≥0,所以x 2+1≥1,所以0<21+x 2≤2.所以-1<-1+21+x 2≤1.即函数的值域为(-1,1].解法二:由y =1-x 21+x 2,得x 2=1-y 1+y . 因为x 2≥0,所以1-y 1+y≥0.所以-1<y≤1,即函数的值域为(-1,1]. (2)设t =1-x ,t≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t≥0), 所以y≤5,所以原函数的值域为(-∞,5]. (3)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12, 因为x>12,所以x -12>0,所以x -12+12x -12≥2⎝ ⎛⎭⎪⎫x -12·12⎝ ⎛⎭⎪⎫x -12=2, 当且仅当x -12=12x -12,即x =1+22时取等号.所以y≥2+12,即原函数的值域为⎣⎢⎡⎭⎪⎫2+12,+∞. 导数法:y′=4x 2-4x +1(2x -1)2,∴y 在⎝ ⎛⎦⎥⎤12,1+22递减,在⎝ ⎛⎭⎪⎫1+22,+∞递增,∴y ≥2+12.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG 已知函数的定义域或值域求参数的取值范围例4 已知函数f(x)=lg [(a 2-1)x 2+(a +1)x +1].(1)若f(x)的定义域为R ,求实数a 的取值范围; (2)若f(x)的值域为R ,求实数a 的取值范围.[分析] (1)由f(x)的定义域为R 知(a 2-1)x 2+(a +1)·x +1>0的解集为R ,即(a 2-1)x 2+(a +1)x +1>0恒成立;(2)由f(x)的值域为R 知(a 2-1)x 2+(a +1)x +1能取所有正数,即y =(a 2-1)x 2+(a +1)x +1图象的开口向上且与x 轴必有交点.[解析] (1)依题意(a 2-1)x 2+(a +1)x +1>0,对一切x∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a>1或a<-1,a>53或a<-1. ∴a<-1或a>53.又a =-1时,f(x)=1>0,满足题意.∴a ≤-1或a>53.(2)依题意,只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f(x)的值域为R ,故有a 2-1>0,Δ≥0,解得-1≤a≤53,又当a 2-1=0,即a =1时,t =2x +1符合题意;a =-1时不合题意,∴-1<a≤53.名师点拨 MING SHI DIAN BO已知函数的定义域,等于是知道了x 的范围,(1)当定义域不是R 时,往往转化为解集问题,进而转化为与之对应的方程解的问题,此时常利用代入法或待定系数法求解;(2)当定义域为R 时,往往转化为恒成立的问题,常常结合图形或利用最值求解.〔变式训练3〕(1)已知函数y =mx 2-6mx +m +8的定义域为R ,则实数m 的取值范围为[0,1].(2)(2021·甘肃天水三中阶段测试)若函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则实数m 的取值范围是( C )A .(0,4]B .⎣⎢⎡⎦⎥⎤32,4C .⎣⎢⎡⎦⎥⎤32,3D .⎣⎢⎡⎭⎪⎫32,+∞ [解析] (1)①当m =0时,y =8,其定义域为R. ②当m≠0时,由定义域为R 可知, mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m>0,Δ=(-6m )2-4m (m +8)≤0, 解得0<m≤1,∴m 的取值范围是[0,1].(2)由x 2-3x -4=-254得x =32;由x 2-3x -4=-4,得x =0或x =3,又函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,∴32≤m≤3. 另:由y =x 2-3x -4=⎝ ⎛⎭⎪⎫x -322-254,∴32≤m ≤3.。
1 第二章 函数、导数及其应用 一、函数及其表示
1.函数映射的概念 函数 映射 两集合A,B 设A,B是两个非空数集 设A,B是两个非空集合
对应关系f:A→B 如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应 如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应
名称 称f:A→B为从集合A到集合B的一个函数 称对应f:A→B为从集合A到集合B的一个映射 记法 y=f(x),x∈A 对应f:A→B是一个映射
2.函数的有关概念 (1)函数的定义域、值域: 在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集. (2)函数的三要素:定义域、值域和对应关系. (3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法 表示函数的常用方法有:解析法、图像法、列表法. 3.分段函数 2
若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.
1.解决函数的一些问题时,易忽视“定义域优先”的原则. 2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数. 3.误把分段函数理解为几种函数组成. [试一试]
1.(江西高考)函数y=x ln(1-x)的定义域为( ) A.(0,1) B.[0,1) C.(0,1] D.[0,1]
解析:选B 根据题意得 1-x>0,x≥0,解得0≤x<1,即所求定义域为[0,1).
2.若函数f(x)= x2+1,x≤1,lg x,x>1,则f(f(10))=( ) A.lg 101 B.2 C.1 D.0 解析:选B f(10)=lg 10=1,故f(f(10))=f(1)=12+1=2.
求函数解析式的四种常用方法 (1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式; (2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;
(4)解方程组法:已知关于f(x)与f1x或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f(x). [练一练] 3
1.设g(x)=2x+3,g(x+2)=f(x),则f(x)等于( ) A.-2x+1 B.2x-1 C.2x-3 D.2x+7 答案:D 2.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(x)=________. 答案:x2-4x+3
考点一 函数与映射的概念
1.下列四组函数中,表示同一函数的是( ) A.y=x-1与y=x-12 B.y=x-1与y=x-1x-1
C.y=4lg x与y=2lg x2 D.y=lg x-2与y=lgx100 答案:D 2.以下给出的同组函数中,是否表示同一函数?为什么?
(1)f1:y=xx;f2:y=1.(2)f1:y= 1,x≤1,2,1f2: x x≤1 1x≥2 y 1 2 3
(3)f1:y=2x;f2:如图所示.
解:(1)不同函数.f1(x)的定义域为{x∈R|x≠0},f2(x)的定义域为R. 4
(2)同一函数.x与y的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. (3)同一函数.理由同②. [类题通法]
两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.
考点二 函数的定义域问题
角度一 求给定函数解析式的定义域 1.(1)(山东高考)函数f(x)= 1-2x+1x+3 的定义域为( ) A.(-3,0] B.(-3,1] C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1]
(2)(安徽高考)函数y=ln1+1x+1-x2的定义域为________.
解析:(1)由题意,自变量x应满足 1-2x≥0,x+3>0, 解得 x≤0,x>-3,∴-3
函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分.归纳起来常见的命题角度有: 1求给定函数解析式的定义域; 2已知fx的定义域,求fgx的定义域; 3已知定义域确定参数问题. 5
(2)要使函数有意义,需 1+1x>0,1-x2≥0,即 x+1x>0,x2≤1,即 x<-1或x>0,-1≤x≤1,解得0答案:(1)A (2)(0,1]
角度二 已知f(x)的定义域,求f(g(x))的定义域 2.已知函数f(x)的定义域是[-1,1],求f(log2x)的定义域. 解:∵函数f(x)的定义域是[-1,1],∴-1≤log2x≤1,
∴12≤x≤2.故f(log2x)的定义域为12,2. 角度三 已知定义域确定参数问题 3.(合肥模拟)若函数f(x)= 2x2+2ax-a-1的定义域为R,则a的取值范围为________. 解析:函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥1,x2+2ax-a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0. 答案:[-1,0] [类题通法]
简单函数定义域的类型及求法 (1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)若已知函数f(x)的定义域为[a,b],则函数f(g(x))的定义域由不等式a≤g(x)≤b求出.
考点三 求函数的解析式
[典例] (1)已知f
x+
1
x=x2+1x2,求f(x)的解析式;
(2)已知f2x+1=lg x,求f(x)的解析式; (3)已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1,求f(x); 6
(4)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),求函数f(x)的解析式. [解] (1)由于fx+1x=x2+1x2=
x+
1
x2-2,
所以f(x)=x2-2,x≥2或x≤-2, 故f(x)的解析式是f(x)=x2-2(x≥2或x≤-2).
(2)令2x+1=t得x=2t-1,代入得f(t)=lg2t-1, 又x>0,所以t>1, 故f(x)的解析式是f(x)=lg2x-1(x>1). (3)设f(x)=ax2+bx+c(a≠0), 由f(0)=0,知c=0,f(x)=ax2+bx, 又由f(x+1)=f(x)+x+1, 得a(x+1)2+b(x+1)=ax2+bx+x+1, 即ax2+(2a+b)x+a+b=ax2+(b+1)x+1,
所以 2a+b=b+1,a+b=1, 解得a=b=12. 所以f(x)=12x2+12x(x∈R). (4)当x∈(-1,1)时,有 2f(x)-f(-x)=lg(x+1).① 以-x代x,得 2f(-x)-f(x)=lg(-x+1).② 由①②消去f(-x),得
f(x)=23lg(x+1)+13lg(1-x),x∈(-1,1). [类题通法] 求函数解析式常用的方法 (1)待定系数法;(2)换元法(换元后要注意新元的取值范围); 7
(3)配凑法;(4)解方程组法. [针对训练]
1.已知f(x+1)=x+2x,求f(x)的解析式. 解:法一:设t=x+1, 则x=(t-1)2(t≥1); 代入原式有f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1. 故f(x)=x2-1(x≥1). 法二:∵x+2x=(x)2+2x+1-1=(x+1)2-1, ∴f(x+1)=(x+1)2-1(x+1≥1), 即f(x)=x2-1(x≥1). 2.设y=f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x+2,求f(x)的解析式. 解:设f(x)=ax2+bx+c(a≠0), 则f′(x)=2ax+b=2x+2, ∴a=1,b=2,f(x)=x2+2x+c. 又∵方程f(x)=0有两个相等实根, ∴Δ=4-4c=0,c=1,故f(x)=x2+2x+1.
考点四 分段函数
[典例] (1)已知实数a≠0,函数f(x)=
2x+a,x<1,
-x-2a,x≥1.若f(1-a)=f(1+a),
则a的值为________.
(2)(福建高考)已知函数f(x)= 2x3,x<0,-tan x,0≤x[解析] (1)当a>0时,1-a<1,1+a>1. 这时f(1-a)=2(1-a)+a=2-a, f(1+a)=-(1+a)-2a=-1-3a.
由f(1-a)=f(1+a)得2-a=-1-3a,解得a=-32.