液晶显示屏背光驱动集成电路工作原理
- 格式:doc
- 大小:1.97 MB
- 文档页数:26
液晶屏背光驱动与保护原理分析液晶屏是一种广泛应用于电子产品的显示屏,其中的背光驱动与保护是其正常工作所必需的部分。
本文将对液晶屏背光驱动与保护原理进行分析。
背光驱动是液晶屏的核心组成部分,它主要负责为液晶屏提供亮度和色彩。
液晶屏背光驱动一般采用恒流源驱动方式,即通过恒流源来提供背光模组所需的工作电流。
背光驱动电路需要实现对背光的调光和调色,一般采用PWM(脉宽调制)方式实现。
PWM方式可以通过调整脉冲时间的长短来控制背光的亮度,从而实现液晶屏的亮度调节。
此外,背光驱动还需要支持不同的色彩显示需求,一般通过改变电流源的工作方式来实现对色彩的控制。
液晶屏的背光保护主要是为了延长背光的使用寿命和避免过度使用背光导致的功耗过大。
背光保护通常包括两个方面的考虑:背光的开关和亮度的调整。
背光的开关是指在液晶屏不使用时,将背光关闭以节省能源。
一般情况下,液晶屏的背光保护采用的是根据用户操作行为来实现背光的开关,比如在一段时间内未出现用户操作时,系统会自动关闭背光。
而液晶屏亮度的调整主要是为了适应不同环境光照强度下的显示效果。
液晶屏一般会自动感知环境光照的强度,并根据环境光照的变化来自动调整屏幕背光的亮度,以保持适宜的显示效果。
在液晶屏背光的保护中,还需要考虑背光灯的寿命问题。
背光灯一般采用冷白炽灯、荧光灯或LED作为光源,随着使用时间的增长,背光灯的亮度逐渐减弱,影响显示效果。
因此,液晶屏背光保护的另一个重要任务就是要延长背光灯的寿命,减少灯丝的老化和磨损。
一般液晶屏背光保护采用的是自动调节背光亮度的方式,根据背光灯的使用时间和亮度的变化,调整背光的亮度至合适的水平。
此外,还可以采用灯丝预热等方式进一步延长背光的寿命。
总体来说,液晶屏的背光驱动与保护是保证液晶屏正常工作的重要组成部分。
背光驱动负责为液晶屏提供亮度和色彩,而背光保护则是为了延长背光的使用寿命和节省能源。
通过合理设计背光驱动电路和背光保护的算法,可以实现液晶屏的正常工作和长久使用。
背光驱动原理背光驱动技术是液晶显示器中至关重要的一环,它直接影响到显示效果和功耗。
在液晶显示器中,背光模块是用来提供光源的,通过背光模块的发光,可以使得液晶屏幕显示出清晰的图像。
背光驱动原理是指如何通过电路控制背光模块的亮度和颜色,从而实现优质的显示效果。
首先,我们来看一下背光驱动原理中的基本组成部分。
背光模块通常由LED灯珠组成,LED灯珠是一种半导体器件,具有高亮度、高效率和长寿命的特点。
背光驱动电路则是用来控制LED灯珠的亮度和颜色的,通常采用PWM调光技术来实现。
此外,背光驱动电路还包括了电源管理模块、信号处理模块等组成部分。
在背光驱动原理中,PWM调光技术是一种常用的调光方式。
PWM调光是通过改变LED灯珠的通电时间比例来控制亮度的一种技术。
当需要降低亮度时,调光电路会降低LED灯珠的通电时间比例,从而降低亮度;当需要增加亮度时,调光电路会增加LED灯珠的通电时间比例,从而增加亮度。
这种调光方式具有响应速度快、稳定性好的特点,因此在背光驱动中得到了广泛的应用。
另外,背光驱动原理中还涉及到了电源管理模块。
电源管理模块主要用来为LED灯珠提供稳定的电源,以确保LED灯珠的正常工作。
在电源管理模块中,通常会包括过压保护、过流保护、短路保护等功能,以保证LED灯珠的安全可靠运行。
除了以上提到的组成部分外,背光驱动原理中还包括了信号处理模块。
信号处理模块主要用来接收来自显示控制器的信号,并将其转换成LED灯珠可以识别的信号,以控制LED灯珠的亮度和颜色。
信号处理模块的设计和性能直接影响到显示效果的质量和稳定性。
总的来说,背光驱动原理是液晶显示器中至关重要的一环,它直接影响到显示效果和功耗。
通过对背光模块、PWM调光技术、电源管理模块和信号处理模块的深入了解,可以更好地理解背光驱动原理,并在实际应用中取得更好的显示效果和功耗表现。
希望本文能够帮助读者更好地理解背光驱动原理,为液晶显示器的设计和应用提供一定的参考。
液晶电视机中背光灯驱动电路的组成及工作原理介绍液晶电视机中的背光灯驱动电路是将电能转换为光能,通过背光灯照亮液晶屏幕,使显示画面的背景明亮、色彩鲜艳。
背光灯驱动电路主要由背光灯电源、背光灯驱动器和控制电路组成。
背光灯电源是为背光灯提供直流电能的电路。
一般液晶电视机的背光灯电源采用开关电源。
开关电源的主要优点是高效率、小体积、适用范围广。
其工作原理是利用电源的电能,经过变压器将交流电转换成直流电,然后通过整流电路将直流电转换为稳定的低电压直流电,以供背光灯使用。
背光灯驱动器是将低电压直流电转换成高电压交流电,以驱动背光灯发光的电路。
背光灯驱动器一般采用逆变器,逆变器的工作原理是利用交流电输入,通过变压器将低电压升高到足够驱动背光灯发光的高电压。
逆变器还具有调节电压和电流的功能,以保证背光灯工作的稳定性和亮度。
控制电路是控制背光灯开关和亮度的电路。
液晶电视机的控制电路通常由主控芯片和各种传感器组成。
主控芯片是整个电视机的控制中心,可以接收用户的指令,并根据不同情况对背光灯进行开关控制和亮度调节。
传感器可以感知环境亮度、温度等因素,根据感知结果调节背光灯的亮度和温度,以提供更好的视觉效果和用户体验。
总结一下,液晶电视机中背光灯驱动电路的主要组成部分包括背光灯电源、背光灯驱动器和控制电路。
背光灯电源将电能转换为直流电以供背光灯使用,背光灯驱动器将低电压直流电转换成高电压交流电以驱动背光灯发光,而控制电路则负责控制背光灯的开关和亮度调节。
这些组成部分相互配合,将电能转换为光能,最终照亮液晶屏幕,展现出清晰亮丽的画面。
lcd背光恒流驱动原理
LCD背光恒流驱动是指通过恒流源驱动LCD背光灯,以保持恒定的电流流过背光灯,从而保证背光的亮度稳定。
LCD背光灯通常是使用LED作为光源,而LED在工作时需要恒定的电流才能保持稳定的亮度。
因此,恒流驱动电路通过在LED和电源之间插入一个可调电阻或者恒流源,来控制电流的大小,并保持恒定。
恒流驱动电路通常由一个反馈电路、一个比较器和一个功率放大器组成。
反馈电路用于检测实际电流和设定电流之间的差异,产生一个反馈信号。
比较器则将反馈信号与设定电流进行比较,如果实际电流低于设定电流,比较器将产生一个偏高的电平信号。
功率放大器根据比较器的输出信号来驱动LED,提供恒定的电流源。
当实际电流低于设定电流时,比较器会将一个高电平信号发送给功率放大器,功率放大器会增大输出电流,从而提高LED 的亮度。
当实际电流超过设定电流时,比较器会将一个低电平信号发送给功率放大器,功率放大器会减小输出电流,从而降低LED的亮度。
通过这种方式,恒流驱动电路可以保持恒定的LED电流,从而保证背光灯的亮度稳定。
这种恒流驱动原理可以在不同的背光灯应用中使用,包括LCD电视、计算机显示器、手机等。
LCD背光驱动电路的原理是控制背光板的电流,以调节背光板的亮度。
恒流源芯片是实现这一功能的关键元件。
LCD显示驱动通过驱动电路控制液晶分子的排列和背光源的亮度,从而实现像素的控制和图像显示。
在控制电路中,输入信号被转化为相应的驱动信号,通过驱动电路控制液晶的排列方式和背光的亮度,最终将图像显示在LCD屏幕上。
对于背光驱动,其控制原理是将恒流源芯片与背光板LED连接,选取一个恒流源芯片来为背光板提供电压和电流。
恒流源芯片可以通过确定一个反馈电阻来控制输出电流,从而控制流过LED的电流。
这个原理是基于三极管的恒流回路,基极电压大于三极管的导通电压时,B点电压被钳位在A点电压减去三极管的导通压降,那么流过接地电阻的电流就是确定的。
以上信息仅供参考,如需了解更多信息,建议查阅专业书籍或咨询专业技术人员。
液晶屏电路工作原理
液晶屏电路是指用于驱动液晶显示器的电路,其工作原理主要分为两部分:显示驱动电路和背光驱动电路。
1. 显示驱动电路:液晶屏显示驱动电路主要负责控制液晶显示器中液晶分子的定向,从而实现图像的显示。
其工作原理如下: a. 对于每个像素点,显示驱动电路会给出相应的控制信号,
这些像素控制信号被送入液晶屏,引起液晶中对应的液晶分子定向。
b. 通过改变这些分子的定向,液晶可以通过光的偏振来调节
光的透过度,进而实现对图像的显示。
通过控制不同的像素点的液晶分子定向,可以显示出完整的图像。
2. 背光驱动电路:背光驱动电路用于提供足够的亮度和均匀的背光光源。
其工作原理如下:
a. 背光驱动电路通过直流电源提供给液晶显示器的背光光源,通常是利用冷阴极荧光灯(CCFL)或发光二极管(LED)来
提供背光。
b. 背光驱动电路中的逆变器部分将直流电源转换成所需的交
流高电压,用于激活冷阴极荧光灯。
对于LED背光,背光驱
动电路则根据LED的特性提供适当的直流电压和电流。
c. 通过调整背光驱动电路的输出电压和电流,可以控制背光
亮度的大小。
综上所述,液晶屏电路通过显示驱动电路控制液晶分子的定向,从而实现图像的显示,同时通过背光驱动电路提供合适的背光亮度,使图像在液晶屏上清晰可见。
液晶显示屏背光驱动集成电路工作原理液晶显示屏已经成为现今个人电子设备的主要显示技术之一。
在许多种液晶显示屏中,背光驱动器集成电路(IC)是控制屏幕亮度和对比度的关键组件。
本文将介绍背光驱动器集成电路的工作原理和其对液晶显示屏的影响。
1.液晶显示屏的类型在谈论液晶显示屏背光驱动集成电路之前,我们需要先了解液晶显示屏的种类。
液晶显示器可以分为直接驱动型和间接驱动型两种。
直接驱动显示器中每个像素都被控制,而在间接驱动显示器中,一个像素由若干个液晶单元(LCU)组成。
LDC 需要通过背光来显示亮度和对比度,因而需要背光驱动集成电路来控制背光的亮度和色调。
2.背光驱动器集成电路基础背光驱动器集成电路是一种控制和供电背光的芯片。
基本上,这个芯片将电能转化为光能,控制屏幕亮度,并在使用时保存能源。
集成电路包括控制器和转换器,其中控制器处理来自计算机或其他设备的信号以控制背光亮度,而转换器将光转换为背光的适当电压和电流。
背光驱动器集成电路包括一些主要结构块:控制器、逆变器、放大器、电容和电感。
控制器和电源面板可以与显示器电路板上其他元件交换数据来控制背光。
逆变器可将直流电能转换为交流电,供给灯管的点灯。
放大器被用于发出液晶屏幕所需的强烈信号,以获得最好的效果。
在电容和电感方面,它们被用来维持逆变器的稳定工作并减少噪声。
一些背光驱动器集成电路可以自动调节背光的亮度,这有助于减少屏幕耗电量并更好地适应不同环境下的需求。
此外,这些芯片还可以实现颜色调整,以改善图像的质量,并击败背景光线的影响。
3.背光驱动器集成电路的使用领域背光驱动器集成电路常应用于数字相框、平板电视、笔记本电脑、便携式媒体播放器等具有液晶显示屏的设备。
它们被广泛用于任何需要高分辨率和力量控制的设备中。
4.背光驱动器集成电路的工作原理在显示器被打开时,大约80V到100V的直流电压被导入背光驱动集成电路。
该电路将电压转换为高频交流电,以控制高压直流电的输入,并在有需要时调整背光的亮度。
大屏幕液晶显示屏背光灯及高压驱动电路原理与维修一、背光灯原理冷阴极灯管(CCFL)由冷阴极发射电子极和阳极构成,极之间通过电解质溶液隔开。
当极中有电流通过时,冷阴极发射电子极会产生电子,这些电子会被阳极电场吸引,从而释放出光线。
为了使冷阴极发射电子极产生电子,需要通过高压驱动电路提供足够的电压和电流。
一般冷阴极发射电子极的工作电压为600V至1500V,工作电流为3mA至6mA之间。
二、高压驱动电路原理高压驱动电路主要用于提供极高的电压和电流,以驱动冷阴极发射电子极。
高压驱动电路主要由变压器、整流电路和驱动电路组成。
变压器是高压驱动电路的核心部件,其作用是将输入的低压交流信号转变为高压交流信号。
在一般的液晶显示屏背光灯中,变压器主要采用高频变压器。
高频变压器通常采用磁导材料作为磁芯,以提高变压器的性能和效率。
整流电路用于将高压交流信号转换为高压直流信号,以供冷阴极发射电子极使用。
整流电路一般采用桥式整流电路,其具有整流效果好、波动小的特点。
驱动电路用于控制高压驱动电路的输入和输出。
驱动电路通常由高压电荷泵和高压切换电路组成。
高压电荷泵用于将输入的低压信号转换为高压信号,以供后续的驱动电路使用。
高压切换电路用于控制高压输出的开关,以实现对冷阴极发射电子极的驱动。
三、维修方法在维修大屏幕液晶显示屏的背光灯及高压驱动电路时,常见的故障有背光灯不亮、背光灯亮暗不均等。
下面将介绍一些常见的故障排除方法。
首先,可以检查背光灯驱动线路是否有松动或断开的情况,需要检查传输线路、接头和电源控制板是否有损坏。
如果有松动或断开的情况,需要重新连接或更换。
其次,可以检查高压驱动电路是否正常工作,需要使用万用表测量驱动电路的输入和输出是否符合规格。
如果发现输入或输出不正常,需要检查电路板上是否有元件损坏或焊接问题,需要重新焊接或更换损坏的元件。
最后,如果以上方法都没有解决问题,可能需要更换整个背光灯驱动电路模块。
这需要具备一定的电子维修技能和相关工具,建议找专业的维修人员进行更换。
详解液晶彩电背光灯驱动电路为了让冷阴极灯管安全、高效稳定地工作,其供电与激励必须符合灯管的特性。
具体而言,灯管的供电必须是频率为30kHz~100kHz的正弦交流电。
如果给灯管两端加上直流电压,会使部分气体聚集在灯管的一端,则灯管就会一端亮一端暗。
在液晶彩电中,电源板输出的电压为+24V或+12V直流电压,显然不能直接驱动背光灯管,因此需要一个升压电路把电源板输出较低的直流电转换为背光灯管启动及正常工作所需的高频正弦交流电。
这个升压电路组件就是常说的背光灯驱动板(Inverter),又称逆变器、升压板或高压板。
在液晶电视机中,背光灯驱动板是一个单独工作且受控于CPU的电路组件,其主要作用是点亮液晶屏内的背光灯管,并在CPU的控制下进行启动、停止(on/off)及亮度调节。
背光灯驱动板主要由振荡器、调制器、功率输出电路及保护检测电路组成,如1图所示。
在实际电路中,除功率输出部分和检测保护部分外,振荡器、调制器及控制部分通常由一块单片集成电路完成,这类集成电路常用的主要有BD(Rohm公司生产,如BD9884FV、BD9766等)及OZ系列(凹凸微电子公司生产,如02960、02964等);功率输出管多采用互补的功率型场效应管,有的采用3脚和8脚(①~③脚为S极,④脚为G 极,⑤-⑧脚为D极)贴片封装型,常见型号有D454、RSS085、D413、TPC8110、FDD6635.FDD6637等,如图2所示;还有的采用由N沟道和P沟道组合的5脚或8脚MOSFET功率块(①脚为Sl极,②脚为Gl极,③脚为S2极,④脚为G2极,⑤~⑧脚为D1、D2极),如SP8M3、TPC8406、4614、APM40520、P2804ND5G等,如图3所示。
保护检测多由集成电路10393、358、393或LM324及其外围元件来完成。
输出电路主要由高压变压器、谐振电容及背光灯管组成,并设有输出电压、输出电流取样电路。
对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(此文为技术探讨)在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。
什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时间关系进行转换,以便液晶屏能正确显示。
图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。
这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。
重新编排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。
每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。
这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。
也是一个独立的整体。
这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。
液晶显示屏背光驱动集成电路工作原理(图)振荡控制电路主要包括振荡器、调制器、激励输出、保护控制电路,位于背光板的输入控制接口和功率放大电路之间,其主要功能如下:①接受CPU的控制指令(ON/OFF),产生高频振荡信号。
②接受CPU送来的亮度控制信号(PWM),对高频振荡进行PWM调制。
③把PWM调制信号放大并输出。
④接受输出电路反馈来的电压、电流取样信号,进行保护控制。
振荡控制电路是背光板部分的前端电路,功率小、电路复杂,电路功能较多。
为了液晶屏生产厂家为了便于配套,这部分电路均采用一块集成了上述功能的集成电路。
目前,市场上有很多此类背光板前端集成电路提供。
这些集成电路都是考虑到不同的屏幕尺寸、不同的电路形式、不同的控制方式及不同的供电电压精心设计的,功能齐全、稳定可靠。
采用这种集成电路的背光板,功能强大、外电路简单、成本下降,故障率也减小很多。
图5.1是一个采用6只CCFL灯管的26寸液晶屏背光板,图5.2是一个采用EEFL灯管的32寸液晶屏背光板。
可以看出,振荡控制集成电路只占了极小的位置,整个电路板非常简洁、工整,维修也极其方便。
目前比较常见的、背光板上应用较多的振荡控制集成电路有以下几种。
①美国仙童(FAIRCHILD)公司的FAN7316、FAN7317、FAN7313等。
②微科(MICRO)公司的OZ960、OZ964、OZ9910、OZ9925、OZ9938等。
③硕颉( Bitek)公司的BIT3101、BIT3109、BIT3105、BIT3106等。
④MSP(Mstart)公司的MP1026、MP1029、MP1038等。
⑤罗姆(Rohm)公司的BD9883、BD9884、BD9886等。
还有很多集成电路的型号不胜枚举。
对于维修人员来说,把这些集成电路的资料收集起来,了解各集成电路的引脚功能,对背光板维修的帮助极大。
5.1典型振荡控制集成电路的工作流程图5.3是一块典型振荡控制集成电路的内部框图。
液晶显示屏背光灯及高压驱动电路工作原理4图 13以上第一部分主要介绍冷阴极荧光灯的构造、特性。
工作时对驱动电路的要求,特别是具有亮度控制的冷阴极荧光灯及多灯管液晶屏系统灯管的驱动供电要求作了介绍。
下一部分;是冷阴极荧光灯高压驱动电路的电路原理,故障分析,以三星屏为例。
内容;一、电路组成二、工作原理三、保护电路四、检修方法及注意事项五、BD9884FV 详细分析海信TLM-3277液晶电视采用韩国三星屏,该屏内置冷阴极荧光灯管16只。
冷阴极荧光灯驱动电路板,随屏配套。
该冷阴极荧光灯驱动电路由两块BD9884及8组全桥架构功率输出电路组成,功率输出采用8SPM3 MOSFET N沟道、P沟道模块。
两只8SPM3模块及输出高压变压器组成一个桥式输出架构。
变压器有初级绕组 X X 接功率输出模块,次级高压绕组 X X接冷阴极荧光灯管次级低压绕组X X为作为取样电压送往BD9884的电压检测部分。
BD9884 有两路激励输出 26 27输出一路 23 24 一路,每一路激励输出向两个全桥功率电路提供激励信号,每一组全桥功率输出向两个高压变压器驱动电压(点亮两只冷阴极荧光灯管),这样;每一块BD9884 可以驱动8 只灯管,两只BD9884共驱动16只灯管。
在两块集成电路的4路输出激励信号中,在进行亮度控制时,是采用PWM方式控制,4路PWM脉冲,每路之间的相位差为900。
海信TLM32XX系列大屏幕液晶电视背光灯电路原理及分析海信32寸液晶电视主要采用韩国三星屏和LG屏,以下把三星屏背光驱动电路进行介绍;在本文的第一部分,介绍了背光灯管及驱动电路,并对驱动电路的要求进行了较详细的叙述,下面以韩国三星屏为例,对电路的组成形式、工作原理、控制方式进行介绍。
背光灯高压驱动电路在液晶电视机中,是一个单独工作的受控于CPU的电路组件,其主要作用是点亮液晶屏内的背光灯管并受CPU控制对其能进行启动、停止(on/off)及亮度控制。
背光驱动原理背光驱动技术是指在液晶显示器中,利用背光源来照亮液晶屏幕,从而实现图像显示的一种技术。
背光驱动原理是液晶显示器技术中的重要组成部分,下面将对背光驱动原理进行详细介绍。
首先,我们需要了解液晶显示器的结构。
液晶显示器主要由液晶屏和背光源组成。
液晶屏是由一层薄膜晶体组成的,通过控制电场来改变液晶分子的排列状态,从而实现图像的显示。
而背光源则是为了照亮液晶屏幕,使图像能够被观察到。
背光驱动原理的核心在于如何控制背光源的亮度和色彩,以达到最佳的显示效果。
目前常用的背光源包括冷阴极管(CCFL)和LED。
在液晶显示器中,背光源通常是位于液晶屏幕的背面,因此被称为背光源。
背光驱动原理的基本工作原理是利用电路控制背光源的亮度和色彩。
在液晶显示器中,背光源的亮度和色彩会影响到图像的显示效果,因此需要精确的控制。
一般来说,背光源的亮度是通过调节电流来实现的,而色彩则是通过控制不同颜色的LED来实现的。
在液晶显示器中,背光源的控制电路通常由PWM调光控制器和电源管理单元组成。
PWM调光控制器可以通过调节脉冲宽度来控制LED的亮度,从而实现背光源的亮度调节。
而电源管理单元则负责为背光源提供稳定的电源,并监测背光源的工作状态,以保证其正常工作。
除了亮度和色彩的控制,背光驱动原理还涉及到背光源的均匀性和稳定性。
在液晶显示器中,背光源的均匀性和稳定性对图像的质量有着重要的影响。
因此,背光驱动原理还需要考虑如何实现背光源的均匀照明和稳定工作。
总的来说,背光驱动原理是液晶显示器技术中的重要组成部分,它通过精确的控制背光源的亮度、色彩、均匀性和稳定性,实现了液晶显示器的高质量图像显示。
随着技术的不断进步,背光驱动原理也在不断演进,为液晶显示器的发展提供了强大的支持。
背光驱动原理背光驱动技术是液晶显示器中至关重要的一环,它直接影响到显示效果的质量和稳定性。
在了解背光驱动原理之前,我们首先需要了解液晶显示器的工作原理。
液晶显示器是一种利用液晶材料的光学特性来显示图像的平面显示器。
它的基本结构包括液晶屏和背光源两部分。
液晶屏是由一层薄膜晶体组成的,通过控制电场来改变液晶分子的排列状态,从而控制光的透过程度,实现图像显示。
而背光源则是为了提供光源,使得图像可以被看到。
背光驱动原理主要包括两种类型,CCFL(冷阴极荧光灯)和LED(发光二极管)。
CCFL是传统的背光驱动技术,它采用冷阴极荧光灯作为光源。
CCFL的工作原理是利用电场激发荧光粉发出白光,从而提供背光。
CCFL背光源的优点是成本低廉,但缺点也很明显,比如功耗高、寿命短、易受环境温度影响等。
LED背光源则是近年来发展起来的新型背光驱动技术。
LED背光源采用发光二极管作为光源,它的工作原理是电流通过半导体材料时,激发电子跃迁,产生光。
LED背光源相比CCFL有诸多优势,比如功耗低、寿命长、色彩表现好、启动响应快等。
因此,LED背光源已经逐渐取代了CCFL成为液晶显示器中的主流背光驱动技术。
在LED背光源中,又分为直下式和边光式两种类型。
直下式LED背光源是将LED灯直接放置在液晶屏的后面,能够提供更均匀的光源,但厚度较厚。
而边光式LED背光源则是将LED灯放置在液晶屏的边缘,通过导光板将光源均匀地导向整个屏幕,厚度相对较薄。
总的来说,背光驱动原理是液晶显示器中至关重要的一环。
随着LED技术的不断发展,LED背光源已经成为了液晶显示器中的主流,它的出色性能和稳定性为显示效果提供了良好的保障。
希望通过本文的介绍,您对背光驱动原理有了更深入的了解。
液晶显示屏驱动原理
液晶显示屏驱动原理主要涉及到液晶分子的排列变化与电压信号的控制。
液晶显示屏由许多微小的液晶分子组成,这些分子通常是无规则排列的。
当电压施加在液晶屏幕上时,液晶分子会受到电场的作用,其排列会发生变化。
这种电压变化通过驱动电路产生,驱动电路位于液晶屏幕的背部。
液晶显示屏驱动原理分为平面转向(IPS)和扭曲休克模式(TN)
两种类型。
在平面转向模式中,液晶分子在不同的电压下会沿着垂直于显示屏的方向进行旋转。
这种旋转可以使通过液晶分子的光线发生偏振,从而产生不同的亮度。
平面转向模式可以提供更高的颜色精确度和可视角度。
而在扭曲休克模式中,液晶分子会在电场的作用下沿着水平方向扭曲。
这种扭曲会导致通过液晶分子的光线在通过偏振器前后产生不同的偏振角度,从而控制亮度。
扭曲休克模式较为常见,适用于大多数液晶显示屏。
在液晶显示屏的驱动电路中,通常包括驱动芯片和控制信号。
驱动芯片会根据输入的控制信号,产生不同的电场强度或电压信号,从而控制液晶分子的排列变化。
这些控制信号可以是来自计算机或者其他电子设备的图像信号。
除了驱动电路,液晶显示屏还需要背光源来提供光源。
背光源通常是冷阴极灯管或者LED灯。
背光源的光线通过液晶屏幕,然后受到液晶分子排列的控制,最终形成我们看到的图像。
总结起来,液晶显示屏的驱动原理包括通过驱动电路产生电场或电压信号,控制液晶分子的排列变化,从而实现对光线的控制,最终形成图像显示。
背光驱动原理
背光驱动原理是指控制液晶显示器的背光模块亮度和色彩的技术。
液晶显示器的背光模块通常由冷阴极灯(CCFL)或LED 组成。
背光驱动原理主要有两种:直接驱动和间接驱动。
直接驱动是指将背光与液晶显示器的像素点一一对应,每个像素点都有背光模块提供背光。
这种驱动方式在较小尺寸的液晶显示器上应用较多,它需要大量电源和控制电路,成本较高。
间接驱动则是将整个背光区域分为若干个区块,每个区块由多个像素点共享一个背光模块。
这种方式能够提高背光的亮度和均匀性,并降低成本。
其中最常用的背光模块是LED,它具有低功耗、亮度高、寿命长等优点。
在液晶显示器中,背光驱动电路会根据输入信号的强弱控制电流大小,从而调整背光的亮度。
这一过程通过PWM(脉冲宽度调制)技术实现,即在一个固定的周期内,通过改变脉冲的宽度来控制电流的大小。
背光的色彩也可以通过背光驱动电路进行控制。
一般来说,使用RGB LED组成的背光模块可以通过PWM调整每个颜色通道的亮度,从而实现不同的颜色显示。
总的来说,背光驱动原理是通过电源和控制电路控制背光模块
的亮度和色彩,使液晶显示器能够正常显示图像。
不同的驱动方式和技术可以根据不同应用需求选择。
对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(此文为技术探讨)
在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。
什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时间关系进行转换,以便液晶屏能正确显示。
图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。
这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。
重新编
排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。
每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。
这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。
也是一个独立的整体。
这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。
为了保证此电路正常工作,一般对这个独立的驱动系统单独的设计了一个独立的开关电源供电(这个向液晶屏驱动系统供电的开关电源一般就称为:TFT偏压电路);由整机的主开关电源提供一个5V或12V电压,给这个开关电源供电,并由CPU控制这个开关电源工作;产生这个独立的驱动系统电路提供所需的各种电压,就好像我们的电视机是一个独立的系统他有一个单独的开关电源,DVD机是一个独立的系统他也有一个单独的开关电源一样。
是非常重要也是故障率极高的部分(开关电源都是故障率最高的部分,要重点考虑)。
图1所示是液晶屏驱动系统框图。
从图中可以看出,其中的“TFT偏压供电开关电源”就是这个独立系统电路的供电电源它产生这个驱动系统电路需要的各种电压,有VDD、VDA、VGL和VGH电压供各电路用。
图1
这个独立的液晶屏驱动电路的供电系统;主要产生4个液晶屏驱动电路所需的电压:
1 VDD 屏驱动电路工作电压,类似一般模拟集成电路的VCC。
一般为3.3V。
2 VGL 屏TFT薄膜开关MOS管的关断电压,一般为-5V。
3 VGH 屏TFT薄膜开关MOS管的开通电压,一般为20V~30V。
4 VDA 屏数据驱动电压,VDA经基准处理后,由伽马电路用以产生灰阶电压,一般为14V~20V。
以上电压不同的屏;电压值不同。
这些输出的任一电压出现问题,都会出现不同的图像显示故障,可见其重要性。
并且也是故障多发部位。
也是液晶电视维修人员必须掌握的部分,这个电路在某些文章、资料里称为:液晶屏逻辑板TFT偏压电路。
这篇文章的推出;显然是“及时雨、雪中送碳”,并且此文是介绍的目前普片采用的TFT偏压供电芯片TPS65161作为典型进行分析,怀着欣喜的心情细细的阅读此文章,看完后感到非常的遗憾、失望,此文把VDD、VDA、VGL和VGH四种电压产生的原理阐述错了,对关键电压的产生过程没有任何交代(模糊词汇一语而过),例如图6中CP22、DP8组成的半波负压整流电路(产生VGL)的工作原理、CP18、DP5组成的半波叠加整流电路(产生VGH)的工作原理,这些都是这个TFT偏压电路的重点,文中并把产生VDA电压的并联型的开关电源误认为是滤波电路(12V电压莫名其妙的经过滤波电路就能上升成为近20多伏的VDA电压???)、把产生VDD电压的串联型的开关电源的蓄能电感(LP2)也误认为是滤波电感、把串联开关电源的续流二极管DP3误认为是稳压二极管等,这样的叙述无法正确的分析故障,误导读者、也容易误导维修人员对电路、故障进行分析。
便于对照,以下是复制原文:也请精通此电路的师傅们参加讨论,把液晶的维修技术广为传播。
(以上是某杂志某一段原文复制)
下面把我们分析的结果提供给大家以便对照参考(如有不对也请指正)。
TPS65161集成电路是美国德州仪器公司(Texas Instruments)出品的一款专门为32寸以上尺寸TFT液晶屏驱动电路提供偏置电压的开关电源芯片。
内部有一个高于500K 振荡频率的振荡激励电路,该芯片12V供电;可以支持4组经过稳压的输出电压;即VDD、VGL、VGH、VDA电压,特别是能提供较大的电流容量,并且电压幅度可以调整以适应不同类型的液晶屏。
集成电路具有短路保护及过温度保护。
下面对VDD、VDA、VGH、VGL产生的原理及过程进行分析,原理图
就仍然采用上面作者绘制的电路原理图。
(上面图4中原作者把Q2 P沟道误绘制成N沟道)。
VDD电压产生:
图3所示(仍旧采用原文图片序号)是TPS65161芯片VDD 电压产生部分原理图;
图3原文中VDD电压产生插图
图3原文中VDD电压产生插图(局部放大)
在图3中,TPS65161内部的MOS管Q3、外部的LP2及DP3组成了一个串联型的开关电源,由TPS65161内部的振荡激励信号控制Q3开关电源工作。
等效电路如图3.1所示。
图3.1
在图3.1中;串联开关电源的开关管是集成电路TPS65161内部的Q3,工作过程如下;在T1时间:图3.2所示;集成电路。