2020年中考数学考点提分专题二十四 计算能力提升(解析版)
- 格式:doc
- 大小:610.00 KB
- 文档页数:16
专题2.4新定义的四种题型与真题训练题型一:函数中新定义问题1.(2022青浦一模18)如图,一次函数y =ax +b (a <0,b >0)的图象与x 轴,y 轴分别相交于点A ,点B ,将它绕点O 逆时针旋转90°后,与x 轴相交于点C ,我们将图象过点A ,B ,C 的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y =﹣kx +k (k >0)的关联二次函数是y =mx 2+2mx +c (m ≠0),那么这个一次函数的解析式为.【解答】解:对y =﹣kx +k ,当x =0时,y =k ,当y =0时,x =1,∴A (1,0),B (0,k ),∴C (﹣k ,0),将A 、B 、C 的坐标代入y =mx 2+2mx +c 得,,解得:或或,∵m ≠0,k >0,∴m =﹣1,k =3,c =3,∴一次函数的解析式为y =﹣3x +3,故答案为:y =﹣3x +3.2.(2022黄埔一模18)若抛物线2111y ax b x c =++的顶点为A ,抛物线2222y ax b x c =-++的顶点为B ,且满足顶点A 在抛物线2y 上,顶点B 在抛物线1y 上,则称抛物线1y 与抛物线2y 互为“关联抛物线”,已知顶点为M 的抛物线()223y x =-+与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果3tan 4MDO ∠=,那么顶点为N 的抛物线的表达式为_________【详解】设顶点为N 的抛物线顶点坐标N 为(a ,b )已知抛物线()223y x =-+的顶点坐标M 为(2,3)∵3tan 4MDO ∠=,∴34M M N y x x =-,即3324Dx =-,解得24D x =±∵直线MN 与x 轴正半轴交于点D,∴D 点坐标为(6,0)则直线MD 解析式为3(6)4y x =--N 点在直线MD 3(6)4y x =--上,N 点也在抛物线()223y x =-+故有()23(6)423b a b a ⎧=--⎪⎨⎪=-+⎩,化简得2394247b a b a a ⎧=-+⎪⎨⎪=-+⎩联立得2394742a a a --=-+,化简得2135042a a -+=解得a =54或a =2(舍),将a =54代入3942b a =-有359157257442161616b =-⨯+=-+=解得545716a b ⎧=⎪⎪⎨⎪=⎪⎩,故N 点坐标为(54,5716)则顶点为N 的抛物线的表达式为2557()416y a x =-+将(2,3)代入2557()416y a x =-+有,25573(2416a =-+化简得95731616a =+,解得a =-1故顶点为N 的抛物线的表达式为2557(416y x =--+故答案为:2557()416y x =--+.3.(2020杨浦二模)定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是.【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可.【解答】解:因为一次函数y=2x﹣1(1≤x≤5)为“k级函数”,可得:k=2,故答案为:2.题型二:三角形中的新定义1.(2022嘉定一模18)如图,在△ABC中,∠C=90°,BC=2,,点D在边AC上,CD:AD=1:3,联结BD,点E在线段BD上,如果∠BCE=∠A,那么CE=.【解答】解:过点E作EF⊥BC,垂足为F,∵∠ACB=90°,BC=2,,∴AC===4,∵CD:AD=1:3,∴CD=1,∵∠BCE=∠A,∠ACB=∠CFE=90°,∴△ABC∽△CEF,∴===2,∴设EF为a,则CF为2a,BF为2﹣2a,∵∠ACB=∠BFE=90°,∠CBD=∠FBE,∴△BFE∽△BCD,∴=,∴=,∴a=,∴EF=,CF=1,∴CE===,故答案为:.2、(2022杨浦一模17)新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为格线三角形.如图,已知等腰Rt△ABC为“格线三角形”,且∠BAC=90°,那么直线BC与直线c的夹角α的余切值为.【解答】解:过B 作BE ⊥直线a 于E ,延长EB 交直线c 于F ,过C 作CD ⊥直线a 于D ,则∠CDA =∠AEB =90°,∵直线a ∥直线b ∥直线c ,相邻两条平行线间的距离相等(设为d ),∴BF ⊥直线c ,CD =2d ,∴BE =BF =d ,∵∠CAB =90°,∠CDA =90°,∴∠DCA +∠DAC =90°,∠EAB +∠DAC =90°,∴∠DCA =∠EAB ,在△CDA 和△AEB 中,,∴△CDA ≌△AEB (AAS ),∴AE =CD =2d ,AD =BE =d ,∴CF =DE =AE +AD =2d +d =3d ,∵BF =d ,∴cotα===3,故答案为:3.3.(2022长宁一模17)定义:在△A 中,点D 和点E 分别在AB 边、AC 边上,且DE //BC ,点D 、点E 之间距离与直线DE 与直线BC 间的距离之比称为DE 关于BC 的横纵比.已知,在△A 中,4,BC BC =上的高长为3,DE 关于BC 的横纵比为2:3,则DE =_______.【详解】如图,AF BC ⊥于F ,交DE 于点G ,//DE BC ,ADE ABC ∴△△∽,AG DE ⊥,DE AGBC AF∴=,3AF = DE 关于BC 的横纵比为2:3,4BC =,23DE GF ∴=设2DE a =,则3GF a =,33AG AF GF a∴=-=-23343a a -∴=,解得23a =,43DE ∴=,故答案为:434.(2022虹口一模17)在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在4×4的网格中,△ABC 是一个格点三角形,如果△DEF 也是该网格中的一个格点三角形,它与△ABC 相似且面积最大,那么△DEF 与△ABC 相似比的值是.【解答】解:由表格可得:AB =,BC =2,AC =,如图所示:作△DEF ,DE =,DF =,EF =5,∵===,∴△DEF ∽△ABC ,则△DEF 与△ABC 相似比的值是.故答案为:.5.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y ,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.6.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为【考查内容】新定义题型,黄金三角形【评析】中等【解析】当∠α为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边长的比值215+;当当∠α为顶角时,用内角和公式求得∠β= 45,此时为等腰直角三角形,腰长与底边长的比值22。
2020年中考数学提分专项 分式混合运算(含答案)一、单选题(共有4道小题)1.化简分式2221111x x x ⎛⎫÷+ ⎪--+⎝⎭的结果是( ) A .2 B .12+x C .12-x D .-22.当a =2时,()222111a a a a -+÷-的结果是( ) A .32 B .32- C .12 D .12-. 3.212n b m +⎛⎫- ⎪⎝⎭(n 为正整数)的值是( ) A .2321n n b m ++ B .2321n n b m ++- C .4221n n b m ++ D .4221n n b m++- 4.计算2121x x x x x ++⎛⎫+÷ ⎪⎝⎭的结果是( ) A .1x + B .11x + C .1x x + D .1x x+ 二、填空题(共有6道小题) 5.332x y ⎛⎫- ⎪⎝⎭= 6.3232a b c ⎛⎫ ⎪-⎝⎭=7.计算:221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是 8.观察下列等式:第一个等式: 1223111221222a ==-⨯⨯⨯⨯ 第二个等式: 23234112322232a ==-⨯⨯⨯⨯ 第三个等式: 34345113423242a ==-⨯⨯⨯⨯第四个等式: 45456114524252a ==-⨯⨯⨯⨯ 按上述规律,回答以下问题:用含n 的代数式表示第n 个等式:n a =____________=________________;式子123420a a a a a ++++⋅⋅⋅+=________. 9.11112222y x x y ⎛⎫⎛⎫-⋅ ⎪ ⎪⎝⎭⎝⎭= 10.计算:2422a a a a-++= 三、判断题(共有2道小题)11.判断题:下列运算正确的打“√”,错误的打“×” ①yx x y x x y y x y x y y x x +=÷+=+⋅+÷+2122( ) ②32633x y x y z z ⎛⎫++= ⎪⎝⎭( ) ③232942x y x y z z ⎛⎫= ⎪⎝⎭( ) ④2242n nn b b a a ⎛⎫-=- ⎪⎝⎭(n 为正整数)( ) ⑤3392628327b b a a ⎛⎫-=- ⎪⎝⎭( ) 12.判断:正确的,请打“√”;错误的,请打“×”。
专题25 含特殊角三角函数值的混合运算中考最新模拟30道1.计算:()1013tan30132π-⎛⎫+︒--- ⎪⎝⎭;2()01 3.14tan 603π⎛⎫---︒ ⎪⎝⎭.3.计算01(2)1tan602π︒⎛⎫---- ⎪⎝⎭4.计算:100()3tan 30(13π---+5.计算:(1)sin45°·cos45°+tan60°·sin60°;(2)sin30°-tan 245°+34tan 230°-cos60°.614cos 45()|2|2-︒++-7.计算:10()2cos 451(3.14)4π-︒-+-+-. 45(2017-直接利用绝对值的性质以及特殊角的三角函数值和完全平方公式分别化简求出答案.45(2017-9.计算:01(24602sin π⎛⎫-+︒ ⎪⎝⎭. 2cos6012+-原式利用负整数指数幂法则,【答案】-1【分析】直接利用绝对值、算术平方根、零指数幂的性质以及特殊角的三角函数值分别化简13.计算 01(12cos302︒⎛⎫++⋅ ⎪⎝⎭15.计算:022tan 60( 3.14)()2π--︒--+-+二次根式的化简是解决本题的关键.16.计算:(12)﹣1﹣2tan45°+4sin60°17.计算:10()(1)2cos6092π-++-+ 2cos609+18.计算:40111 1.414)2sin 602︒⎛⎫-++-- ⎪⎝⎭19101()2cos60(2π)2---︒+-.【答案】3.【分析】根据有理数的绝对值,特殊角的三角函数值,负整数指数幂,二次根式一一计算即可得出答案.【详解】原式31213=+-+=【点睛】本题考查实数的混合运算,解题关键是熟练掌握运算法则.21.计算:1145tan 603-⎛⎫+-- ⎪⎝⎭°°22.计算:02(2020)sin 45()2︒--+- 12sin 45(2︒-【点睛】此题考查计算能力,掌握零次幂的定义,23.计算:222cos602sin 45tan 60sin 303︒-︒+︒-︒.24.计算:012sin 45(2)()3π-︒+--.252012cos30()2-+︒+-.26.计算:1201tan 452cos60(2)2π-⎛⎫︒-︒+--- ⎪⎝⎭=3.【点睛】本题考查了特殊角三角函数、0指数幂、负整数指数幂等知识,熟知相关知识点是解题关键.27.计算:(13)﹣2﹣(π)02|+4tan60°.28.计算)013460.2cos ⎛⎫+--︒ ⎪⎝⎭ 29.计算()0cot 3012sin 60cos60tan 30︒--︒+︒+︒.【点睛】此题主要考查不同特殊角三角函数值的混合运算,解题的关键是熟知特殊三角函数值.30.计算:2tan452sin60 cot302cos45︒-︒︒-︒.。
中考数学能力提高测试2时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.如图N2-1,C ,B 是线段AD 上的两点,若AB =CD ,BC =2AC ,那么AC 与CD 的关系是为( )图N2-1A .CD =2ACB .CD =3AC C .CD =4BD D .不能确定 2.图N2-2,桌面上一本翻开的书,则其俯视图为( )图N2-23.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:A .平均数B .中位数C .众数D .方差4.若不等式组⎩⎪⎨⎪⎧2x -1<3,x <a 的解集是x <2,则a 的取值范围是( )A .a <2B .a ≤2C .a ≥2D .无法确定 5.如图N2-3,在△ABC 中,AB =AC ,∠BAC =120°,D ,E 是BC 上的两点,且∠DAE =30°,将△AEC 绕点A 顺时针旋转120°后,得到△AFB ,连接DF .下列结论中正确的个数有( )①∠FBD =60°;②△ABE ∽△DCA ;③AE 平分∠CAD ;④△AFD 是等腰直角三角形. A .1个 B .2个 C .3个 D .4个图N2-3 图N2-46.如图N2-4,在矩形ABCD 中,AD =4 cm ,AB =3 cm ,动点P 从点A 开始沿边AD向点D 以1 cm/s 的速度运动至点D 停止,以AP 为边在AP 的下方做正方形AEFP ,设动点P 运动时间为x (单位:s),此时矩形ABCD 被正方形AEFP 覆盖部分的面积为y (单位: cm 2),则y 与x 之间的函数关系用图象表示大致是( )二、填空题(本大题共4小题,每小题5分,共20分)7.如果a +2b =-3,那么代数式2-2a -4b 的值是________. 8.如图N2-5,含有30°的Rt △AOB 的斜边OA 在y 轴上,且BA =3,∠AOB =30°,将Rt △AOB 绕原点O 顺时针旋转一定的角度,使直角顶点B 落在x 轴的正半轴上,得相应的△A ′OB ′,则A 点运动的路程长是________.图N2-5 图N2-69.如图N2-6,点A ,B 是反比例函数y =3x(x >0)图象上的两个点,在△AOB 中,OA =OB ,BD 垂直于x 轴,垂足为D ,且AB =2BD ,则△AOB 的面积为________.10.如图N2-7,要使输出值y 大于100,则输入的最小正整数x 是________.图N2-7三、解答题(本大题共5小题,每小题10分,共50分) 11.上电脑课时,有一排有四台电脑,同学A 先坐在如图N2-8的一台电脑前的座位上,B ,C ,D 三位同学随机坐到其他三个座位上.求A 与B 两同学坐在相邻电脑前座位上的概率.图N2-812.如图N2-9,已知E 是平行四边形ABCD 的边AB 上的点,连接DE .(1)在∠ABC 的内部,作射线BM 交线段CD 于点F ,使∠CBF =∠ADE (要求:用尺规作图,保留作图痕迹,不写作法和证明);(2)在(1)的条件下,求证:△ADE ≌△CBF .图N2-913.如图N2-10,自行车每节链条的长度为2.5 cm,交叉重叠部分的圆的直径为0.8 cm.(1)4节链条长______________cm;(2)n节链条长______________cm;(3)如果一辆22型自行车的链条由50节这样的链条组成,那么已装好在这辆自行车上的链条总长度是多少?图N2-1014.如图N2-11,将矩形ABCD沿MN折叠,使点B与点D重合.(1)求证:DM=DN;(2)当AB和AD满足什么数量关系时,△DMN是等边三角形?并说明你的理由.图N2-1115.如图N2-12,在平面直角坐标系中,直线y=-3x-3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P 为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.图N2-121.B 2.C 3.C 4.C 5.B6.A 解析:当0<x ≤3, y =x 2;当3<x ≤4, y =3x ,结合图象可知应选A. 7.88.4π 解析:A 点运动所形成的图形是弧形,要计算路程长即计算弧长,结合图形可知OA =6,由点B 通过旋转落在x 轴的正半轴上,说明旋转角为120°,根据弧长公式得l =n πR 180=120π×6180=4π. 9.310.21 解:若x 为偶数,根据题意,得:x ×4+13>100,解得x >874,所以此时x的最小整数值为22;若x 为奇数,根据题意,得:x ×5>100,解得:x >20,所以此时x 的最小整数值为21,综上所述,输入的最小正整数x 是21.11.解:依题意, B ,C ,D 三个同学在所剩位置上从左至右就坐的方式有如下几种情况:BCD ,BDC ,CBD ,CDB ,DBC ,DCB ,其中A 与B 相邻而坐的是CBD, CDB ,DBC ,DCB ,∴A 与B 两同学坐在相邻电脑前座位上的概率是46=23.12.(1)解:作图如图105.图105(2)证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AD =BC . ∵∠ADE =∠CBF ,∴△ADE ≌△CBF (ASA).13.(1)7.6 (2)1.7n +0.8 (3)85 cm14.(1)证明:如图106.由题意知∠1=∠2, 又AB ∥CD ,得∠1=∠3, 则∠2=∠3,故DM =DN .(2)当AB =3AD 时,△DMN 是等边三角形. 理由:∵△DMN 是等边三角形, ∴∠2=60°.则∠AMD =60°,可得∠ADM =30°. 则DM =2AM ,AD =3AM .可得AB =3AM . 故AB =3AD .图10615.解:(1)当y =0时,-3x -3=0,x =-1,∴A (-1, 0). 当x =0时,y =-3,∴C (0,-3).∵抛物线过A ,C 两点, ∴⎩⎪⎨⎪⎧ 1-b +c =0,c =-3,∴⎩⎪⎨⎪⎧b =-2,c =-3. 抛物线的解析式是y =x 2-2x -3.当y =0时, x 2-2x -3=0,解得 x 1=-1,x 2=3. ∴ B (3, 0).(2)由(1)知 B (3, 0) , C (0,-3), 直线BC 的解析式是y =x -3.设M (x ,x -3)(0≤x ≤3),则E (x ,x 2-2x -3)∴ME =(x -3)-( x 2-2x -3)=-x 2+3x =-⎝⎛⎭⎫x -322+94. ∴当x =32时,ME 的最大值为94.(3)不存在.由(2)知 ME 取最大值时,ME =94,E ⎝⎛⎭⎫32,-154,M ⎝⎛⎭⎫32 ,-32, ∴MF =32,BF =OB -OF =32.设在抛物线x 轴下方存在点P ,使以P ,M ,F ,B 为顶点的四边形是平行四边形, 则BP ∥MF ,BF ∥PM .∴P 1⎝⎛⎭⎫0,-32或 P 2⎝⎛⎭⎫3,-32. 当P 1⎝⎛⎭⎫0,-32时,由(1)知y =x 2-2x -3=-3≠-32,∴P 1不在抛物线上. 当P 2⎝⎛⎭⎫3,-32时,由(1)知y =x 2-2x -3=0≠-32, ∴P 2不在抛物线上.综上所述:在抛物线上x 轴下方不存在点P ,使以P ,M ,F ,B 为顶点的四边形是平行四边形。
【2020中考】选择题-能力提升50道1.(2018·湖北省中考模拟)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为( )A .180B .182C .184D .1862.(2019·丹东市第六中学中考模拟)对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3 B .M =﹣1,N =3 C .M =2,N =4D .M =1,N =4 3.(2019·福建省中考模拟)已知(2x ﹣3)7=a 0x 7+a 1x 6+a 2x 5+……+a 6x +a 7,则a 0+a 1+a 2+……+a 7=( ) A .1 B .﹣1 C .2 D .04.(2019·普宁市燎原中学中考模拟)关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<5.(2019·山东省初三二模)若一元二次方程x 2-2x -m =0无实数根,则一次函数y =(m +1)x +m -1的图象不经过第( )象限.A .四B .三C .二D .一6.(2019·黑龙江省中考模拟)若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣347.(2019·重庆中考模拟)若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y k y ++的解为正数,则符合条件的所有整数k 的积为( ) A .2B .0C .﹣3D .﹣6 8.(2018·湖北省中考模拟)关于x 的一元二次方程x 2+(a 2﹣2a )x+a ﹣1=0的两个实数根互为相反数,则a 的值为( )A .2B .0C .1D .2或09.(2019·江西省中考模拟)已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤710.(2019·商水县希望中学初三月考)等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( )A .27B .36C .27或36D .1811.(2019·四川省中考模拟)若关于x 的方程233x m x x +=++无解,则m 的值为( ) A .1m = B .1m =- C .2m =D .2m =- 12.(2019·乐山市第七中学初三月考)若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28B .﹣4C .4D .﹣213.(2019·福建省初三二模)若关于x 的一元一次不等式组213(2)x x x m --⎧⎨⎩><的解集是x <5,则m 的取值范围是( )A .m≥5B .m >5C .m≤5D .m <514.(2019·浙江省初二期中)已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( ) A .﹣4<a <﹣3 B .﹣4≤a <﹣3 C .a <﹣3 D .﹣4<a <3215.(2019·河北省初二期中)关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( )A .6m <-且2m ≠B .6m >且2m ≠C .6m <且2m ≠-D .6m <且2m ≠16.(2019·山东省初三一模)对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程Max {x ,-x }=21x x-的解为( ) A .1B .2C .或1D .-1或1 17.(2019·全国初三单元测试)若实数a 、b 满足a 2﹣8a+5=0,b 2﹣8b+5=0,则1111b a a b --+--的值是( ) A .﹣20 B .2 C .2或﹣20 D .1218.(2017·重庆中考模拟)关于x 的方程2111ax x x -=++的解为非正数,且关于x 的不等式组22533a x x +⎧⎪+⎨⎪⎩无解,那么满足条件的所有整数a 的和是( )A .﹣19B .﹣15C .﹣13D .﹣919.(2019·陕西省中考模拟)如图,一次函数y 1=k 1x +b 1与反比例函数22k y x =的图象交于点A (1,3),B (3,1)两点,若y 1<y 2,则x 的取值范围是( )A.x<1B.x<3C.0<x<3D.x>3或0<x<1 20.(2019·江苏省中考模拟)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0)C.()D.(﹣1,1)21.(2019·湖北省中考模拟)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;①b2﹣4ac>0;①9a﹣3b+c=0;①若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;①5a﹣2b+c<0.其中正确的个数有()A.2B.3C.4D.522.(2019·新乡市第一中学初三月考)如图,直线l和双曲线y=kx(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设①AOC的面积为S1、①BOD的面积为S2、①POE的面积为S3,则( )A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S323.(2019·安徽省初三月考)如图,①OAC和①BAD都是等腰直角三角形,①ACO=①ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则①OAC与①BAD的面积之差S①OAC﹣S①BAD为()A.36B.12C.6D.324.(2019·山东省中考模拟)如图,在直角坐标系中,点A在函数y=4x(x>0)的图象上,AB①x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=4x(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2B C.4D.25.(2019·山东省青岛第二十六中学中考模拟)如图,点A(﹣2,0),B(0,1),以线段AB为边在第二象限作矩形ABCD,双曲线y=kx(k<0)过点D,连接BD,若四边形OADB的面积为6,则k的值是()A.﹣9B.﹣12C.﹣16D.﹣1826.(2019·江苏省初三二模)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF①AB交AC于点G,反比例函数y x>0)经过线段DC的中点E,若BD=4,则AG的长为()A B C . D 27.(2019·山东省初三四模及以后)如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,①ABC=90°,CA①x 轴,点C 在函数y=k x(x >0)的图象上,若AB=2,则k 的值为( )A .4B .C .2 D28.(2019·天津中考模拟)在反比例函数y =13k x -的图象上有两点A (x 1,y 1),B (x 2,y 2),当0>x 1>x 2时,有y 1>y 2,则k 的取值范围是( )A .k≤13B .k<13C .k≥13D .k>1329.(2019·四川省中考模拟)如图,在菱形OABC 中,点A 的坐标为()10,0,对角线OB AC 、相交于点,160D OB AC ⋅=.双曲线()0ky x x=>经过点D ,交BC 的延长线于点E ,则过点E 的双曲线表达式为()A .20y x =B .24y x =C .28y x =D .32y x= 30.(2019·山东省中考模拟)如图,直角三角形的直角顶点在坐标原点,①OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x31.(2019·天津中考模拟)如图,在等边ABC △中,已知6AB =,N 为AB 上一点,且2AN =,BAC ∠的平分线交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM MN +的最小值是( )A .8B .10C .D .32.(2019·四川省中考模拟)如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( )A .34B .14C .124D .12533.(2019·河北省中考模拟)如图,已知l 1①l 2①l 3,相邻两条平行直线间的距离相等,若等腰直角①ABC 的三个顶点分别在这三条平行直线上,则sin a 的值是( )A .13B .617CD .1034.(2019·广东省中考模拟)如图,在①ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DGFE 是正方形.若DE =4cm ,则AC 的长为( )A .4cmB .C .8cmD .35.(2019·辽宁省中考模拟)如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A .183π-B .9πC .92πD .3π-36.(2019·河南省中考模拟)如图,在正方形ABCD 中,AB=3,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为( )A .3B .CD 37.(2019·山东省中考模拟)矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .2D 38.(2019·河南省初三期中)如图,四边形ABCD 是边长为6的正方形,点E 在边AB 上,4BE =,过点E 作//EF BC ,分别交,BD CD 于,G F 两点.若,M N 分别是,DG CE 的中点,则MN 的长为( )A .3B .CD .439.(2019·陕西省中考模拟)如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定40.(2019·湖南省中考模拟)如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16B .6π C .8π D .5π 41.(2019·福建省中考模拟)如图,AB 为①O 的直径,C ,D 为①O 上的两点,若AB =14,BC =7.则①BDC的度数是()A.15°B.30°C.45°D.60°42.(2019·江苏省初三期中)如右图,正方形ABCD的边长为2,点E是BC边上一点,以AB为直径在正方形内作半圆O,将①DCE沿DE翻折,点C刚好落在半圆O的点F处,则CE的长为( )A.23B.35C.34D.4743.(2019·陕西省中考模拟)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)44.(2019·河北省中考模拟)如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,①PEF、①PDC、①PAB的面积分别为S、1S、2S,若S=2,则1S+2S=().A .4B .6C .8D .不能确定45.(2019·杭州市建兰中学初三一模)如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE,若DE :AC=3:5,则AD AB的值为A .12BC .23D 46.(2019·山东省初三期中)如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:247.(2019·河南省中考模拟)如图,点A 在双曲线y═k x (x >0)上,过点A 作AB①x 轴,垂足为点B ,分别以点O 和点A 为圆心,大于12OA 的长为半径作弧,两弧相交于D ,E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC .若AC=1,则k 的值为( )A .2B .3225CD 48.(2019·黄冈市启黄中学中考模拟)如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE①AC,EF①AB,FD①BC ,则①DEF 的面积与①ABC 的面积之比等于( )A .1①3B .2①3CD ①349.(2019·湖北省中考模拟)如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan①BAC 的值为( )A .12B .1C D50.(2019·山东省中考模拟)如图,在①ABC 中,①ACB=90°,AC=BC=4,将①ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若AE=3,则sin①BFD 的值为( )A .13BCD .35【2020中考】选择题-能力提升50道答案解析1.(2018·湖北省中考模拟)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为( )A .180B .182C .184D .186【答案】C【解析】 由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,∵3×5﹣1=14,;5×7﹣3=32;7×9﹣5=58;∵m=13×15﹣11=184.故选C .2.(2019·丹东市第六中学中考模拟)对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =4 【答案】B【解析】 解:21M N x x ++- =()()()()1221M x N x x x -+++- =()()222M N x M N x x ++-++- ∵2272x x x ++-=()()222M N x M N x x ++-++- ∵227M N M N +⎧⎨-+⎩==, 解得:13M N -⎧⎨=⎩=, 故选:B .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减法则,并根据已知等式得出关于M 、N 的方程组.3.(2019·福建省中考模拟)已知(2x ﹣3)7=a 0x 7+a 1x 6+a 2x 5+……+a 6x +a 7,则a 0+a 1+a 2+……+a 7=( ) A .1B .﹣1C .2D .0【答案】B【解析】解:当x =1时,(2﹣3)7=a 0+a 1+a 2+……+a 6+a 7,则a 0+a 1+a 2+……+a 7=﹣1,故选:B .【点睛】本题主要考查方程的解,关键在于x =1的确定,要使出现所以系数之和,则必须使得x =1.4.(2019·普宁市燎原中学中考模拟)关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2,由以上可得不等式组的解集为:a ﹣2<x ≤4, 因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a的不等式是解答本题的关键.5.(2019·山东省初三二模)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过第( )象限.A.四B.三C.二D.一【答案】D【解析】【分析】【详解】∵一元二次方程x2 - 2x - m = 0无实数根∵∵=4+4m<0,即m<-1∵一次函数的比例系数m+1<0,图像经过二四象限截距m-1<0,则图象与y轴交与负半轴,图像过第三象限∵一次函数y =(m+1)x + m - 1的图像不经过第一象限,故选D.6.(2019·黑龙江省中考模拟)若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣34【答案】B 【解析】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m m x x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32. 故答案选B .7.(2019·重庆中考模拟)若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y k y ++的解为正数,则符合条件的所有整数k 的积为( ) A .2B .0C .﹣3D .﹣6【答案】A【解析】 解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k , ∵不等式组只有4个整数解,∵0≤﹣3k <1, 解得:﹣3<k ≤0,解分式方程1k y -+1=1y k y ++得:y =﹣2k +1, ∵分式方程的解为正数,∵﹣2k +1>0且﹣2k +1≠1,解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2,故选A .【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况. 8.(2018·湖北省中考模拟)关于x 的一元二次方程x 2+(a 2﹣2a )x+a ﹣1=0的两个实数根互为相反数,则a 的值为( )A .2B .0C .1D .2或0【答案】B【解析】设方程的两根为x 1,x 2,根据题意得x 1+x 2=0,所以a 2-2a=0,解得a=0或a=2,当a=2时,方程化为x 2+1=0,∵=-4<0,故a=2舍去,所以a 的值为0.故选B .9.(2019·江西省中考模拟)已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤7【解析】解:解不等式3x﹣m+1>0,得:x>1 3m-,∵不等式有最小整数解2,∵1≤13m-<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.10.(2019·商水县希望中学初三月考)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.18【答案】B【解析】分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=03,3,9不能组成三角形,不符合题意舍去; (2)当3为底时,则其他两边相等,即∵=0, 此时:144-4k=0 解得:k=36将k=36代入原方程, 得:x 2-12x+36=0 解得:x=63,6,6能够组成三角形,符合题意. 故k 的值为36. 故选B .考点:1.等腰三角形的性质;2.一元二次方程的解. 11.(2019·四川省中考模拟)若关于x 的方程233x mx x +=++无解,则m 的值为( ) A .1m = B .1m =-C .2m =D .2m =-【答案】B 【解析】解:方程去分母得,x 2m +=, 则x m 2=-,当分母x 30+=即x 3=-时,方程无解, 所以m 23-=-即m 1=-时方程无解, 故选B .本题考查了分式方程无解的条件,是需要识记的内容.分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0.12.(2019·乐山市第七中学初三月考)若数a使关于x的不等式组232x ax a->⎧⎨-<-⎩无解,且使关于x的分式方程5355axx x-=---有正整数解,则满足条件的整数a的值之积为()A.28B.﹣4C.4D.﹣2【答案】B【解析】不等式组整理得:232x ax a>+⎧⎨<-⎩,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=103a+且x≠5,即a+3=1,5,10,解得:a=﹣2,2,7.综上,满足条件a的为﹣2,2,之积为﹣4,故选B.【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.13.(2019·福建省初三二模)若关于x的一元一次不等式组213(2)x xx m--⎧⎨⎩><的解集是x<5,则m的取值范围是()A.m≥5B.m>5C.m≤5D.m<5【答案】A【解析】解不等式2x-1>3(x-2)可得x<5,然后由不等式组的解集为x<5,可知m≥5.14.(2019·浙江省初二期中)已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <32【答案】B 【解析】解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5, ∵不等式组的整数解有5个, ∵﹣4≤a <﹣3, 故选B .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a 的取值范围.15.(2019·河北省初二期中)关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( )A .6m <-且2m ≠B .6m >且2m ≠C .6m <且2m ≠-D .6m <且2m ≠【答案】D 【解析】 2322x m mx x++=-- 去分母,得 x+m+2m=3(x -2)解得x=62m -+ ∵关于x 的分式方程2322x m mx x++=--的解为正实数 ∵x -2≠0,x >0 即62m -+≠2,62m -+>0, 解得m≠2且m <6 故选D.点睛:此题主要考查了分式方程的解和分式方程有解的条件,用含m 的式子表示x 解分式方程,构造不等式组是解题关键.16.(2019·山东省初三一模)对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程Max {x ,-x }=21x x-的解为( )A .1B .2C .或1D .-1或1【答案】D 【解析】当x >−x ,即x >0时,方程化为21x x x-=, 去分母得:2210x x -+=, 解得:1x =,当x <−x ,即x <0时,方程化为21x x x--=,去分母得:2210,x x +-= 即1x ==-解得:()12101x x =->=-舍去,综上,所求方程的解为1-,1,故选D.17.(2019·全国初三单元测试)若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20B.2C.2或﹣20D.1 2【答案】C【解析】解:∵当a=b时,原式=2;∵当a≠b时,根据实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,即可看成a、b是方程x2﹣8x+5=0的解,∵a+b=8,ab=5.则1111b aa b--+--=221111b aa b-+---()()()()=22221a b ab a bab a b+--++-++()()(),把a+b=8,ab=5代入得:=2810162 581--+-+=﹣20.综上可得:1111b aa b--+--的值为2或﹣20.故选C.【点睛】本题考查了根与系数的关系,难度适中,关键是把a、b是方程x2﹣8x+5=0的解,然后根据根与系数的关系18.(2017·重庆中考模拟)关于x 的方程2111ax x x -=++的解为非正数,且关于x 的不等式组22533a x x +⎧⎪+⎨⎪⎩无解,那么满足条件的所有整数a 的和是( ) A .﹣19 B .﹣15C .﹣13D .﹣9【答案】C 【解析】解:分式方程去分母得:ax ﹣x ﹣1=2,整理得:(a ﹣1)x =3,由分式方程的解为非正数,得到 31a -≤0,且31a -≠﹣1,解得:a <1且a ≠﹣2. 不等式组整理得:224a x x -⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a -<4,解得:a >﹣6,∵满足题意a 的范围为﹣6<a <1,且a ≠﹣2,即整数a 的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a 的和是﹣13,故选C .点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 19.(2019·陕西省中考模拟)如图,一次函数y 1=k 1x +b 1与反比例函数22k y x=的图象交于点A (1,3),B (3,1)两点,若y 1<y 2,则x 的取值范围是( )A .x <1B .x <3C .0<x <3D .x >3或0<x <1【答案】D解:一次函数图象位于反比例函数图象的下方,由图象可得当x>3或0<x<1时,y1<y2;故选D.【点睛】本题考查了反比例函数与一次函数的交点问题,一次函数图象位于反比例函数图象的下方是解题关键.20.(2019·江苏省中考模拟)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0)C.()D.(﹣1,1)【答案】D【解析】分析:根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.详解:∵四边形OABC是正方形,且OA=1,∵B(1,1),连接OB,由勾股定理得:由旋转得:OB=OB1=OB2=OB3,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∵AOB=∵BOB1=∵B1OB2=…=45°,∵B1(0),B2(-1,1),B3(,0),…,发现是8次一循环,所以2018÷8=252 (2)∵点B2018的坐标为(-1,1)故选:D.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法21.(2019·湖北省中考模拟)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;①b2﹣4ac>0;①9a﹣3b+c=0;①若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;①5a ﹣2b+c <0.其中正确的个数有( )A .2B .3C .4D .5【答案】B 【解析】∵抛物线对称轴x=-1,经过(1,0), ∵-2ba=-1,a+b+c=0, ∵b=2a ,c=-3a , ∵a >0, ∵b >0,c <0, ∵abc <0,故∵错误,∵抛物线对称轴x=-1,经过(1,0), 可知抛物线与x 轴还有另外一个交点(-3,0) ∵抛物线与x 轴有两个交点, ∵b 2-4ac >0,故∵正确,∵抛物线与x轴交于(-3,0),∵9a-3b+c=0,故∵正确,∵点(-0.5,y1),(-2,y2)均在抛物线上,(-0.5,y1)关于对称轴的对称点为(-1.5,y1)(-1.5,y1),(-2,y2)均在抛物线上,且在对称轴左侧,-1.5>-2,则y1<y2;故∵错误,∵5a-2b+c=5a-4a-3a=-2a<0,故∵正确,故选B.【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(2019·新乡市第一中学初三月考)如图,直线l和双曲线y=kx(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设①AOC的面积为S1、①BOD的面积为S2、①POE的面积为S3,则( )A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3【答案】D【解析】根据双曲线的解析式可得xy k =所以可得S 1=S 2=12k 设OP 与双曲线的交点为P 1,过P 1作x 轴的垂线,垂足为M因此11212OP M S S S k ∆=== 而图象可得13OP M S S ∆<所以S 1=S 2<S 3故选D【点睛】本题主要考查双曲线的意义,关键在于xy k =,它代表的就是双曲线下方的矩形的面积.23.(2019·安徽省初三月考)如图,①OAC 和①BAD 都是等腰直角三角形,①ACO=①ADB=90°,反比例函数y=6x在第一象限的图象经过点B ,则①OAC 与①BAD 的面积之差S ①OAC ﹣S ①BAD 为( )A .36B .12C .6D .3【答案】D设∵OAC和∵BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.解:设∵OAC和∵BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数6yx的第一象限图象上,∵(a+b)×(a﹣b)=a2﹣b2=6.∵S∵OAC﹣S∵BAD=12a2﹣12b2=12(a2﹣b2)=12×6=3.故选D.点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.24.(2019·山东省中考模拟)如图,在直角坐标系中,点A在函数y=4x(x>0)的图象上,AB①x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=4x(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2B C.4D.【答案】C设A(a,4a),可求出D(2a,2a),∵AB∵CD,∵S四边形ACBD=12AB∙CD=12×2a×4a=4,故选:C.【点睛】本题主要考查了反比例函数系数k的几何意义以及线段垂直平分线的性质,解题的关键是设出点A和点B 的坐标.25.(2019·山东省青岛第二十六中学中考模拟)如图,点A(﹣2,0),B(0,1),以线段AB为边在第二象限作矩形ABCD,双曲线y=kx(k<0)过点D,连接BD,若四边形OADB的面积为6,则k的值是()A.﹣9B.﹣12C.﹣16D.﹣18【答案】C【解析】解:∵点A(-2,0),B(0,1),∵OA=2,OB=1,过D作DM∵x轴于M,则∵DMA=90°,∵四边形ABCD是矩形,∵∵DAB=90°,∵∵DMA=∵DAB=∵AOB=90°,∵∵DAM+∵BAO=90°,∵DAM+∵ADM=90°,∵∵ADM=∵BAO,∵∵DMA∵∵AOB,∵21DM AOAM BO===2,即DM=2MA,设AM=x,则DM=2x,∵四边形OADB的面积为6,∵S梯形DMOB-S∵DMA=6,∵12(1+2x)(x+2)-12•2x•x=6,解得:x=2,则AM=2,OM=4,DM=4,即D点的坐标为(-4,4),∵k=-4×4=-16,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义、三角形的面积、相似三角形的性质和判定等知识点,能求出DM=2AM是解题的关键.26.(2019·江苏省初三二模)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF①AB交AC于点G,反比例函数y x>0)经过线段DC的中点E,若BD=4,则AG的长为()A B C . D +1【答案】A【解析】如图,∵菱形ABCD 中,BD=4,点E 是DC 边的中点,∵OD=2,点E 的纵坐标为1,又∵点E 在反比例函数y =上,∵点E ,∵OC=AC=∵在Rt∵OCD 中,由勾股定理可得CD=4,∵AD=AB=BD=4,∵∵ABD 是等边三角形,∵AF=2,DF=由已知条件易证∵ADF∵∵GCD ,∵ADDFGC CD =,即44GC =,∵GC=3,∵AG=AC-GC==故选A.27.(2019·山东省初三四模及以后)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,①ABC=90°,CA①x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4B.C.2D 【答案】A【解析】作BD∵AC于D,如图,∵∵ABC为等腰直角三角形,,,∵AC∵x轴,∵C,),把C ,2)代入y=k x得=4, 故选A .【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=k x (k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k 是解题的关键.28.(2019·天津中考模拟)在反比例函数y =13k x -的图象上有两点A (x 1,y 1),B (x 2,y 2),当0>x 1>x 2时,有y 1>y 2,则k 的取值范围是( )A .k≤13B .k<13C .k≥13D .k>13【答案】D【解析】∵反比例函数y=13k x -的图象上有两点A (x 1,y 1),B (x 2,y 2),当0>x 1>x 2时,有y 1>y 2, ∵1-3k <0,解得,k >13, 故选D .【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.29.(2019·四川省中考模拟)如图,在菱形OABC 中,点A 的坐标为()10,0,对角线OB AC 、相交于点,160D OB AC ⋅=.双曲线()0ky x x=>经过点D ,交BC 的延长线于点E ,则过点E 的双曲线表达式为()A .20y x = B .24y x = C .28y x = D .32y x =【答案】D【解析】过点C 作CF∵x 轴于点F ,∵OB•AC =160,A 点的坐标为(10,0),∵S 菱形OABC =OA•CF =12OB•AC =12×160=80,菱形OABC 的边长为10,∵CF =8,在Rt∵OCF 中,∵OC =10,CF =8,∵OF =6,∵C (6,8),∵点D 是线段AC 的中点,∵D 点坐标为(1062+,82),即(8,4),∵双曲线y =kx (x >0)经过D 点,∵4=8k ,即k =32, ∵双曲线的解析式为:y =32x (x >0),故选:D .【点睛】本题考查了菱形的性质、反比例函数图象上点的坐标特征以及勾股定理,结合菱形的性质以及面积公式找出点的坐标,再利用反比例函数图象上点的坐标特征求出反比例函数的解析式是关键.30.(2019·山东省中考模拟)如图,直角三角形的直角顶点在坐标原点,①OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x【答案】C【解析】过点B 作BC ∵x 轴于点C ,过点A 作AD ∵x 轴于点D ,∵∵BOA =90°,∵∵BOC +∵AOD =90°,∵∵AOD +∵OAD =90°,∵∵BOC =∵OAD ,又∵∵BCO =∵ADO =90°,∵∵BCO ∵∵ODA , ∵BO AO =tan∵13BCO AOD SS =, ∵12×AD ×DO =12xy =3, ∵S ∵BCO =12×BC ×CO =13S ∵AOD =1, ∵经过点B 的反比例函数图象在第二象限,故反比例函数解析式为:y =﹣2x. 故选C .【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S ∵AOD =2是解题关键. 31.(2019·天津中考模拟)如图,在等边ABC △中,已知6AB =,N 为AB 上一点,且2AN =,BAC ∠的平分线交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM MN +的最小值是( )A.8B.10C.D.【答案】D【解析】连接CN,与AD交于点M,取BN中点E,连接DE.∵AB=AC,AD是∵BAC的角平分线,∵AD是BC的垂直平分线,∵BM=CM,∵CN就是BM+MN的最小值.∵等边∵ABC的边长为6,AN=2,∵BN=AC-AN=6-2=4,∵BE=EN=AN=2,又∵AD是BC边上的中线,∵DE是∵BCN的中位线,∵CN=2DE,CN∵DE,又∵N为AE的中点,∵M为AD的中点,∵MN是∵ADE的中位线,∵DE=2MN ,∵CN=2DE=4MN , ∵CM=34CN .在直角∵CDM 中,CD=12BC=3,DM=12∵CN=43CM= ∵BM+MN=CN ,∵BM+MN 的最小值为故选D.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.32.(2019·四川省中考模拟)如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( )A .34B .14C .124D .125【答案】D【解析】解:∵AH=6,BH=8,勾股定理得AB=10,∵HG=8-6=2,S∵AHB=24,∵S正方形GHEF =4,四个直角三角形的面积=96,∵针扎在小正方形GHEF 部分的概率是1004=125故选D.【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.33.(2019·河北省中考模拟)如图,已知l 1①l 2①l 3,相邻两条平行直线间的距离相等,若等腰直角①ABC 的三个顶点分别在这三条平行直线上,则sin a 的值是( )A .13B .617CD .10【答案】D【解析】如图,分别过点A ,B 作AE∵l 1,BF∵l 1,垂足分别为E ,F ,BF 与l 3交于点D ,则易由AAS 证明∵AEC∵∵CFB .设平行线间距离为d =1,则CE =BF =1,AE =CF =2,AC =BC AB .∵BD sin sin BADAB 10α=∠===.故选D . 34.(2019·广东省中考模拟)如图,在①ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DGFE 是正方形.若DE =4cm ,则AC 的长为( )A .4cmB .C .8cmD .【答案】D【解析】解:∵点D 、E 分别是边AB 、AC 的中点,∵DE =12BC , ∵DE =4cm ,∵BC =8cm ,∵AB =AC ,四边形DEFG 是正方形,∵DG =EF ,BD =CE ,在Rt∵BDG 和Rt∵CEF ,BD CE DG EF =⎧⎨=⎩, ∵Rt∵BDG ∵Rt∵CEF (HL ),∵BG =CF =2,∵EC =∵AC =.故选D .【点睛】本题考查了正方形的性质、相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.35.(2019·辽宁省中考模拟)如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A .183π-B .9πC .92πD .3π【答案】B【解析】 ∵四边形ABCD 是菱形,∵DAB=60°,∵AD=AB=6,∵ADC=180°-60°=120°,∵DF 是菱形的高,∵DF∵AB ,∵阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积9π. 故选B .【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键. 36.(2019·河南省中考模拟)如图,在正方形ABCD 中,AB=3,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为( )。
2020届中考数学基础题提分讲练专题24 计算能力提升专题卷(时间:90分钟 满分120分)一、选择题(每小题3分,共36分)1.(2019·4x -x 的取值范围是( ) A .x≥4B .x >4C .x≤4D .x <4【答案】D【解析】 4x-4﹣x >0, 解得:x <4即x 的取值范围是:x <4故选D .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.(2019·湖北初二期中)已知25523y x x =--,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】 由25523y x x =--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .3.(2019·四川中考真题)若:3:4a b =,且14a b +=,则2a b -的值是( )A .4B .2C .20D .14【答案】A【解析】解:由a :b =3:4:3:4a b =知34b a =, 所以43ab =.所以由14a b +=得到:4143aa +=,解得6a =.所以8b =.所以22684a b -=⨯-=.故选:A .【点睛】 考查了比例的性质,内项之积等于外项之积.若acb d =,则ad bc =.4.(2019·湖北中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是()A .5-B .5C .6-D .6【答案】C【解析】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =, 把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x yx y ---===-+,故选C.【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键.5.(2019·甘肃中考真题)1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( ) A .2-B .3-C .4D .6- 【答案】A【解析】将x =1代入方程x 2+ax +2b =0,得a +2b =-1,2a +4b =2(a +2b )=2×(-1)=-2.故选A.【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键6.(2019·湖南中考真题)下列运算正确的是( )A 347=B 1232=C 2(-2)2=-D 142136= 【答案】D【解析】A 32,所以A 选项错误;B 、原式=23B 选项错误;C 、原式=2,所以C 选项错误;D 14621366=⨯,所以D 选项正确. 故选D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.(2019·重庆中考真题)估计(123+623 ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】C【解析】解:(123+6232324 又因为424 5所以6<247故答案为C.【点睛】本题考查了二次根式的化简,其中明确化简方向和正确的估值是解题的关键.8.(2019·陕西初三期中)关于x 的一元二次方程2(2)210m x x -++=有实数根,则m 的取值范围是( )A .3m ≤B .3m <C .3m <且2m ≠D .3m ≤且2m ≠【答案】D【解析】 ∵关于x 的一元二次方程2(2)210m x x -++=有实数根,∴20m -≠且△≥0,即224(2)10m --⨯≥,解得3m ≤,∴m 的取值范围是3m ≤且2m ≠.故选D .考点:1.根的判别式;2.一元二次方程的定义.9.(2019·湖北中考真题)若方程2240x x --=的两个实数根为α,β,则α2+β2的值为( ) A .12B .10C .4D .-4【答案】A【解析】解:Q 方程2240x x --=的两个实数根为,αβ, 2αβ∴+=,4αβ=-,()22224812αβαβαβ∴+=+-=+=;故选:A .【点睛】本题考查一元二次方程根与系数的关系;熟练掌握韦达定理,灵活运用完全平方公式是解题的关键. 10.(2019·重庆市万州第二高级中学初三期中)在△ABC 中,若21cos (1tan )2A B -+-=0,则∠C 的度数是( )A .45°B .60°C .75°D .105° 【答案】C【解析】由题意,得 cosA=12,tanB=1, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C .11.(2019·浙江中考真题)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( )A .16B .13C .12D .23【答案】A【解析】解:从中任意抽取1张,是“红桃”的概率为16, 故选A .【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 12.(2019·山东初三期中)若方程2115525m x x x +=-+-有增根,那么m 的值是( ) A .5B .5或5-C .10D .10或10- 【答案】D【解析】关于x 的方程2115525m x x x +=-+-去分母, 得x+5+x-5=m,即2x=m 因为方程2115525m x x x +=-+-有增根,所以x =5或−5当x =5时,m=2x=10;当x =−5时,m=2x=-10;所以m 的值为10或−10,故选D.【点睛】此题主要考查了分式方程的增根,在增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得字母参数的值.二、填空题(每小题3分,共18分)13.(2019·天津中考真题)计算31)(31)的结果等于_____________.【答案】2【解析】解:原式=3﹣1=2.故答案为2.【点睛】本题考查了二次根式的混合运算,熟记平方差公式是解题的关键.14.(2019·山东初三期末)已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n m m n+= . 【答案】225-. 【解析】由m n ≠时,得到m ,n 是方程23650x x +-=的两个不等的根,根据根与系数的关系进行求解. 试题解析:∵m n ≠时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴2m n +=,53mn =-. ∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为225-. 考点:根与系数的关系.15.(2019·全国初二单元测试)已知22m =, 22n =,则代数式223m n mn ++的值为__________________【答案】32 ()22231832m n mn m n mn ++=++==16.(2019·江苏初三) 一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+cosα•sinβ;sin (α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin (60°+30°)=sin60°•cos30°+cos60°•sin30°=33112222⨯+⨯=1.类似地,可以求得sin15°的值是_______. 【答案】624. 【解析】 sin15°=sin (60°﹣45°)=sin60°•cos45°﹣3212222-⨯62-62- 考点:特殊角的三角函数值;新定义. 17.(2019·四川初三)已知654a b c ==,且26a b c +-=,则a 的值为__________. 【答案】12【解析】∵654a b c ==, ∴设a=6x ,b=5x ,c=4x ,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=12.故答案为12.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.18.(2019·浙江初三)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【答案】20【解析】设原来红球个数为x 个, 则有1010x +=1030, 解得,x =20,经检验x =20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.三、解答题(每小题6分,共12分)19.(2019·江苏中考真题)计算:012sin 364tan 452⎛⎫-+︒-︒ ⎪⎝⎭. 【答案】2【解析】根据“负数的绝对值是它的相反数”可得2=2-,根据“()010aa =≠”可得01sin 36=12⎛⎫︒- ⎪⎝⎭,根据正切公式可得tan 45=1︒,则原式21212=+-+=.【点睛】本题综合考查绝对值的计算公式、正余弦公式、幂的计算公式.20.(2019·江苏中考真题)解方程(1)2250x x --= (2)1421x x =-+ 【答案】(1)1216,16x x ==(2)3x =是方程的解.【解析】(1)x 2-2x=5,x 2-2x+1=5+1,(x-1)2=6, 6, ∴1216,16x x ==(2)方程两边同时乘以(x-2)(x+1),得x+1=4(x-2),解得:x=3,检验:当x=3时,(x-2)(x+1)≠0,所以x=3是原方程的解.【点睛】本题考查了解一元二次方程,解分式方程,熟练掌握相关解法是解题的关键.解分式方程时注意要进行检验.四、解答题(每小题8分,共16分)21.(2019·四川中考真题)先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =. 2.【解析】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭. 将21x =22=【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.22.(2019·宁波华茂国际学校初三期末)(1)已知a ,b ,c ,d 是成比例线段,其中a =2cm ,b =3cm ,d =6cm ,求线段c 的长;(2)已知234a b c ==,且a +b ﹣5c =15,求c 的值. 【答案】(1)4;(2)-4【解析】(1)∵a ,b ,c ,d 是成比例线段 ∴a cb d =, 即236c =,∴c=4;(2)设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∵a+b-5c=15∴2k+3k-20k=15解得:k=-1∴c=-4.【点睛】此题考查比例线段,解题关键是理解比例线段的概念,列出比例式,用到的知识点是比例的基本性质.五、解答题(每小题9分,共18分)23.(2019·湖北初三期末)已知关于x 的方程x 2-(2k -1)x +k 2-2k +3=0有两个不相等的实数根.(1)求实数k 的取值范围.(2)设方程的两个实数根分别为x 1,x 2,是否存在这样的实数k ,使得|x 1|-|x 2|5这样的k 值;若不存在,请说明理由.【答案】(1) k >114;(2)4. 【解析】解:(1)由题意知△>0,∴[﹣(2k ﹣1)]2﹣4×1×(k 2﹣2k +2)>0,整理得:4k ﹣7>0,解得:k 74>; (2)由题意知x 1+x 2=2k ﹣1,x 1x 2=k 2﹣2k +2=(k +1)2+1>0,∴x 1,x 2同号.∵x 1+x 2=2k ﹣1>7214⨯-=52,∴x 1>0,x 2>0. ∵|x 1|﹣|x 2|5=∴x 1﹣x 25=∴x 12﹣2x 1x 2+x 22=5,即(x 1+x 2)2﹣4x 1x 2=5,代入得:(2k ﹣1)2﹣4(k 2﹣2k +2)=5,整理,得:4k ﹣12=0,解得:k =3.【点睛】本题考查了根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.24.(2019·南通市启秀中学初二月考)若x ,y 为实数,且y 14x -41x -12.求xy y x ++2-xy y x +-2的值. 2【解析】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12. 又∵ x y y x ++2-x y y x +-22x y y x ⎛⎫+ ⎪ ⎪⎝⎭2x y y x ⎛⎫- ⎪ ⎪⎝⎭=x y y x -x y y x ∵x =14,y =12,∴ x y <y x . ∴ x y y x y x x y +x y当x =14,y =12时,原式=14122. 【点睛】 a a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.六、解答题(每小题10分,共20分)25.(2019·山东初三期中)有三张正面分别写有数字-1,1,2的卡片,它们除数字不同无其它差别,现将这三张卡片背面朝上洗匀后.(1)随机抽取一张,求抽到数字2的概率;(2)先随机抽取一张,以其正面数字作为k 值,将卡片放回再随机抽一张,以其正面的数字作为b 值,请你用恰当的方法表示所有可能的结果,并求出直线y=kx+b 的图像不经过第四象限的概率.【答案】(1)13;(2)49【解析】(1)∵有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,∴P(抽到数字2)=13(2)列表:b k -1 1 2-1 (-1,-1) (1,-1) (2,-1)1 (-1,1) (1,1) (2,1)2 (-1,2) (1,2) (2,2)可能出现的结果有9种,使得直线y=kx+b的图像不经过第四象限的结果有4种,既(1,1),(2,1),(1,2),(2,2)所以P(图像不经过第四象限)=4 9【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.26.(2019·江苏初三期中)对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n 为这个代数式的不变值.例如:对于代数式x2,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=0.(1)代数式x2﹣2的不变值是,A=.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=0,求b的值.【答案】(1)﹣1和2;3;(2)见解析;(3)﹣3或1【解析】解:(1)依题意,得:x2﹣2=x,即x2﹣x﹣2=0,解得:x1=﹣1,x2=2,∴A=2﹣(﹣1)=3.故答案为:﹣1和2;3.(2)依题意,得:3x2 +1=x,∴3x2﹣x+1=0,∵△=(﹣1)2﹣4×3×1=﹣11<0,∴该方程无解,即代数式3x2+1没有不变值.(3)依题意,得:方程x2﹣bx+1= x即x2﹣(b+1)x+1=0有两个相等的实数根,∴△=[﹣(b+1)]2﹣4×1×1=0,∴b1=﹣3,b2=1.答:b的值为﹣3或1.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.。
专题28 投影与视图最新中考真题与模拟精练1.(2022·安徽·定远县育才学校一模)学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6 m 的小明(AB )的影子BC 长是3 m,而小颖(EH )刚好在路灯灯泡的正下方H 点,并测得HB=6 m . (1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 的中点B 1处时,其影子长为B 1C 1;当小明继续走剩下路程的13到B 2处时,其影子长为B 2C 2;当小明继续走剩下路程的14到B 3处,…,按此规律继续走下去,当小明走剩下路程的11n +到Bn 处时,其影子BnCn 的长为 m .(直接用含n 的代数式表示)【答案】(1)详见解析;(2)路灯灯泡的垂直高度GH 是4.8 m ;(3)BnCn=31n +. 【分析】(1)确定灯泡的位置,可以利用光线可逆可以画出;(2)要求垂直高度GH 可以把这个问题转化成相似三角形的问题,图中△ABC△△GHC 由它们对应成比例可以求出GH ;(3)的方法和(2)一样也是利用三角形相似,对应相等成比例可以求出,然后找出规律. 【详解】解:(1)形成影子的光线如图所示,路灯灯泡所在的位置为点G.(2)根据题意,得△ABC △△GHC ,∴AB BC GH HC =,∴1.6363GH =+,解得GH=4.8 m . 答:路灯灯泡的垂直高度GH 是4.8 m .(3)提示:同理可得△A 1B 1C 1△△GHC 1,∴11111A B B C GH HC=, 设B 1C 1长为x m,则1.64.83xx =+, 解得x=1.5,即B 1C 1=1.5 m . 同理22221.64.82B C B C =+,解得B 2C 2=1 m,∴1.614.861n n n n B C B C n =+⨯+,解得BnCn=31n +. 【点睛】本题主要考查相似三角形的应用及中心投影,只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例解题.2.(2019·江苏扬州·中考真题)如图,平面内的两条直线l 1、l 2,点A 、B 在直线l 2上,过点A 、B 两点分别作直线l 1的垂线,垂足分别为A 1、B 1,我们把线段A 1B 1叫做线段AB 在直线l 2上的正投影,其长度可记作T (AB ,CD )或T (AB ,l 2),特别地,线段AC 在直线l 2上的正投影就是线段A 1C ,请依据上述定义解决如下问题.(1)如图1,在锐角△ABC 中,AB=5,T (AC ,AB )=3,则T (BC ,AB )= ;(2)如图2,在Rt△ABC 中,△ACB=90°,T (AC ,AB )=4,T (BC ,AB )=9,求△ABC 的面积; (3)如图3,在钝角△ABC 中,△A=60°,点D 在AB 边上,△ACD=90°,T (AD ,AC )=2,T (BC ,AB )=6,求T (BC ,CD ).【答案】(1)2 ;(2)△ABC 的面积=39;(3)T (BC ,CD )=732【分析】(1)如图1,过C 作CH△AB ,根据正投影的定义求出BH 的长即可;(2)如图2,过点C 作CH△AB 于H ,由正投影的定义可知AH=4,BH=9,再根据相似三角形的性质求出CH 的长即可解决问题;(3)如图3,过C 作CH△AB 于H ,过B 作BK△CD 于K ,求出CD 、DK 即可得答案. 【详解】(1)如图1,过C 作CH△AB ,垂足为H , △T (AC ,AB)=3, △AH=3, △AB=5, △BH=AB-AH=2, △T (BC ,AB)=BH=2, 故答案为2;(2)如图2,过点C 作CH△AB 于H , 则△AHC=△CHB=90°, △△B+△HCB=90°, △△ACB=90°, △△B+△A=90°△△A=△HCB,△△ACH△△CBH,△CH:BH=AH:CH,△CH2=AH·BH,△T(AC,AB)=4,T(BC,AB)=9,△AH=4,BH=9,△AB=AH+BH=13,CH=6,△S△ABC=(AB·CH)÷2=13×6÷2=39;(3)如图3,过C作CH△AB于H,过B作BK△CD于K,△△ACD=90°,T(AD,AC)=2,△AC=2,△△A=60°,△△ADC=△BDK=30°,△CD=AC·tan60°=23,AD=2AC=4,AH=12AC=1,△DH=4-1=3,△T(BC,AB)=6,CH△AB,△BH=6,△DB=BH-DH=3,在Rt△BDK中,△K=90°,BD=3,△BDK=30°,△DK=BD·cos30°=332,△T(BC,CD)=CK=CD+DK=3+332=73 2.【点睛】本题是三角形综合题,考查了正投影的定义,解直角三角形,相似三角形的判定与性质等知识,理解题意,正确添加辅助线,构建直角三角形是解题问题的关键. 3.(2020·四川攀枝花·中考真题)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王诗嬑观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i=,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm,则高圆柱的高度为多少cm?【答案】(1)120cm;(2)正确;(3)280cm【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)根据落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,结合横截面分析可得;(3)过点F作FG△CE于点G,设FG=4m,CG=3m,利用勾股定理求出CG和FG,得到BG,过点F作FH△AB于点H,再根据同一时刻身高与影长的比例,求出AH的长度,即可得到AB.【详解】解:(1)设王诗嬑的影长为xcm,由题意可得:90150 72x=,解得:x=120,经检验:x=120是分式方程的解,王诗嬑的的影子长为120cm;(2)正确,因为高圆柱在地面的影子与MN垂直,所以太阳光的光线与MN垂直,则在斜坡上的影子也与MN垂直,则过斜坡上的影子的横截面与MN垂直,而横截面与地面垂直,高圆柱也与地面垂直,△高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;(3)如图,AB为高圆柱,AF为太阳光,△CDE为斜坡,CF为圆柱在斜坡上的影子,过点F作FG△CE于点G,由题意可得:BC=100,CF=100,△斜坡坡度1:0.75i=,△140.753DE FG CE CG ===, △设FG=4m ,CG=3m ,在△CFG 中,()()22243100m m +=,解得:m=20, △CG=60,FG=80, △BG=BC+CG=160, 过点F 作FH△AB 于点H ,△同一时刻,90cm 矮圆柱的影子落在地面上,其长为72cm , FG△BE ,AB△BE ,FH△AB , 可知四边形HBGF 为矩形, △9072AH AH HF BG==, △AH=90901607272BG ⨯=⨯=200,△AB=AH+BH=AH+FG=200+80=280, 故高圆柱的高度为280cm.【点睛】本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解题的关键是理解实际物体与影长之间的关系解决问题,属于中考常考题型.4.(2011·全国·中考模拟)如图所给的A 、B 、C 三个几何体中,按箭头所示的方向为它们的正面,设A 、B 、C 三个几何体的主视图分别是A 1、B 1、C 1;左视图分别是A 2、B 2、C 2;俯视图分别是A3、B3、C3.(1)请你分别写出A 1、A 2、A 3、B 1、B 2、B 3、C 1、C 2、C 3图形的名称;(2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A 1、A 2、A 3的三张卡片放在甲口袋中,画有B 1、B 2、B 3的三张卡片放在乙口袋中,画有C 1、C 2、C 3的三张卡片放在丙口袋中,然后由小亮随机从这三个口袋中分别抽取一张卡片. ①画出树状图,求出小亮随机抽取的三张卡片上的图形名称都相同的概率;②小亮和小刚做游戏,游戏规则规定:在小亮随机抽取的三张卡片中只有两张卡片上的图形名称相同时,小刚获胜;三张卡片上的图形名称完全不同时,小亮获胜.这个游戏对双方公平吗?为什么?【答案】(1)见解析;(2)①49;②不公平,详见解析.【分析】(1)通过观察几何体,直接写出它们三种视图的名称则可; (2)按照题意画出树状图,获胜的概率相同游戏就公平.【详解】(1)由已知可得A 1、A 2是矩形,A 3是圆;B 1、B 2、B 3都是矩形;C 1是三角形,C 2、C 3是矩形;(2)①补全树状图如下:由树状图可知,共有27种等可能结果,其中三张卡片上的图形名称都相同的结果有12种,△三张卡片上的图形名称都相同的概率是124=279;②游戏对双方不公平.由①可知,三张卡片中只有两张卡片上的图形名称相同的概率是124=279,即P (小刚获胜)=49,三张卡片上的图形名称完全不同的概率是31=279,即P (小亮获胜)=19,△49>19, △这个游戏对双方不公平.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.还考查了通过画树状图求随机事件的概率.用到的知识点为:三视图分别是从物体的正面,左面,上面看得到的图形;概率=所求情况数与总情况数之比.5.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO △OD ,EF △FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.【分析】证明△AOD △△EFG ,利用相似比计算出AO 的长,再证明△BOC △△AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:△AD △EG , △△ADO =△EGF . 又△△AOD =△EFG =90°, △△AOD △△EFG . △AO ODEF FG=. △ 1.820152.4EF OD AO FG ⋅⨯===. 同理,△BOC △△AOD . △BO OC AO OD=. △15161220AO OC BO OD ⋅⨯===. △AB =OA −OB =3(米). △旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.6.(2022·江西·模拟预测)如图1所示的是一户外遮阳伞支架张开的状态,图1可抽象成图2,在图2中,点A 可在BD 上滑动,当伞完全折叠成图3时,伞的下端点F 落在F '处,点C 落在C '处,AE EF =,90cm AC BC CE ===,70cm DF '=.(1)BD 的长为______. (2)如图2,当54cm AB =时.①求ACB ∠的度数;(参考数据:sin17.50.30︒≈,tan16.70.30︒≈,sin36.90.60︒≈,tan31.00.60︒≈)②求伞能遮雨的面积(伞的正投影可以看作一个圆). 【答案】(1)250cm (2)①35°;②29484π【分析】(1)根据题意可得BD BF F D ''=+,当伞完全折叠成图3时,伞的下端点F 落在F '处,点C 落在C '处,可得BF EF AC CE '==+,代入数据求解即可;(2)①过点C 作CG AG ⊥,根据BC AC =,可得127cm 2AG GB ACG ACB ==∠=∠,,根据sin 0.3ACG ∠=,sin17.50.30︒≈,即可求解;②根据题意可知CG AF ∥,则17.5EAH ∠=︒,根据sin17.5EH AE =︒⋅求得EH ,根据勾股定理可得222AH AE EH =-,根据正投影是一个圆,根据圆的面积公式求解即可. (1)解:△BD BF F D ''=+当伞完全折叠成图3时,伞的下端点F 落在F '处,点C 落在C '处,可得BF EF AC CE '==+△BD BF F D ''=+909070250EF F D AC CE F D ''=+=++=++=cm (2)①如图,过点C 作CG AG ⊥90BC AC ==cm ,54cm AB =27AG GB ∴==cm ,12ACG ACB ∠=∠273sin 0.39010AG ACG AC ∠===≈17.5ACG ∴∠=︒ 235ACB ACG ∴∠=∠=︒②如图,连接AF ,过点E 作EH AF ⊥,AE EF =AH HF ∴=根据题意可知CG AF ∥ 17.5EAH ∴∠=︒ 180cm AE =sin17.50.318054EH AE ∴=︒⋅=⨯=222221280598444AH AE EH ∴=-=-= ∴伞能遮雨的面积为29484π【点睛】本题考查了解直角三角形的应用,正投影,理解题意是解题的关键.7.(2018·江苏扬州·中考模拟)如图 1,在平面直角坐标系中,图形 W 在坐标轴上的投影长度定义如下:设点 P (1x , 1y ) ,Q (2x , 2y ) 是图形 W 上的任意两点,若12x x -的最大值为 m ,则图形 W 在 x 轴上的投影长度为 lx = m ;若12y y -的最大值为 n ,则图形 W 在 y 轴上的投影长度为 ly = n .如图 1,图形 W 在 x 轴上的投影长度为 lx =40- = 4 ;在 y 轴上的 投影长度为 ly =30-= 3 .(1)已知点 A (1, 2) , B (2, 3) , C (3,1) ,如图 2 所示,若图形 W 为四边形 OABC , 则 lx = , ly = ;(2)已知点 C (-32, 0) ,点 D 在直线 y =12x - 1(x < 0) 上,若图形 W 为 ∆OCD ,当 lx =ly时,求点 D 的坐标;(3 )若图形 W 为函数 y = x 2(a ≤ x ≤ b ) 的图象,其中 (0 ≤ a < b ) ,当该图形满足 lx = ly ≤ 1时,请直接写出 a 的取值范围.图 1 图 2【答案】(1)4,3;(2)(-23,143)或(-10,-14);(3) 102a ≤<.【分析】(1)确定出点A 在y 轴的投影的坐标、点B 在x 轴上投影的坐标,于是可求得问题的答案;(2)过点P 作PD△x 轴,垂足为P .设D (x ,2x+6),则PD=|2x+6|.PC=|3-x|,然后依据l x =l y ,列方程求解即可;(3)设A (a ,a 2)、B (b ,b 2).分别求得图形在y 轴和x 轴上的投影,由l x =l y 可得到b+a=1,然后根据0≤a <b 可求得a 的取值范围. 【详解】解:(1)△A (3,3),△点A 在y 轴上的正投影的坐标为(0,3). △△OAB 在y 轴上的投影长度l y =3. △B (4,1),△点B 在x 轴上的正投影的坐标为(4,0). △△OAB 在x 轴上的投影长度l x =4. 故答案为4;3.(2)如图1所示;过点P 作PD△x 轴,垂足为P .设D (x ,2x+6),则PD=2x+6.△PD△x 轴,△P (x ,0).△PC=4-x .△l x =l y ,△2x+6=4-x ,解得;x=-23.△D (-23,143). 如图2所示:过点D 作DP△x 轴,垂足为P .设D (x ,2x+6),则PD=-2x-6.△PD△x 轴,△P (x ,0).△PC=4-x .△l x =l y ,△-2x-6=4-x ,解得;x=-10.△D (-10,-14).综上所述,点D 的坐标为(-23,143)或(-10,-14). (3)如图3所示:设A (a ,a 2)、B (b ,b 2).则CE=b-a ,DF=b 2-a 2=(b+a )(b-a ).△l x =l y ,△(b+a )(b-a )=b-a ,即(b+a-1)(b-a )=0.△b≠a ,△b+a=1.又△0≤a <b ,△a+a <1,△0≤a <12. 【点睛】本题主要考查的是二次函数的综合应用、解答本题主要应用了图形W 在坐标轴上的投影长度定义、一次函数、二次函数图象上点的坐标与函数解析式的关系,依据l x =l y 列出关于x 的方程和不等式是解题的关键.8.(2022·江苏无锡·模拟预测)测量金字塔高度:如图1,金字塔是正四棱锥S ABCD -,点O 是正方形ABCD 的中心SO 垂直于地面,是正四棱锥S ABCD -的高,泰勒斯借助太阳光.测量金字塔影子PBC 的相关数据,利用平行投影测算出了金字塔的高度,受此启发,人们对甲、乙、丙三个金字塔高度也进行了测量.甲、乙、丙三个金字塔都用图1的正四棱锥S ABCD -表示.(1)测量甲金字塔高度:如图2,是甲金字塔的俯视图,测得底座正方形ABCD 的边长为80m ,金字塔甲的影子是50m PBC PC PB ==,,此刻,1米的标杆影长为0.7米,则甲金字塔的高度为______m .(2)测量乙金字塔高度:如图1,乙金字塔底座正方形ABCD 边长为80m ,金字塔乙的影子是PBC ,75,402m PCB PC ∠=︒=,此刻1米的标杆影长为0.8米,请利用已测出的数据,计算乙金字塔的高度.【答案】(1)100;(2)506.【分析】(1)如图2中,连接OP 交BC 于T ,勾股定理求得OP ,再根据物体的长度与影子的长度成比例,即可求得OS ;(2)如图1中,连接OP ,OC ,过点O 作OR PC ⊥交PC 的延长线于R ,勾股定理求得OP ,再根据物体的长度与影子的长度成比例,即可求得OS .【详解】(1)如图2中,连接OP 交BC 于T ,四边形ABCD 是正方形,,OC OB AC BD ∴=⊥,80BC CD == ,50PC PB ==,OP ∴垂直平分BC ,1140,4022OT CD TC TB BC ∴=====, 2222504030PT PC CT ∴=-=-=,403070OP OT PT ∴=+=+=,设金子塔的高度为h ,物体的长度与影子的长度成比例,10.7h OP =, 100h ∴=,故答案为:100.(2)如图,根据图1作出俯视图,连接OP ,OC ,过点O 作OR PC ⊥交PC 的延长线于R ,4575120OCP OCB PCB∠=∠+∠=︒+︒=︒,60OCR∴∠=︒,80BC=,四边形ABCD是正方形,22221118080402222OC AC AB BC∴==+=+=,cos60202CR OC∴=⨯︒=,3sin604022062OR OC=⨯︒=⨯=,402202602PR PC CR∴=+=+=,2222(206)(602)406OP OR PR∴=+=+=,10.8SOOP=,506SO∴=.∴乙金字塔的高度为506.【点睛】本题考查了正方形的性质,解直角三角形,俯视图,物长与影长成正比等知识,正确的添加辅助线构造直角三角形是解题的关键.9.(2021·全国·九年级专题练习)如图是某校校史荣誉室的正方形网格平面图,实线表示墙体或门.在点A处安装了360度旋转摄像头,由于墙体的的遮挡,阴影部分无法监控,这部分无法监控到的区域通常称为监控盲区.(1)小红同学进入校史荣誉室随意参观,站在监控盲区的概率是多少?(2)为了监控效果更好,使得监控盲区最小,请你帮助学校在墙体AB上重新设计摄像头安装的位置,画出示意图,并说明理由.【答案】(1)320;(2)见详解【分析】(1)分别求出荣誉室面积和盲区面积,再利用概率公式,即可求解;(2)把摄像头安装在AB的中点处,计算出监控盲区的面积,然后把摄像头安装在AB的其他位置,表达出监控盲区的面积,即可得到结论.【详解】解:(1)设小正方形的边长为1,△荣誉室面积=2×2+2×2+2×6=20,盲区面积=2×2-12×2×1=3,△站在监控盲区的概率=3÷20=320;(2)如图所示:摄像头安装在AB的中点处,监控盲区的面积最小,此时,监控盲区面积=2×12×1×2=2,若摄像头不安装在AB的中点处,则监控盲区面积=12×(CM+2)×2>2.【点睛】本题主要考查几何概率,掌握概率公式和方格纸的面积的计算,是解题的关键.10.(2019·陕西西安·中考模拟)如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?【答案】(1)18米;(2)3.6米【分析】(1)如图1,先证明△APM△△ABD,利用相似比可得AP=16AB,即得BQ=16AB,则16AB+12+16AB=AB,解得AB=18(m);(2)如图2,他在路灯A下的影子为BN,证明△NBM△△NAC,利用相似三角形的性质得1.6189.6BNBN=+,然后利用比例性质求出BN即可.【详解】解:(1)如图1,△PM△BD,△△APM△△ABD,AP PMAB BD=,即1.69.6APAB=,△AP=16AB,△QB=AP,△BQ=16AB,而AP+PQ+BQ=AB,△16AB+12+16AB=AB,△AB=18.答:两路灯的距离为18m;(2)如图2,他在路灯A下的影子为BN,△BM△AC,△△NBM△△NAC,△BN BMAN AC=,即1.6189.6BNBN=+,解得BN=3.6.答:当他走到路灯B时,他在路灯A下的影长是3.6m.【点睛】本题考查了相似三角形的判定与性质,要求学生能根据题意画出对应图形,能判定出相似三角形,以及能利用相似三角形的性质即相似三角形的对应边的比相等的原理解决求线段长的问题等,蕴含了数形结合的思想方法.11.(2021·全国·九年级专题练习)小华想用学过的测量知识来测量家门前小河BC 的宽度:如图所示,他们在河岸边的空地上选择一点C ,并在点C 处安装了测倾器CD ,选择了河对岸边的一棵大树,将其底部作为点B ,顶部作为点A ,现测得古树的项端A 的仰角为37°,再在BC 的延长线上确定一点F ,使CF =5米,小华站在F 处,测得小华的身高EF =1.8米,小华在太阳光下的影长FG =3米,此时,大树AB 在太阳光下的影子为BF .已知测倾器的高度CD =1.5米,点G 、F 、C 、B 在同一水平直线上,且EF 、CD 、AB 均垂直于BG ,求小河的宽度BC .(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75)【答案】10米【分析】过点D 作DH △AB 所在直线于点H ,可得四边形DCBH 是矩形,BC =DH ,BH =CD =1.5,设BC =DH =x ,在Rt △ADH 中,用x 表示出AH ,再根据同一时刻物高与影长的比相等,列出等式即可求出小河的宽度BC .【详解】解:如图,过点D 作DH △AB 所在直线于点H ,可得四边形DCBH 是矩形,△BC =DH ,BH =CD =1.5,设BC =DH =x ,根据题意可知:在Rt △ADH 中,△ADH =37°,△AH =DH •tan 37°≈0.75x ,△AB =AH +BH =0.75x +1.5,BF =FC +CB =5+x ,根据同一时刻物高与影长的比相等,△EF AB FG BF=, △1.80.75 1.535x x+=+,解得x=10,所以BC=10(米),答:小河的宽度BC为10米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题、平行投影,解决本题的关键是设出未知数,利用同一时刻物高与影长的比相等建立方程.12.(2021·全国·九年级专题练习)在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DEEH=10.6,DE=0.3,EH=0.18,进而可求大树的影长AF,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得; (2)根据题意画出图形,如图所示,根据平行投影可知:DEEH=10.6,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH +FH=4.42+0.18+0.2=4.8,∵ABAF =10.6,∴AB=4.80.6=8(米).答:树的高度为8米.(3)由(2)可知:AF=4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.13.(2021·全国·九年级专题练习)为方便住校生晚自习后回到宿舍就寝,新安装了一批照明路灯;一天上午小刚在观看新安的照明灯时,发现在太阳光的正面照射下,照明灯的灯杆的投影的末端恰好落在2.5米高文化走廊墙的顶端,小刚测得照明灯的灯杆的在太阳光下的投影从灯杆的杆脚到文化走廊的墙脚的影长为4.6米,同一时刻另外一个前来观看照明路灯小静测得身高1.5米小刚站立时在太阳光下的影长恰好为1米,请同学们画出与问题相关联的线条示意图并求出新安装的照明路灯的灯杆的高度?【答案】线条示意图见解析,新安装的照明路灯的灯杆的高度为9.4m.【分析】利用同一时刻投影的性质得出1.51 4.6AB ABBE==,进而得出答案.【详解】解:如图所示:过点E作EB△AC于点B,由题意可得:DC=BE=4.6m ,DE=BC=2. 5m,△同一时刻身高1.5米小刚站立时在太阳光下的影长恰好为1米,1.51 4.6AB AB BE == 解得: AB=6.9,△AC=AB+BC=6.9+2.5=9.4 (m),答:新安装的照明路灯的灯杆的高度为9.4m .【点睛】此题主要考查了投影的应用,利用同一时刻影子与高度的关系得出比例式是解题关键.14.(2011·四川达州·中考模拟)已知:如图,AB 和DE 是直立在地面上的两根立柱,AB =5m ,某一时刻,AB 在阳光下的投影BC =4m .(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长.【答案】(1)答案见解析;(2)7.5m【详解】解:(1)作法:连接AC ,过点D 作DF△AC ,交直线BE 于F ,则EF 就是DE 的投影.(2)△太阳光线是平行的,△AC△DF .△△ACB=△DFE .又△△ABC=△DEF=90°,△△ABC△△DEF .△AB BC DE EF=, △AB=5m ,BC=4m ,EF=6m ,△546DE =, △DE=7.5(m) .【点睛】本题难度中等,主要考查学生对投影问题与相似三角形相结合解决实际问题的能力.15.(2021·全国·九年级专题练习)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)【答案】(1)树AB 的高约为43m ;(2)83m .【分析】(1)在直角△ABC 中,已知△ACB =30°,AC =12米.利用三角函数即可求得AB 的长;(2)在△AB 1C 1中,已知AB 1的长,即AB 的长,△B 1AC 1=45°,△B 1C 1A =30°.过B 1作AC 1的垂线,在直角△AB 1N 中根据三角函数求得AN ,BN ;再在直角△B 1NC 1中,根据三角函数求得NC 1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.【详解】解:(1)AB =AC tan30°=12× 33= 43(米).答:树高约为43 米.(2)如图(2),B 1N =AN =AB 1sin45°=43×22=26(米).NC 1=NB 1tan60°=26 ×3 =62 (米).AC 1=AN +NC 1=26 +62 .当树与地面成60°角时影长最大AC 2(或树与光线垂直时影长最大或光线与半径为AB 的△A 相切时影长最大)AC 2=2AB 2=83 ;16.(2015·江苏镇江·中考真题)某兴趣小组开展课外活动.如图,A ,B 两地相距12米,小明从点A 出发沿AB 方向匀速前进,2秒后到达点D ,此时他(CD )在某一灯光下的影长为AD ,继续按原速行走2秒到达点F ,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H ,此时他(GH )在同一灯光下的影长为BH (点C ,E ,G 在一条直线上).(1)请在图中画出光源O 点的位置,并画出他位于点F 时在这个灯光下的影长FM (不写画法);(2)求小明原来的速度.【答案】(1)作图见试题解析;(2)1.5m /s .【分析】(1)利用中心投影的定义作图;(2)设小明原来的速度为xm /s ,则CE =2xm ,AM =(4x ﹣1.2)m ,EG =3xm ,BM =13.2﹣4x ,由△OCE △△OAM ,△OEG △△OMB ,得到CE EG AM BM,即代入解方程即可. 【详解】解:(1)如图,(2)设小明原来的速度为xm /s ,则CE =2xm ,AM =AF ﹣MF =(4x ﹣1.2)m ,EG =2×1.5x =3xm ,BM =AB ﹣AM =12﹣(4x ﹣1.2)=13.2﹣4x ,△点C ,E ,G 在一条直线上,CG △AB ,△△OCE △△OAM ,△OEG △△OMB ,△CE OE AM OM =,EG OE BM OM=, △CE EG AM BM =,即234 1.213.24x x x x=--, 解得x =1.5,经检验x =1.5为方程的解,△小明原来的速度为 1.5m /s .答:小明原来的速度为1.5m /s .【点睛】本题考查相似三角形的应用以及中心投影,掌握中心投影的定义以及相似三角形的判定与性质是解题关键.17.(2015·甘肃兰州·中考真题)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一根高度未知的电线杆CD ,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF 的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH 的长度为3米,落在地面上的影子DH 的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是 投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1) 平行;(2)电线杆的高度为7米.【分析】(1)有太阳光是平行光线可得利用的是平行投影;(2)连接AM 、CG ,过点E 作EN△AB 于点N ,过点G 作GM△CD 于点M ,根据平行投影时同一时刻物体与他的影子成比例求出电线杆的高度.【详解】(1)平行;(2)连接AM 、CG ,过点E 作EN△AB 于点N ,过点G 作GM△CD 于点M ,则BN=EF=2,GH=MD=3,EN=BF=10,DH=MG=5所以AN=10-2=8,由平行投影可知:即解得CD=7所以电线杆的高度为7m.18.(2020·甘肃白银·二模)如图,一棵被大风吹折的大树在B处断裂,树梢着地.经测量,折断部分AB与地面的夹角33α︒=,树干BC在某一时刻阳光下的影长6CD=米,而在同时刻身高1.8米的人的影子长为2.7米.求大树未折断前的高度(精确到0.1米).(参考数据:330. 54,330. 84,330.65sin cos tan︒︒︒≈≈≈)【答案】11.4米【分析】利用比例式求得BC的长,然后在Rt△ACB中求得AB的长,两者相加即可得到铁塔的高度.【详解】解:依题意,得1.82.7BCCD=即263BC=4BC∴=在Rt ACB∆中,47.4sin0.54BCABα==≈(米)47.411.4∴+=(米)答:大树未折断前的高度为11.4米【点睛】本题考查了解直角三角形的知识,解题的关键是正确的构造直角三角形并求解.19.(2019·台湾·中考真题)在公园有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一堵与地面互相垂直的墙,且圆柱与墙的距离皆为120公分.敏敏观察到高度90公分矮圆柱的影子落在地面上,其影长为60公分;而高圆柱的部分影子落在墙上,如图所示.已知落在地面上的影子皆与墙面互相重直,并视太阳光为平行光,在不计圆柱厚度与影子宽度的情况下,请回答下列问题:(1)若敏敏的身高为150公分,且此刻她的影子完全落在地面上,则影长为多少公分? (2)若同一时间量得高圆柱落在墙上的影长为150公分,则高圆柱的高度为多少公分?请详细解释或完整写出你的解题过程,并求出答案.【答案】(1)敏敏的影长为100公分;(2)高圆柱的高度为330公分.【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)如图,连接AE ,作//FB EA .分别求出AB ,BC 的长即可解决问题.【详解】解:(1)设敏敏的影长为x 公分.由题意:1509060x =, 解得100x =(公分),经检验:100x =是分式方程的解.△敏敏的影长为100公分.(2)如图,连接AE ,作//FB EA .//AB EF ,△四边形ABFE 是平行四边形,150AB EF ∴==公分,设BC y =公分,由题意BC 落在地面上的影从为120公分.9012060y ∴=, 180y ∴=(公分),150180330AC AB BC ∴=+=+=(公分),答:高圆柱的高度为330公分.。
2020年浙江省中考数学提升训练试卷B 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,等边ABC △的边长为12cm ,内切⊙O 切BC 边于D 点,则图中阴影部分的面积为( )A .2πcmB 2πcmC .22πcmD 2πcm2.已知△ABC ∽△A'B'C',且它们的相似比是 3,则下列命题正确的是( ) A .∠A 是∠A ′的3倍 B .∠A ′是∠A 的3倍 C .A'B'是 AB 的3倍D .AB 是A'B'的 3倍3.下列命题中,是假命题的是( )A .相等的角是对顶角B .直角都相等C .在同一平面内不相交的两条直线平行D .三角形的内角和等于180°4.如图1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为( ) A .34 cm 2 B .36 cm 2 C .38 cm 2 D .40 cm 2 5.下列条件中,能识别梯形ABCD 是等腰梯形的条件是 ( )A .一组对边相等B .有两个角相等C .对角线相等D .有两个角互补6.有两块同样大小且含60°角的三角板,把它们相等的边拼在一起(两块三角板不重叠),可以拼出的四边形的个数( ) A .1B .2C .3D .4 7.如果一个四边形的四个内角的比为2:2:3:5,那么这四个内角中( ) A .只有一个直角B .只有一个锐角C .有两个直角D .有两个钝角 8.下列各点在函数12y x =-的图象上的是( ) A . (2,-1)B .(0,2)C .(1,-1)D .(1,0)9.某校要了解八年级女生的体重以掌握她们的身体发育情况,从八年级500名女生中抽出50名进行检测.就这个问题,下面说法中.正确的是( ). A .500名女生是总体 B .500名女生是个体C .500名女生是总体的一个样本D .50是样本容量10.方程27x y +=在自然数范围内的解有( ) A .1个B . 2个C .3个D .4个11.若)3)(1(+-x x =n mx x ++2 ,则m 、n 的值分别为 ( ) A .m=1,n=3 B .m=4 ,n=5 C .m=2 ,n= —3 D .m= —2 ,n=3 12.化简 2a 3 + a 2·a 的结果等于( )A . 3a 3B .2a 3C .3a 6D .2a 613.如图两个图形可以分别通过旋转( )度与自身重合? A .120°,45° B .60°,45° C .30°,60° D .45°,30° 14.2200620082004-⨯的计算结果为( )A .1B .-1C .4D .-4二、填空题15.已知直线y=2x ,则该直线与x 轴正方向夹角的正切值是 . 16.写出一个无理数,使它与2的积为有理数: .17.将方程4(2)25x x +=化为一般形式为 ,一次项系数是 ,常数项为 . 18.某机构要调查某厂家生产的手机质量,从中抽取了20只手机进行试验检查,其中样本 容量是 .19.如图,∠1与∠2是两条直线被AC 所截形成的内错角,那么这两条直线为 与 .20.已知关于x 的分式方程4333k x x x-+=--有增根,则k 的值是 . 21.用笔尖扎重叠的纸得到如图成轴对称的两个图案,在图中找出: (1)两对对应点 , ; (2)两组对应线段 , ; (3)两组对应角 , .三、解答题22.有两根木棒 AB 、CD 在同一平面上直立着,其中AB 这根木棒在太阳光下的影子 BE 如 图所示,请你在图中画出这时木棒 CD 的影子.23.如图,张斌家居太阳光住的甲楼 AB 面向正北,现计划在他家居住的楼前修建一座 乙楼 CD ,楼高约为 l8m ,两楼之间的距离为 21m ,已知冬天的太阳高度最低时,光线与水平线的夹角为 30°.(1)试求乙楼 CD 的影子落在甲楼 AB 上的高 BE 的长;(2)若让乙楼的影子刚好不影响甲楼,则两楼之间的距离至少应是多少?24.若两圆的圆心距d 满足等式|4|3d -=,且两圆的半径是方程的27120x x -+=两个根,判断这两个圆的位置关系,并说明理由。
2020年中考数学考点提分专题二十五 推理能力提升(解析版)(时间:90分钟 满分120分)一、选择题(每小题3分,共36分)1.(2019·山西太原五中初三月考)如图,在△ABC 中,点D 在AB 上,BD=2AD ,DE ∥BC 交AC 于E ,则下列结论不正确的是( )A .BC=3DEB .=BD CE BA CAC .△ADE ~△ABCD .S △ADE =13S △ABC 2.(2019·上海中考模拟)下列图形中一定是相似形的是( ) A .两个菱形 B .两个等边三角形 C .两个矩形D .两个直角三角形 3.(2019·陕西中考模拟)如图,在ABC V 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC = B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC= 4.(2019·哈尔滨市第六十九中学校初三月考)如图,菱形ABCD 的对角线AC =6,BD =8,AE ⊥BC 于点E ,则AE 的长是( )A .5B .125C .245D .4855.(2019·福建初一期中)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )A .75°B .60°C .45°D .30°6.(2019·宁波华茂国际学校初三期末)如图,在四边形ABCD 中,90DAB ︒∠=,AD BC ∥,12BC AD =,AC 与BD 交于点E ,AC BD ⊥,则tan BAC ∠的值是( )A .14B .24C .22D .137.(2019·浙江初三)如图,矩形ABCD 中,对角线AC =23,E 为BC 边上一点,BC =3BE ,将矩形ABCD 沿AE 所在的直线折叠,点B 恰好落在对角线AC 上的点B ′处,P ,Q 分别是AB ,AC 上的动点,则PE +PQ 的最小值为( )A .3B .2C .1D .38.(2019·山东初二期中)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .32B .5C .4D .319.(2020·山东初二期末)如图,在ABC ∆中,点M 为BC 的中点,AD 平分BAC ∠,且BD AD ⊥于点D ,延长BD 交AC 于点N .若4AB =,1DM =,则AC 的长为( )A .5B .6C .7D .810.(2019·重庆西南大学附中初三月考)如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,∠ADC =120°,连接BD ,把△ABD 沿BD 翻折,得到△A ′BD ,连接A ′C ,若AB =3,∠ABD =60°,则点D 到直线A ′C 的距离为( )A .7B .9714C .977D .187711.(2019·南通市八一中学初二月考)如图,在菱形ABCD 中,∠ABC =60°,AB =1,E 为BC 的中点,则对角线BD 上的动点P 到E 、C 两点的距离之和的最小值为( )A 3B 3C 3D .1212.(2019·重庆初三期末)如图,将小正方形AEFG 绕大正方形ABCD 的顶点A 顺时针旋转一定的角度α(其中0°≤α≤90°),连接BG 、DE 相交于点O ,再连接AO 、BE 、DG .王凯同学在探究该图形的变化时,提出了四个结论:①BG =DE ;②BG ⊥DE ;③∠DOA =∠GOA ;④S △ADG =S △ABE ,其中结论正确的个数有( )A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)13.(2019·河南初三期中)如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=________14.(2019·银川外国语实验学校初三期中)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.15.(2019·河北初三期末)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.16.(2019·陕西初三期末)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是_____.17.(2019·湖北中考真题)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C ,点D 在AB 上,BAC ∠=30DEC ︒∠=,AC 与DE 交于点F ,连接AE ,若1BD =,5AD =,则CF EF=_____.18.(2019·山东初三)如图,点 C 为 Rt △ACB 与 Rt △DCE 的公共点,∠ACB=∠DCE=90°,连 接 AD 、BE ,过点 C 作 CF ⊥AD 于点 F ,延长 FC 交 BE 于点 G ,若 AC=BC=25,CE=15, DC=20,则EG BG 的值为___________.三、解答题(每小题6分,共12分)19.(2019·四川中考真题)如图,线段AC 、BD 相交于点E ,AE DE = ,BE CE =.求证:B C ∠=∠.20.(2019·江苏初二期末)如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .四、解答题(每小题8分,共16分)21.(2019·黑龙江初三)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.22.(2019·全国初三课时练习)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F 为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.五、解答题(每小题9分,共18分)23.(2019·山东初三期中)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求AFAG的值.24.(2019·湖州市第五中学初三)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G,(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE的中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.六、解答题(每小题10分,共20分)25.(2019·河北初三期末)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.26.(2019·江苏初三期中)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA 的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.2020年中考数学考点提分专题二十五推理能力提升(解析版)(时间:90分钟满分120分)一、选择题(每小题3分,共36分)1.(2019·山西太原五中初三月考)如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A .BC=3DEB .=BD CE BA CA C .△ADE ~△ABC D .S △ADE =13S △ABC 【答案】D【解析】 解:∵BD=2AD ,∴AB=3AD ,∵DE ∥BC ,∴DE AD BC AB ==13,∴BC=3DE ,A 结论正确; ∵DE ∥BC ,∴BD CE BA CA=,B 结论正确; ∵DE ∥BC ,∴△ADE ~△ABC ,C 结论正确; ∵DE ∥BC ,AB=3AD ,∴S △ADE =19S △ABC ,D 结论错误, 故选D .【点睛】本题考查平行线分线段成比例及相似三角形的判定和性质,掌握相关性质定理是本题的解题关键. 2.(2019·上海中考模拟)下列图形中一定是相似形的是( )A .两个菱形B .两个等边三角形C .两个矩形D .两个直角三角形【答案】B【解析】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B .【点睛】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.3.(2019·陕西中考模拟)如图,在ABC V 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC = B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC= 【答案】C【解析】解:A.∵//DE BC ,∴AD AE AB AC= ,故不正确; B. ∵//DE BC , ∴AG AE GF EC = ,故不正确; C. ∵//DE BC ,∴ADE V ∽ABC V ,DEO V ∽CBO V ,DE AE BC AC ∴=,DE OD BC OC= . OD AE OC AC∴= ,故正确; D. ∵//DE BC , ∴AG AE AF AC = ,故不正确; 故选C .【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键. 4.(2019·哈尔滨市第六十九中学校初三月考)如图,菱形ABCD 的对角线AC =6,BD =8,AE ⊥BC 于点E ,则AE 的长是( )A.5 B.125C.245D.485【答案】C【解析】∵四边形ABCD是菱形,AC=6cm,BD=8cm,∴AO=CO=3cm,BO=DO=4cm,∠BOC=90∘,∴BC=224+3=5(cm),∴AE×BC=BO×AC故5AE=24,解得:AE=245.故选:C.【点睛】此题考查菱形的性质,解题关键在于结合勾股定理得出BC的长5.(2019·福建初一期中)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.75°B.60°C.45°D.30°【答案】A【解析】解:由题意可得:∠2=60°,∠5=45°,∵∠2=60°,∴∠3=180°-90°-60°=30°,∴∠4=30°,∴∠1=∠4+∠5=30°+45°=75°.故选A .【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,解决本题的关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.6.(2019·宁波华茂国际学校初三期末)如图,在四边形ABCD 中,90DAB ︒∠=,AD BC ∥,12BC AD =,AC 与BD 交于点E ,AC BD ⊥,则tan BAC ∠的值是( )A .14B .24C .22D .13【答案】C【解析】∵AD BC ∥,90DAB ︒∠=,∴18090ABC DAB ︒︒∠=-∠=,90BAC EAD ︒∠+∠=,∵AC BD ⊥,∴90AED ︒=∠,∴90ADB EAD ︒∠+∠=,∴BAC ADB ∠=∠,∴ABC DAB V V ∽,∴AB BC DA AB=, ∵12BC AD =, ∴2AD BC =,∴2222AB BC AD BC BC BC =⨯=⨯=,∴2AB BC =, 在Rt ABC △中,2tan 22BC BAC AB BC∠===; 故选:C .【点睛】 本题考查了平行线的性质、相似三角形的判定与性质以及解直角三角形的应用等知识;熟练掌握解直角三角形,证明三角形相似是解题的关键.7.(2019·浙江初三)如图,矩形ABCD 中,对角线AC =23,E 为BC 边上一点,BC =3BE ,将矩形ABCD 沿AE 所在的直线折叠,点B 恰好落在对角线AC 上的点B ′处,P ,Q 分别是AB ,AC 上的动点,则PE +PQ 的最小值为( )A 3B .2C .1D .3【答案】B【解析】∵BC =3BE ,∴EC =2BE ,∵折叠, ∴BE =B'E ,∠ABC =∠AB'E =90°,BAE EAC ∠=∠,∵sin ∠ACB =12B E EC '=, ∴∠ACB =30°,在Rt △ABC 中,AC =3ACB =30°,∴AB 3BC 3=3,∠BAC =60°,∴∠BAE =∠EAC =30°,如图作点E关于AB的对称点E',连接AE',PE',∵PE+PQ=PE'+PQ,∴当Q,P,E'三点共线,且E'Q⊥AC时,PE+PQ的值最小,∵BC=3,BC=3BE,∴BE=1,∵E',E两点关于AB对称,∴BE'=BE=1,∠EAB=∠E'AB=30°,且∠BAC=60°,∴∠E'AC=90°,即PE+PQ的最小值为AE'的值,∵∠BAE'=30°,BE'=1,AB⊥CB,∴AE'=2,∴PE+PQ的最小值为2.故选:B.【点睛】此题考查折叠的性质,利用三角函数值求角度,直角三角形30°角所对的直角边等于斜边的一半,垂线段最短的性质,轴对称的性质.8.(2019·山东初二期中)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A .32B .5C .4D .31【答案】B【解析】 由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO -∠CAO=90°.在等腰Rt △ABC 中,AB=6,则AC=BC=32.同理可求得:AO=OC=3.在Rt △AOD1中,OA=3,OD 1=CD 1-OC=4,由勾股定理得:AD 1=5.故选B .9.(2020·山东初二期末)如图,在ABC ∆中,点M 为BC 的中点,AD 平分BAC ∠,且BD AD ⊥于点D ,延长BD 交AC 于点N .若4AB =,1DM =,则AC 的长为( )A .5B .6C .7D .8【答案】B【解析】 解:∵AD 平分BAC ∠,且BD AD ⊥∴BAD NAD ∠=∠,ADB ADN ∠=∠在△ADB 和△ADN 中,BAD NAD AD ADADB ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△ADN (ASA )∴BD=DN ,AN=AB=4,∵点M 为BC 的中点,∴NC=2DM=2,∴AC=AN+NC=6,故选B.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.10.(2019·重庆西南大学附中初三月考)如图,在四边形ABCD中,AD∥BC,∠A=90°,∠ADC=120°,连接BD,把△ABD沿BD翻折,得到△A′BD,连接A′C,若AB=3,∠ABD=60°,则点D到直线A′C的距离为()A7B9714C977D1877【答案】C【解析】过点D作DE⊥A′C于E,过A'作A'F⊥CD于F,如图所示:∵AD∥BC,∴∠ADB=∠DBC,∠ADC+∠BCD=180°,∠BCD=180°﹣120°=60°,∵∠ABD=60°,∴∠ADB=30°,∴BD=2AB=6,AD3=3BDC=∠ADC﹣∠ADB=120°﹣30°=90°,∠DBC=30°,∴CD=tan∠DBC•BD=tan30°×6=33×6=3由折叠的性质得:∠A'DB=∠ADB=30°,A'D=AD=3∴∠A'DC=120°﹣30°﹣30°=60°,∵A'F⊥CD,∴∠DA'F=30°,∴DF=12A'D=332,A'F3=92,∴CF=CD﹣DF=23﹣33 2=32,∴A'C=22A F CF'+=2293()()2122+=,∵△A'CD的面积=12A'C×DE=12CD×A'F,∴923972721CD A FDEA C⨯'⨯===',即D到直线A′C的距离为977;故选:C.【点睛】此题考查折叠的性质,三角函数,勾股定理,直角三角形的30︒角所对的直角边等于斜边的一半. 11.(2019·南通市八一中学初二月考)如图,在菱形ABCD中,∠ABC=60°,AB=1,E为BC的中点,则对角线BD上的动点P到E、C两点的距离之和的最小值为()A3B3C3D.12【答案】C【解析】解:∵四边形ABCD为菱形,∴A、C关于BD对称,∴连AE 交BD 于P ,则PE +PC =PE +AP =AE ,根据两点之间线段最短,AE 的长即为PE +PC 的最小值.∵∠ABC =60°,AB=BC∴△ABC 为等边三角形,又∵BE =CE 12BC = , ∴AE ⊥BC , 11,2AB BE ==Q ∴AE =22AB BE -=32. 故选:C .【点睛】本题主要考查最短距离问题,掌握勾股定理,等边三角形的性质及菱形的对称性是解题的关键. 12.(2019·重庆初三期末)如图,将小正方形AEFG 绕大正方形ABCD 的顶点A 顺时针旋转一定的角度α(其中0°≤α≤90°),连接BG 、DE 相交于点O ,再连接AO 、BE 、DG .王凯同学在探究该图形的变化时,提出了四个结论:①BG =DE ;②BG ⊥DE ;③∠DOA =∠GOA ;④S △ADG =S △ABE ,其中结论正确的个数有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵∠DAB=∠EAG=90°,∴∠DAE=∠BAG,又∵AD=AB,AG=AE,∴△DAE≌△BAG(SAS),∴BG=DE,∠ADE=∠ABG,故①符合题意,如图1,设点DE与AB交于点P,∵∠ADE=∠ABG,∠DPA=∠BPO,∴∠DAP=∠BOP=90°,∴BG⊥DE,故②符合题意,如图1,过点A作AM⊥DE,AN⊥BG,∵△DAE≌△BAG,∴S△DAE=S△BAG,∴12DE×AM=12×BG×AN,又∵DE=BG,∴AM=AN,且AM⊥DE,AN⊥BG,∴AO平分∠DOG,∴∠AOD=∠AOG,故③符合题意,如图2,过点G作GH⊥AD交DA的延长线于点H,过点E作EQ⊥AD交DA的延长线于点Q,∴∠EAQ+∠AEQ=90°,∠EAQ+∠GAQ=90°,∴∠AEQ=∠GAQ,又∵AE=AG,∠EQA=∠AHG=90°,∴△AEQ≌△GAH(AAS)∴AQ=GH,∴12AD×GH=12AB×AQ,∴S△ADG=S△ABE,故④符合题意,故选:D.【点睛】本题主要考查正方形的性质和三角形全等的判定和性质的综合,添加辅助线,构造全等三角形,是解题的关键.二、填空题(每小题3分,共18分)13.(2019·河南初三期中)如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=________【答案】51 2【解析】∵沿AE将△ABE向上折叠,使B点落在AD上的F点,∴四边形ABEF是正方形,∵AB=1,设AD=x,则FD=x−1,FE=1,∵四边形EFDC与矩形ABCD相似,∴EF AD FD AB=,1x=x-11,解得x1=1+52,x2=1-5(负值舍去),经检验x1=1+52是原方程的解.【点睛】本题考查了折叠的性质及相似多边形的性质,熟练掌握性质定理是解题的关键.14.(2019·银川外国语实验学校初三期中)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.【答案】2 3【解析】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴AD DEAD DB BC=+,即1124DE=+,解得:DE=43,∵DF=DB=2,∴EF=DF-DE=2-43=23,故答案为2 3 .【点睛】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.15.(2019·河北初三期末)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.【答案】7【解析】∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴AB DCBD CE=,即96CE23CE=⇒=.∴AE AC CE927=-=-=.16.(2019·陕西初三期末)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是_____.【答案】12 7【解析】作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴12BC•AH=6,∴AH=264⨯=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,∵GF∥BC,∴△AGF ∽△ABC , ∴GF AM BC AH =,即343x x -=,解得x=127, 即正方形DEFG 的边长为127, 故答案为127.【点睛】本题考查了相似三角形的判定与性质,正确添加辅助线求出BC 边上的高是解题的关键.17.(2019·湖北中考真题)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C ,点D 在AB 上,BAC ∠=30DEC ︒∠=,AC 与DE 交于点F ,连接AE ,若1BD =,5AD =,则CF EF=_____.【答案】21. 【解析】 解:如图,过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N ,∵1BD =,5AD =,∴6AB BD AD =+=,∵在Rt ABC ∆中,30,9060BAC B BAC ︒︒︒∠=∠=-∠=,∴13,2BC AB AC ==== 在Rt BCA ∆与Rt DCE ∆中,∵30BAC DEC ︒∠=∠=,∴tan tan BAC DEC ∠=∠, ∴BC DC AC EC=, ∵90BCA DCE ︒∠=∠=,∵BCA DCA DCE DCA ∠-∠=∠-∠,∴BCD ACE ∠=∠,∴BCD ∆∽ACE ∆,∴60CAE B ︒∠=∠=,∴BC BD AC AE=, ∴306090DAE DAC CAE ︒︒︒+∠=∠∠=+=1AE =,∴AE =在Rt ADE ∆中,DE ===在Rt DCE ∆中,30DEC ∠=o ,∴60EDC ∠=o ,12DC DE == 在Rt DCM ∆中,22MC DC ==, 在Rt AEN ∆中,32NE AE ==, ∵,90MFC NFE FMC FNE ∠=∠∠=∠=o ,∴MFC ∆∽NFE ∆,∴2121 2332CF MCEF NE==,故答案为:21.【点睛】本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比.18.(2019·山东初三)如图,点C 为Rt△ACB 与Rt△DCE 的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点 C 作CF⊥AD 于点F,延长FC 交BE 于点G,若AC=BC=25,CE=15,DC=20,则EGBG的值为___________.【答案】34【解析】如图,过E作EH⊥GF于H,过B 作BP⊥GF于P,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP,∴△EHG∽△BPG,∴EGBG=EHBP,∵CF⊥AD,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF,∠AFC=∠CPB,又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH,∠FAC=∠PCB,∴△DCF∽△CEH,△ACF∽△CBP,∴,1EH CE BP BCCF DC CF CA===,∴EH=34CF,BP=CF,∴EHBP=34,∴EGBG=34,故答案为34.【点睛】本题考查了相似三角形的判定与性质,正确添加辅助线构造相似三角形,利用相似三角形的对应边成比例进行推导是解题的关键.三、解答题(每小题6分,共12分)19.(2019·四川中考真题)如图,线段AC、BD相交于点E,AE DE=,BE CE=.求证:B C∠=∠.【答案】详见解析【解析】证明:在△AEB和△DEC中,AE DEAEB DECBE CE=⎧⎪∠=∠⎨⎪=⎩∴△AEB≌△DEC故B C∠=∠.【点睛】本题考查了全等三角形中角边角的判定,轴对称型全等三角形的模型,掌握即可解题.20.(2019·江苏初二期末)如图,在▱ABCD 中,对角线AC,BD 相交于点O,过点O 的一条直线分别交AD,BC 于点E,F.求证:AE=CF.【答案】证明见解析.【解析】∵▱ABCD 的对角线AC,BD 交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE 和△COF 中EAO FCOAO OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF.【点睛】本题考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.四、解答题(每小题8分,共16分)21.(2019·黑龙江初三)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【答案】(1)证明见解析;(2)3. 【解析】 (1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵∴OB=12∵BD ⊥EF ,∴3, ∴EF=2EO=3. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键22.(2019·全国初三课时练习)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF ∽△DEC ;(2)若AB=8,33,求AE 的长.【答案】(1)见解析(2)6【解析】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC∴∠C+∠B=180°,∠ADF=∠DEC∵∠AFD+∠AFE=180°,∠AFE=∠B ,∴∠AFD=∠C在△ADF 与△DEC 中,∵∠AFD=∠C ,∠ADF=∠DEC ,∴△ADF ∽△DEC(2)∵四边形ABCD 是平行四边形,∴CD=AB=8.由(1)知△ADF ∽△DEC , ∴AD AF DE CD=, ∴AD CD 63DE 12AF 43⋅=== 在Rt △ADE 中,由勾股定理得:()2222AE DE AD 12636=-=-=五、解答题(每小题9分,共18分)23.(2019·山东初三期中)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC .(1)求证:△ADE ∽△ABC ;(2)若AD =3,AB =5,求AF AG的值.【答案】(1)证明见解析;(2)35.【解析】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴35 AD AE AB AC==由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴AF AE AG AC=,∴AF AG=35考点:相似三角形的判定24.(2019·湖州市第五中学初三)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G,(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE的中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【答案】(1)①25,②123;(2)等腰DFG ∆的腰长为4或20或84+48147或84+4814-.理由见解析.【解析】(1)①在正方形ACDE 中,6DG GE ==,在Rt AEG ∆中,2265AG AE EG =+=,//EG AC Q ,ACF GEF ∴∆∆∽,∴ FGEGAF AC =,∴ 61122FGAF ==,1253FG AG ∴==,②如图1中,正方形ACDE 中,AE ED =,45AEF DEF ∠=∠=︒,EF EF =Q ,AEF DEF ∴∆≅∆,12∴∠=∠,设12x ∠=∠=,//AE BC Q ,1B x ∴∠=∠=,GF GD =Q ,32x ∴∠=∠=,在DBF ∆中,3180FDB B ∠+∠+∠=︒,()90180x x x ∴++︒+=︒,解得30x =︒,30B ∴∠=︒,∴在Rt ABC ∆中,123tan30AC BC ==︒. (2)在Rt ABC ∆中,222212915AB AC BC =+=+=,如图2中,当点D 在线段BC 上时,此时只有GF GD =,//DG AC Q ,BDG BCA ∴∆∆∽, 设3BD x =,则4DG x =,5BG x =,4GF GD x ∴==,则159AF x =-,//AE CB Q ,AEF BCF ∽∴∆∆,∴AE AF BC BF=, ∴ 9315999x x x --=, 整理得:2650x x -+=,解得1x =或5(舍弃)∴腰长44GD x ==.如图3中,当点D 在线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF DG =,设3AE x =,则4EG x =,5AG x =,124FG DG x ∴==+,//AE BC Q ,AEF BCF ∽∴∆∆,∴ AE AF BC BF=, ∴ 39129927x x x +=+, 解得2x =或2-(舍弃),∴腰长41220DG x =+=.如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF DG =,过点D 作DH FG ⊥.设3AE x =,则4EG x =,5AG x =,412DG x =+,()41648·cos 41255x FH GH DG DGB x +∴==∠=+⨯=,329625x GF GH +∴==,7965x AF GF AG +∴=-=, //AC DG Q ,ACF GEF ∴∆∆∽,∴AC AF EG FG=, ∴ 796125329645x x x +=+, 解得12147x =或12147-(舍弃) ∴腰长8448144127GD x +=+=, 如图5中,当点D 在线段CB 的延长线上时,此时只有DF DG =,作DH AG ⊥于H .设3AE x =,则4EG x =,5AG x =,412DG x =-,1648·cos 5x FH GH DG DGB -∴==∠=, 329625x FG FH -∴==, 9675x AF AG FG -∴=-=, //AC EG Q ,ACF GEF ∴∆∆∽,∴ AC AF EG FG=,∴967 1253296 45xxx-=-,解得1214x=或1214-(舍弃),∴腰长844814412DG x-+=-=,综上所述,等腰DFG∆的腰长为4或20或8448147+或8448147-+.【点睛】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.六、解答题(每小题10分,共20分)25.(2019·河北初三期末)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.【答案】(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)5.【解析】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴BD DF=CE ED.∵BD=CD,∴CD DF=CE ED,即CD CE=DF ED.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=12BC=6.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣62,∴AD=8.∴S△ABC=12•BC•AD=12×12×8=48,S△DEF=14S△ABC=14×48=12.又∵12•AD•BD=12•AB•DH,∴AD BD8624 DHAB105⋅⨯===.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=245.∵S△DEF=12·EF·DG=12·EF·245=12,∴EF=5.【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.26.(2019·江苏初三期中)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA 的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.【答案】(1)3011;(2)4195;(3)0<t≤1813或3011<t≤5.【解析】(1)∵OA=6,OB=8,∴由勾股定理可求得:AB=10,由题意知:OQ=AP=t,∴AC=2t,∵AC是⊙P的直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴AC AD AB OA,∴AD=65t,当Q与D重合时,AD+OQ=OA,∴65t+t=6,∴t=30 11;(2)当⊙Q经过A点时,如图OQ=OA﹣QA=4,∴t=41=4s,∴PA=4,∴BP=AB﹣PA=6,过点P作PE⊥OB于点E,⊙P与OB相交于点F、G,连接PF,∴PE∥OA,∴△PEB∽△AOB,∴PE BP OA AB=,∴PE=3.6,∴由勾股定理可求得:EF=2195,由垂径定理可求知:FG=2EF=4195;(3)当QC与⊙P相切时,如图此时∠QCA=90°,∵OQ=AP=t,∴AQ=6﹣t,AC=2t,∵∠A=∠A,∠QCA=∠ABO,∴△AQC∽△ABO,∴AQ AC AB OA=,∴62 106t t -=,∴t=18 13,∴当0<t≤1813时,⊙P与QC只有一个交点,当QC⊥OA时,此时Q与D重合,由(1)可知:t=30 11,∴当3011<t≤5时,⊙P与QC只有一个交点,18 13或3011<t≤5.综上所述,当,⊙P与QC只有一个交点,t的取值范围为:0<t≤。
专题24 构造直角三角形利用三角函数求边长小题【典例讲解】Rt△ABC中,△A=90°,BC=4,有一个内角为60°,点P是直线AB上不同于A、B的一点,且△ACP=30°,则PB的长为_______.【详解】分两种情况考虑:当△ABC=60°时,如图所示:△△CAB=90°,△△BCA=30°.又△△PCA=30°,△△PCB=△PCA+△ACB=60°.又△△ABC=60°,△△PCB为等边三角形.又△BC=4,△PB=4.当△ABC=30°时,(i)当P在A的右边时,如图所示:△△PCA=30°,△ACB=60°,△△PCB=90°.又△B=30°,BC=4,△BCcosBPB=,即2BC448PB===3cosB cos30332=.(ii)当P在A的左边时,如图所示:△△PCA=30°,△ACB=60°,△△BCP=30°.又△B=30°,△△BCP=△B.△CP=BP.在Rt△ABC中,△B=30°,BC=4,△AC=12BC=2.根据勾股定理得:2222AB BC AC4223=-=-=,△AP=AB-PB=23-PB.在Rt△APC中,根据勾股定理得:AC2+AP2=CP2=BP2,即22+(23-PB)2=BP2,解得:BP=433.综上所述,BP的长为4或433或833.【综合演练】1.在△ABC中,BC31,△B=45°,△C=30°,则△ABC的面积为()B1C D1A在Rt△ABD中,△B=45°,.如图,在ABC中,连接BP AP PB+的最小值是()AB C D .2 为斜边向ABC 外作等腰直角三角形,得PD PB =+Rt ABD 中,为斜边向ABC 外作等腰直角三角形, 22PD AP = 在同一直线上时,取得最小值. 中,90D ,AB =sin 60BD AB︒=, 3. 【点睛】本题考查了解直角三角形的应用,构造辅助线得到22PD AP =是解题的关键. 3.如图,有一块三角形空地需要开发,根据图中数据可知该空地的面积为( )A .2B .2C .2D .2【答案】B【详解】解:延长BA,过C作CD△BA的延长线于点D,A.42B.43C.44D.45ADA .13B .4C .11D .【答案】C1△AE=2×2cos30°=2×2×. 1在Rt△AEP 中,. 故选C .6.已知在ABC 中,A ∠、B ∠是锐角,且sin 13B =,tan 2A =,44cm AB =,则ABC 的面积等于 __2cm .过点C作AB的垂线,垂足为点D.5sin13B=设CD=tanCD AAD =可设CD2AD y∴=BD∴=AB AD∴=△AC=5,△ABC的面积为53,Rt ABD中,=60°.是钝角时,如图,过点B作△AC=5,△ABC的面积为53,的值为__________.∠tanAB BAE故答案为:27【点睛】本题考查了解直角三角形.对于此类题目,不是直角三角形,要利用三角函数必须构筑直角三角形,知道三个元素(至少有一个是边),就能求出其余的边和角.进而求面积,在转化时,尽量不要破坏所给条件.10.如图,在ABC ∆中,8AC =,60ABC ∠=︒,45C ∠=︒,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为__________.【点睛】本题考查解特殊直角三角形,关键在于熟练掌握特殊直角三角形的基础性质.AC=米,3020BC=米,请你帮助物业计算出需要改造的广场面积是______平方米.(结果保留根号)【点睛】此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.在Rt△ACD中,△A=30°,AC=23,的面积是__.△等腰直角△ABC的面积为16,,则AC边上的中线长是_____________.2作△ABC的高AD,BE为AC边的中线..在ABC中,(1)求ABC 的面积;(2)求AB 的值;(3)求cos ABC ∠的值. ,最后利用三角形的面积公式算出ABC 的面积;中利用勾股定理求出的余弦值.△90ADC ADB ∠=∠=︒,Rt ACD ,AD C AC=,sin4AC C=1BC AD=⨯62△ABC的面积为12.(2)DC AD=,=6BC,==-=64BD BC DC△中,在Rt ABD=AB AD【答案】10.5【分析】作AD△BC,根据cosC和AC即可求得AD的值,再根据△B可以求得AD=BD,根据AD,BC即可求得S△ABC的值.【详解】解:过点A作AD△BC,垂足为D.=2,DE S△DEB=4,求四边形ACDE的面积.DH求BD的长.【答案】BD的长是5.【分析】过D作DE△AB于点E,设DE=a,用a表示出AE、BE,在Rt△ABC和Rt△BDE中分别表示出tan△ABC,从而列出方程,解方程后即可求出BE、DE的长,然后用勾股定理即可求出BD.【详解】解:过D作DE△AB于点E,如图所示,△△BAD=45°,.如图,ABC的角平分线c=时,求a的值;(1)当2(2)求ABC的面积(用含a,c的式子表示即可);(3)求证:a,c之和等于a,c之积.1Rt ABE 中,BD =,△点2c =.)答案不唯一可能情形1:过点1Rt ABF 中,CBG △中,ABC ABD S =+△12BD AF ⨯+求△DCB的度数.【答案】△DCB=30°.。
2020年中考数学考点提分专题二十四 计算能力提升(解析版)(时间:90分钟 满分120分)一、选择题(每小题3分,共36分)1.(2019·x 的取值范围是( ) A .x≥4 B .x >4 C .x≤4 D .x <42.(2019·湖北初二期中)已知3y =,则2xy 的值为( ) A .15- B .15 C .152- D .1523.(2019·四川中考真题)若:3:4a b =,且14a b +=,则2a b -的值是( )A .4B .2C .20D .144.(2019·湖北中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5 C .6- D .65.(2019·甘肃中考真题)1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( ) A .2- B .3- C .4 D .6-6.(2019·湖南中考真题)下列运算正确的是( )A =B =C 2=- D3=7.(2019·重庆中考真题)估计( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间8.(2019·陕西初三期中)关于x 的一元二次方程2(2)210m x x -++=有实数根,则m 的取值范围是( )A .3m ≤B .3m <C .3m <且2m ≠D .3m ≤且2m ≠9.(2019·湖北中考真题)若方程2240x x --=的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10 C .4 D .-410.(2019·重庆市万州第二高级中学初三期中)在△ABC 中,若21cos (1tan )2A B -+-=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°11.(2019·浙江中考真题)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( )A .16B .13C .12D .2312.(2019·山东初三期中)若方程2115525m x x x +=-+-有增根,那么m 的值是( ) A .5 B .5或5- C .10 D .10或10-二、填空题(每小题3分,共18分)13.(2019·天津中考真题)计算1)的结果等于_____________.14.(2019·山东初三期末)已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n m m n+= .15.(2019·全国初二单元测试)已知2m =, 2n =,则代数式的值为__________________16.(2019·江苏初三) 一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+cosα•sinβ;sin (α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin (60°+30°)1122⨯=1.类似地,可以求得sin15°的值是_______. 17.(2019·四川初三)已知654a b c ==,且26a b c +-=,则a 的值为__________. 18.(2019·浙江初三)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.三、解答题(每小题6分,共12分)19.(2019·江苏中考真题)计算:012sin 36tan 452⎛⎫-+︒-︒ ⎪⎝⎭. 20.(2019·江苏中考真题)解方程(1)2250x x --= (2)1421x x =-+四、解答题(每小题8分,共16分)21.(2019·四川中考真题)先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中1x =. 22.(2019·宁波华茂国际学校初三期末)(1)已知a ,b ,c ,d 是成比例线段,其中a =2cm ,b =3cm ,d =6cm ,求线段c 的长;(2)已知234a b c ==,且a +b ﹣5c =15,求c 的值.五、解答题(每小题9分,共18分)23.(2019·湖北初三期末)已知关于x 的方程x 2-(2k -1)x +k 2-2k +3=0有两个不相等的实数根.(1)求实数k 的取值范围.(2)设方程的两个实数根分别为x 1,x 2,是否存在这样的实数k ,使得|x 1|-|x 2|这样的k 值;若不存在,请说明理由.24.(2019·南通市启秀中学初二月考)若x ,y 为实数,且y 12.求x y y x ++2-xy y x +-2的值.六、解答题(每小题10分,共20分)25.(2019·山东初三期中)有三张正面分别写有数字-1,1,2的卡片,它们除数字不同无其它差别,现将这三张卡片背面朝上洗匀后.(1)随机抽取一张,求抽到数字2的概率;(2)先随机抽取一张,以其正面数字作为k 值,将卡片放回再随机抽一张,以其正面的数字作为b 值,请你用恰当的方法表示所有可能的结果,并求出直线y=kx+b 的图像不经过第四象限的概率.26.(2019·江苏初三期中)对于代数式ax 2+bx +c ,若存在实数n ,当x =n 时,代数式的值也等于n ,则称n 为这个代数式的不变值.例如:对于代数式x 2,当x =0时,代数式等于0;当x =1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A =0.(1)代数式x2﹣2的不变值是,A=.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=0,求b的值.2020年中考数学考点提分专题二十四计算能力提升(解析版)(时间:90分钟满分120分)一、选择题(每小题3分,共36分)1.(2019·x的取值范围是()A.x≥4B.x>4 C.x≤4D.x<4【答案】D【解析】4﹣x>0,解得:x<4即x的取值范围是:x<4故选D.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.(2019·湖北初二期中)已知3y=,则2xy的值为()A.15-B.15C.152-D.152【答案】A【解析】由3y =,得250{520x x -≥-≥,解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .3.(2019·四川中考真题)若:3:4a b =,且14a b +=,则2a b -的值是( )A .4B .2C .20D .14【答案】A【解析】解:由a :b =3:4:3:4a b =知34b a =, 所以43ab =.所以由14a b +=得到:4143aa +=,解得6a =.所以8b =.所以22684a b -=⨯-=.故选:A .【点睛】 考查了比例的性质,内项之积等于外项之积.若a cb d =,则ad bc =.4.(2019·湖北中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是()A .5-B .5C .6-D .6【答案】C【解析】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =, 把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C.【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键.5.(2019·甘肃中考真题)1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( )A .2-B .3-C .4D .6-【答案】A【解析】将x =1代入方程x 2+ax +2b =0,得a +2b =-1,2a +4b =2(a +2b )=2×(-1)=-2.故选A.【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键6.(2019·湖南中考真题)下列运算正确的是( )A=B=C2=- D3=【答案】D【解析】A2,所以A 选项错误;B、原式=B 选项错误;C 、原式=2,所以C 选项错误;D3=,所以D 选项正确.故选D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.(2019·重庆中考真题)估计( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 【答案】C【解析】解:(又因为4 5所以6<7故答案为C.【点睛】本题考查了二次根式的化简,其中明确化简方向和正确的估值是解题的关键.8.(2019·陕西初三期中)关于x 的一元二次方程2(2)210m x x -++=有实数根,则m 的取值范围是( )A .3m ≤B .3m <C .3m <且2m ≠D .3m ≤且2m ≠【答案】D【解析】 ∵关于x 的一元二次方程2(2)210m x x -++=有实数根,∴20m -≠且△≥0,即224(2)10m --⨯≥,解得3m ≤,∴m 的取值范围是3m ≤且2m ≠.故选D .考点:1.根的判别式;2.一元二次方程的定义.9.(2019·湖北中考真题)若方程2240x x --=的两个实数根为α,β,则α2+β2的值为( ) A .12B .10C .4D .-4 【答案】A【解析】解:Q 方程2240x x --=的两个实数根为,αβ,2αβ∴+=,4αβ=-,()22224812αβαβαβ∴+=+-=+=;故选:A .【点睛】本题考查一元二次方程根与系数的关系;熟练掌握韦达定理,灵活运用完全平方公式是解题的关键. 10.(2019·重庆市万州第二高级中学初三期中)在△ABC 中,若21cos (1tan )2A B -+-=0,则∠C 的度数是( )A .45°B .60°C .75°D .105° 【答案】C【解析】由题意,得 cosA=12,tanB=1, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C .11.(2019·浙江中考真题)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( )A .16B .13C .12D .23【答案】A【解析】解:从中任意抽取1张,是“红桃”的概率为16, 故选A .【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.12.(2019·山东初三期中)若方程2115525m x x x +=-+-有增根,那么m 的值是( ) A .5B .5或5-C .10D .10或10- 【答案】D【解析】关于x 的方程2115525m x x x +=-+-去分母, 得x+5+x-5=m,即2x=m 因为方程2115525m x x x +=-+-有增根, 所以x =5或−5当x =5时,m=2x=10;当x =−5时,m=2x=-10;所以m 的值为10或−10,故选D.【点睛】此题主要考查了分式方程的增根,在增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得字母参数的值.二、填空题(每小题3分,共18分)13.(2019·天津中考真题)计算1)的结果等于_____________.【答案】2【解析】解:原式=3﹣1=2.故答案为2.【点睛】本题考查了二次根式的混合运算,熟记平方差公式是解题的关键.14.(2019·山东初三期末)已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n m m n+= .【答案】225-. 【解析】 由m n ≠时,得到m ,n 是方程23650x x +-=的两个不等的根,根据根与系数的关系进行求解. 试题解析:∵m n ≠时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴2m n +=,53mn =-. ∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为225-. 考点:根与系数的关系.15.(2019·全国初二单元测试)已知2m =,2n =,则代数式的值为__________________【答案】===16.(2019·江苏初三) 一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+cosα•sinβ;sin (α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin (60°+30°)=sin60°•cos30°+cos60°•sin30°=112222⨯+⨯=1.类似地,可以求得sin15°的值是_______.【答案】4. 【解析】 sin15°=sin (60°﹣45°)=sin60°•cos45°﹣1222-⨯考点:特殊角的三角函数值;新定义. 17.(2019·四川初三)已知654a b c ==,且26a b c +-=,则a 的值为__________. 【答案】12【解析】∵654a b c ==, ∴设a=6x ,b=5x ,c=4x ,∵a+b-2c=6, ∴6x+5x-8x=6, 解得:x=2, 故a=12. 故答案为12.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.18.(2019·浙江初三)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____. 【答案】20 【解析】设原来红球个数为x 个, 则有1010x +=1030, 解得,x =20,经检验x =20是原方程的根. 故答案为20. 【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.三、解答题(每小题6分,共12分)19.(2019·江苏中考真题)计算:012sin 36tan 452⎛⎫-+︒-︒ ⎪⎝⎭. 【答案】2 【解析】根据“负数的绝对值是它的相反数”可得2=2-,根据“()10a a =≠”可得01sin 36=12⎛⎫︒- ⎪⎝⎭,根据正切公式可得tan 45=1︒,则原式21212=+-+=. 【点睛】本题综合考查绝对值的计算公式、正余弦公式、幂的计算公式. 20.(2019·江苏中考真题)解方程(1)2250x x --= (2)1421x x =-+【答案】(1)1211x x ==(2)3x =是方程的解. 【解析】 (1)x 2-2x=5, x 2-2x+1=5+1, (x-1)2=6,,∴1211x x == (2)方程两边同时乘以(x-2)(x+1),得 x+1=4(x-2), 解得:x=3,检验:当x=3时,(x-2)(x+1)≠0, 所以x=3是原方程的解. 【点睛】本题考查了解一元二次方程,解分式方程,熟练掌握相关解法是解题的关键.解分式方程时注意要进行检验.四、解答题(每小题8分,共16分)21.(2019·四川中考真题)先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【解析】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x ==【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.22.(2019·宁波华茂国际学校初三期末)(1)已知a ,b ,c ,d 是成比例线段,其中a =2cm ,b =3cm ,d =6cm ,求线段c 的长; (2)已知234a b c==,且a +b ﹣5c =15,求c 的值. 【答案】(1)4;(2)-4 【解析】(1)∵a ,b ,c ,d 是成比例线段 ∴a c b d=, 即236c =, ∴c=4; (2)设234a b c===k ,则a=2k ,b=3k ,c=4k , ∵a+b-5c=15 ∴2k+3k-20k=15 解得:k=-1 ∴c=-4. 【点睛】此题考查比例线段,解题关键是理解比例线段的概念,列出比例式,用到的知识点是比例的基本性质.五、解答题(每小题9分,共18分)23.(2019·湖北初三期末)已知关于x 的方程x 2-(2k -1)x +k 2-2k +3=0有两个不相等的实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为x 1,x 2,是否存在这样的实数k ,使得|x 1|-|x 2|这样的k 值;若不存在,请说明理由. 【答案】(1) k >114;(2)4. 【解析】解:(1)由题意知△>0,∴[﹣(2k ﹣1)]2﹣4×1×(k 2﹣2k +2)>0,整理得:4k ﹣7>0,解得:k 74>;(2)由题意知x 1+x 2=2k ﹣1,x 1x 2=k 2﹣2k +2=(k +1)2+1>0,∴x 1,x 2同号. ∵x 1+x 2=2k ﹣1>7214⨯-=52,∴x 1>0,x 2>0. ∵|x 1|﹣|x 2|=x 1﹣x2=x 12﹣2x 1x 2+x 22=5,即(x 1+x 2)2﹣4x 1x 2=5,代入得:(2k ﹣1)2﹣4(k 2﹣2k +2)=5,整理,得:4k ﹣12=0,解得:k =3. 【点睛】本题考查了根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.24.(2019·南通市启秀中学初二月考)若x ,y 为实数,且y12.求xyy x ++2-xyy x +-2的值.【解析】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12. 又∵x y y x ++2-x yy x +-2=-∵x =14,y =12,∴ x y <yx .∴+当x =14,y =12时,原式=.【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.六、解答题(每小题10分,共20分)25.(2019·山东初三期中)有三张正面分别写有数字-1,1,2的卡片,它们除数字不同无其它差别,现将这三张卡片背面朝上洗匀后.(1)随机抽取一张,求抽到数字2的概率;(2)先随机抽取一张,以其正面数字作为k值,将卡片放回再随机抽一张,以其正面的数字作为b值,请你用恰当的方法表示所有可能的结果,并求出直线y=kx+b的图像不经过第四象限的概率.【答案】(1)13;(2)49【解析】(1)∵有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,∴P(抽到数字2)=1 3(2)列表:可能出现的结果有9种,使得直线y=kx+b的图像不经过第四象限的结果有4种,既(1,1),(2,1),(1,2),(2,2)所以P(图像不经过第四象限)=4 9【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.26.(2019·江苏初三期中)对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n 为这个代数式的不变值.例如:对于代数式x2,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=0.(1)代数式x2﹣2的不变值是,A=.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=0,求b的值.【答案】(1)﹣1和2;3;(2)见解析;(3)﹣3或1【解析】解:(1)依题意,得:x2﹣2=x,即x2﹣x﹣2=0,解得:x1=﹣1,x2=2,∴A=2﹣(﹣1)=3.故答案为:﹣1和2;3.(2)依题意,得:3x2 +1=x,∴3x2﹣x+1=0,∵△=(﹣1)2﹣4×3×1=﹣11<0,∴该方程无解,即代数式3x2+1没有不变值.(3)依题意,得:方程x2﹣bx+1= x即x2﹣(b+1)x+1=0有两个相等的实数根,∴△=[﹣(b+1)]2﹣4×1×1=0,∴b1=﹣3,b2=1.答:b的值为﹣3或1.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.。