黑体辐射与光的量子性
- 格式:ppt
- 大小:846.50 KB
- 文档页数:39
129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。
· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。
· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。
该式称维恩位移定律。
3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。
该结果称斯忒藩—玻尔兹曼定律。
· 对于一般的物体4T M εσ=ε称发射率。
4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。
这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。
· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。
由普朗克公式可以很好地解释黑体辐射现象。
· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。
一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。
129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。
· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。
· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。
该式称维恩位移定律。
3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。
该结果称斯忒藩—玻尔兹曼定律。
· 对于一般的物体4T M εσ=ε称发射率。
4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。
这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。
· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。
由普朗克公式可以很好地解释黑体辐射现象。
· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。
一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u ==这两个公式称为德布罗意公式或德布罗意假设。
1. 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段,形成了三门经典学科。
这三门经典学科分别是______,______,______.2. 按经典的物质概念,物质可以分为两类,一类是____,另一类是______.3. 二十世纪初,经典物理学遇到了无法克服的困难。
这些困难分别是____,_____,______及_________.4. 经典物理中,对实物的运动采用_____来描述,实物的运动遵守______。
5. 经典物理中,对辐射场的运动采用_____来描述,辐射场的变化遵守______。
6. 在经典概念下,实物的基本特性是_______和________.7. 在经典概念下,辐射场的基本特性是_______和_______.8. 在经典概念,粒子性是指_____和______.9. 在经典概念,波动性是指_____和______.10. 在经典概念,波动性和粒子性___(填是否可以)统一于同一物质客体.11. 光的波动性的理论基础是________.12. 光的波动性的实验证据是________.13. 光的粒子性的实验证据是______,______,______.14. 光的粒子性的理论依据是______,______.15. 微粒的粒子性是指微观粒子的______,即_______以及______.16. 微粒的波动性是指__________.17. 微粒的粒子性的实验证据是______.18. 按照爱因斯坦光子假设,光子的能量E和动量P与光波的频率ν和波长λ的关系为E=____,P=____.19. 按照德布洛依假设,能量为E、动量为P的自由粒子其相应的物质波的波长λ=____,频率ν=___.20. 自由粒子的动能为E,速度远小于光速,则德布罗依波长λ=____.21. 电子被电势差V(伏)加速,则德布罗依波长λ=____.22. 按照德布洛依假设,粒子的能量E、动量P与相应的物质波的频率ν,波长λ的关系是____,______.23. 历史上第一个肯定光除了波动性之外还具有粒子性的科学家是____.24. 历史上第一次用实验证明实物具有波动性的科学家是________.25. 能量为E,动量为P的自由粒子的平面波的表达式是________.26. 玻尔的氢原子理论包含三条假设,分别是_____,_____,_____.27. 索末菲对玻尔的轨道量子化条件推广为__________.28. 玻尔的频率条件表示为________.29. 任何态函数用动量本征函数展开的表达式为_____________.30. 任何态函数在动量表象中的表达式为________________.31. 波函数是指__________.32. 按照波函数的统计解释,粒子在空间各点出现的几率只决定于_________.33. 微观粒子的量子状态最显著的特点是_____________.34. 波函数乘一个常因子,所描的状态______.(填是否改变)35. 量子力学第一条基本假设是____________________.36. 波函数的统计解释是__________________________.37. 物质波与经典波的重要区别有两点,其一是____________,其二是_____________.38. 波函数的归一化条件是________________.39. 体系的状态用()t z y x ,,,ψ.则粒子在t 时刻在点(x,y,z )周围体元d τ内出现的几率是_____.40. 非平方可积的波函数可以归一化为_____,也可以用箱归一化方法归一化为___.41. 自由粒子的本征函数r p i Ae ⋅-若归一化为δ函数,则A=____.42. 自由粒子的本征函数r p i Ae ⋅-若归一化为1,则A=____.43. 自由粒子的本征函数r p i Ae⋅-若归一化为δ函数,则其动量是_______.44. 自由粒子的本征函数r p i Ae⋅-若归一化为一,则动量取____,其值_____. 45. 量子态迭加的对象是_______,经典态迭加对象是_______.46. 经典态迭加的结果是___(填可以或不可以)出现各点强度为零的状态.47. 量子态迭加的结果是___(填可以或不可以)出现各点强度为零的状态。
物理学中的黑体辐射和光谱学黑体辐射和光谱学是物理学科中非常重要的两个分支,它们的研究帮助我们更深入地理解了自然界中的各种现象。
本文将深入探讨这两个分支的原理与应用。
一、黑体辐射黑体辐射是指一种热辐射现象,即一种物体在特定温度下吸收和辐射电磁波的过程。
黑体辐射的热能密度与物体的温度、波长以及材料的特性有关。
在19世纪中期,德国物理学家魏恩提出了一种理论,解释黑体辐射的实验结果。
他假设黑体辐射仅依赖于温度和波长两个参数,称为魏恩位移定律。
这一理论在当时得到了广泛的认可,并被称为“魏恩定律”。
黑体辐射与光的发射和吸收有很大的关系。
当一种物质吸收光线时,光的能量被转化为物质内部的热能。
同时,这种物质也会向周围环境辐射热能。
如果将这种物质置于真空中,我们将观察到一种完全由物质本身辐射而来的电磁辐射,这就是黑体辐射。
这种辐射具有一定的频率和能量分布,称为黑体辐射谱。
该谱在不同的温度下,会表现出不同的特征。
在20世纪初期,德国物理学家普朗克提出了一个新的理论,称为量子假设。
根据该理论,辐射能量不是连续的,而是由一系列由能量量子组成的包组成。
这种理论得到了实验证实,并成为了现代量子理论建立的奠基石。
黑体辐射的研究在许多领域中都有着广泛的应用。
在可见光谱学中,黑体辐射谱被用于校准和确保仪器的准确性。
在天文物理学中,黑体辐射谱被用于研究恒星的表面温度和组成,从而推断出这些恒星的年龄和演化历史。
在材料科学中,黑体辐射谱被用于研究材料的光学性质和热性能。
二、光谱学光谱学是一种物理学分支,研究的是由不同频率和波长的电磁辐射组成的光谱。
光谱学的发展历史可以追溯到17世纪,当时牛顿用一块三棱镜将白光分解为七种颜色。
这种将白光分解为彩虹色的方法被称为色散。
色散现象使物理学家开始深入探究光的性质,发现这种可以看到的光谱只是一个更大、更复杂的谱系中的一小部分。
虽然牛顿在探究光谱学方面做出了开创性的工作,在贡献科学的同时也让巫师帽多了一项装饰,但当时仍有许多问题没有得到解决。
黑体辐射与量子理论的关联引言在物理学中,黑体辐射一直是一个重要的研究对象。
通过研究黑体辐射,科学家们揭示了光的量子特性,推动了量子理论的发展。
本文将探讨黑体辐射与量子理论的关联,以及这种关联对于我们对于宏观物质世界的理解的深刻影响。
一、黑体辐射的发现黑体辐射是指处于热平衡状态的物体,它以一定温度处于稳定状态并向周围环境发射热辐射。
19世纪末,德国物理学家马克斯·普朗克通过对黑体辐射的研究,提出了著名的普朗克辐射定律。
该定律表明,黑体辐射的频率分布与其温度有关。
普朗克的研究奠定了后来量子理论的基础,也为量子力学的诞生打下了坚实的理论基础。
二、黑体辐射的问题尽管普朗克辐射定律提供了对黑体辐射的理论解释,但是根本上,它并未完全解释黑体辐射行为的原理。
根据经典物理学的理论,我们可以预测黑体辐射的等能量密度,但是在高频率下,这种预测与实际观测结果相差甚远。
这个问题被称为紫外灾难。
这个困惑科学家多年的问题迫使他们对传统的经典物理学开始进行质疑,为进一步研究打下了基础。
三、量子理论的诞生量子理论的发展开始于普朗克的研究和亚当斯·爱因斯坦的工作。
爱因斯坦通过分析黑体辐射现象,提出了光的行为既具有粒子性又具有波动性的观点。
这一理论被称为光量子假说,它对当时的物理学界产生了极大的冲击和影响。
进一步的研究表明,光量子假说是符合实验结果的。
而量子理论所提出的概念和模型,如波粒二象性、不确定性原理等,为我们对微观世界的认识提供了全新的视角。
四、通过对黑体辐射的研究,科学家们深刻认识到光的量子特性。
他们发现辐射能量的分布呈不连续的能级,而不是连续变化的。
这意味着能量的辐射是以量子化的方式进行的。
此外,量子理论还提供了对黑体辐射中光子数和能量的精确计算方法。
这导致了量子统计的产生,进一步推动了量子力学的发展。
五、黑体辐射与物质世界的理解黑体辐射的研究不仅推动了量子理论的发展,也对我们对宏观物质世界的理解产生了深远的影响。
黑色物体吸光原理
黑色物体吸光原理,是一个物理学过程,表明黑色物体能吸收附近的光子并转
化为热能。
黑色物体只吸收而不反射任何光线,这被称为黑体辐射定律。
例如,一块黑色板材放置在肉眼可见的频谱范围(包括紫外线,可见光和红外线)的阳光中,这块板材将会吸入所有激发它的光,并将其转化为热能。
这种吸光原理是受量子力学原理支配的,其中激发黑色物体所接收的能量取决
于光子数量和频率,而吸收的能量与其他物质完全不同。
根据薛定谔方程,一个原子可以把光子的能量转化为自身的激发能,并在释放时转化为热能。
换句话说,一块黑色板材将会把光子的能量转化为热量,从而提供了利用太阳能来取暖的有效方式。
其他光子材料可以反射或透射一定量的光,而不吸收任何能量,这也能提供人
们利用反射原理拒绝太阳热量,以达到保护室内外环境温度的效果。
比如,在反射原理的帮助下,人们可以使用银色涂层来保护室外用餐区域,这样就可以有效减少人们受到太阳的热量的伤害。
所以,黑色物体吸光原理可以为社会提供无限的可能性,不仅为我们提供廉价的取暖方式,而且也能有效保护我们免受太阳热量的伤害。