(完整版)高数一知识点
- 格式:doc
- 大小:546.51 KB
- 文档页数:9
大一高数知识点总结全一、导数与微分1. 函数极限和连续性1.1 函数极限的定义和性质1.2 无穷大与无穷小1.3 函数的连续性与间断点2. 导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 高阶导数与隐函数求导二、微分中值定理与高阶导数应用1. 中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 泰勒公式与函数的局部性质2.1 泰勒公式及余项2.2 函数的单调性与极值2.3 函数的凹凸性与拐点3. 高阶导数的应用3.1 曲率与曲线的切线与法线3.2 凸函数与凹函数的判定三、定积分与不定积分1. 定积分的意义与性质1.1 定积分的定义1.2 定积分的性质与运算法则1.3 可积条件与Newton-Leibniz公式2. 不定积分2.1 不定积分的定义与基本公式2.2 基本不定积分的计算方法2.3 图形与面积的应用四、微分方程1. 常微分方程基本概念1.1 微分方程的定义与基本概念1.2 一阶线性微分方程1.3 可分离变量的微分方程2. 常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 变量变换与常系数线性微分方程3. 高阶线性微分方程3.1 n阶齐次与非齐次线性微分方程3.2 常系数线性齐次微分方程的特征方程 3.3 可降阶的线性非齐次微分方程五、多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限定义1.2 二元函数的连续性1.3 多元函数的极限与连续性2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 高阶偏导数与混合偏导数2.3 全微分与微分近似3. 隐函数与参数方程求导3.1 隐函数与参数方程的基本概念3.2 隐函数求导与相关性质3.3 参数方程求导与相关性质以上是大一高数的知识点总结,通过学习这些内容,能够掌握基本的导数与微分、定积分与不定积分、微分方程以及多元函数微分学的知识。
希望这份总结对你的学习有所帮助。
高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。
为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。
1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。
1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。
1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。
2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。
2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。
2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。
3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。
3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。
3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。
4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。
4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。
4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。
5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。
5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。
5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。
综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。
大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。
高1数学知识点总结一、代数1. 集合与函数的概念- 集合的表示、运算及其性质- 函数的定义、性质和常见类型(线性函数、二次函数、指数函数、对数函数、三角函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 代数式的运算- 整式的加减乘除运算- 因式分解- 分式的运算3. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式的性质和解集- 线性不等式的解集表示4. 二次方程与不等式- 二次方程的解法(开平方法、配方法、公式法、因式分解法)- 二次方程根的判别式- 二次不等式的解法5. 指数与对数- 指数的定义和运算性质- 对数的定义、性质和运算规则- 指数函数和对数函数的图像和性质二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和圆的方程- 空间几何体的表面积和体积计算2. 解析几何- 坐标系的建立和应用- 直线与平面的方程- 圆的方程- 空间直线与平面的方程三、三角学1. 三角函数- 三角函数的定义和性质- 三角函数的图像和周期性- 三角恒等变换2. 三角方程- 三角方程的解法- 三角形的解法(正弦定理、余弦定理)四、概率与统计1. 概率- 随机事件的概率- 条件概率和独立事件- 概率分布(二项分布、正态分布等)2. 统计- 数据的收集和整理- 描述性统计(平均数、中位数、众数、方差、标准差)- 推断性统计(抽样、置信区间、假设检验)以上是高1数学的主要知识点概述。
每个部分都需要通过大量的练习来巩固和深化理解。
教师和学生可以根据这个总结来规划教学和学习的重点,确保覆盖所有重要的概念和技能。
高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
大一高数笔记全部知识点第一章数列与极限1.1 数列1.1.1 数列的概念1.1.2 等差数列1.1.3 等比数列1.2 极限的概念与性质1.2.1 极限的定义1.2.2 极限存在的条件1.2.3 极限的性质1.3 极限运算法则1.3.1 无穷小量与无穷大量1.3.2 极限的四则运算第二章函数与连续2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的性质2.2 基本初等函数2.2.1 幂函数与指数函数2.2.2 对数函数与指数对数函数2.3 函数的极限与连续性2.3.1 函数的极限2.3.2 函数的连续性第三章导数与微分3.1 导数的概念与计算方法3.1.1 导数的定义3.1.2 常用函数的导数计算3.2 微分的概念与性质3.2.1 微分的定义3.2.2 微分的性质3.3 高阶导数与导数的应用3.3.1 高阶导数的定义3.3.2 导数的应用:切线与法线第四章积分与不定积分4.1 不定积分的概念与性质4.1.1 不定积分的定义4.1.2 不定积分的性质4.2 定积分的概念与性质4.2.1 定积分的定义4.2.2 定积分的性质4.3 积分的运算法则与应用4.3.1 积分的基本运算法则4.3.2 积分的应用:面积与曲线长度第五章多元函数与偏导数5.1 多元函数的概念与性质5.1.1 多元函数的定义5.1.2 多元函数的性质5.2 偏导数的概念与计算方法5.2.1 偏导数的定义5.2.2 常用函数的偏导数计算5.3 高阶偏导数与微分的应用5.3.1 高阶偏导数的定义5.3.2 微分的应用:切平面与法线以上是大一高数课程中的全部知识点。
通过学习这些知识,我们可以建立起数学的基础框架,为以后的学习打下坚实的基础。
每个知识点都有其重要性和实用性,在理解和掌握的过程中,我们要注重理论联系实际,通过例题和应用题的练习来提高解题能力。
希望同学们能够认真学习,并在课后进行适当的巩固和扩展。
加油!。
高等数学上册知识点第一章 函数与极限、、、函数1、函数定义及性质(有界性、单调性、奇偶性、周期性);2、反函数、复合函数、函数的运算;3、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、函数的连续性与间断点;函数在连续)(x f 0x )()(lim 00x f x f x x =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
、、、极限1、定义1、数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2、函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00、、、左极限: 右极限:)(lim )(00x f x f xx -→-=)(lim )(00x f x f xx +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 、、2、极限存在准则1、夹逼准则:1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim ax n n =∞→lim 2、单调有界准则:单调有界数列必有极限。
3、无穷小(大)量1、定义:若则称为无穷小量;若则称为无穷大量。
0lim =α∞=αlim2、无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小k Th1;)(~ααββαo +=⇔Th2 (无穷小代换)αβαβαβββαα''=''''lim lim lim ,~,~、、、、4、求极限的方法1、单调有界准则;2、夹逼准则;3、极限运算准则及函数连续性;4、两个重要极限:a) b)1sin lim 0=→xxx e xx xx xx =+=++∞→→11(lim )1(lim 105、无穷小代换:()0→x a)xx x x x arctan ~arcsin ~tan ~sin ~b)221~cos 1x x -c)()x e x ~1-a x axln ~1-d)()x x ~)1ln(+axx a ln ~)1(log +e)xx αα~1)1(-+第二章 导数与微分、、、导数1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:00)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数在点可导)(x f 0x )()(00x f x f +-'='⇔2、几何意义:为曲线在点处的切线的斜率。
完整版高数一知识点一、导数与微分高等数学中,导数是一种表示函数变化率的工具。
它是研究函数在某一点上的局部性质和变化趋势的基本概念。
导数可以通过极限的概念进行定义,表示函数在某一点上的瞬时变化率。
导函数的计算方法包括:1. 基本函数的导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
2. 四则运算法则:求导的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
3. 复合函数的求导:使用链式法则求解复合函数的导数。
微分是导数的应用之一,用于研究函数的近似变化。
微分的计算方法包括:1. 微分的定义:微分可以通过导数来进行计算,表示函数在某一点上的变化量。
2. 微分的近似计算:使用微分近似计算可以帮助我们在没有具体数值的情况下估计函数的变化。
二、不定积分与定积分不定积分是求解函数原函数的过程,也被称为反导数。
不定积分可以表示函数的面积、函数的平均值等。
计算不定积分的方法包括:1. 基本积分公式:根据一些基本函数的导数公式,可以得到相应的不定积分公式。
2. 积分的线性性质:积分具有线性性质,即函数的线性组合的积分等于各组成函数的积分之和。
3. 特殊函数的积分:对于一些特殊的函数,可以通过一些特殊的方法进行积分。
定积分是求解函数在某一区间上的面积的过程,也被称为积分。
定积分可以表示弧长、质量、体积等物理量。
计算定积分的方法包括:1. 定积分的定义:定积分可以通过分割区间,计算分割点上函数值与区间长度的乘积之和来进行计算。
2. 积分的性质:定积分具有一些性质,例如积分的线性性质、积分的区间可加性等。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式给出了定积分与不定积分之间的关系。
三、常微分方程常微分方程是研究函数的导数与自变量之间关系的方程。
它是高等数学中一个重要的分支,应用广泛。
常微分方程的求解方法包括:1. 可分离变量法:对于可分离变量的常微分方程,可以通过分离变量并积分的方法进行求解。
高一数学必修一必背知识点一、集合。
1. 集合的概念。
- 集合是由一些确定的、互不相同的对象所组成的整体。
这些对象称为集合的元素。
- 集合中的元素具有确定性(给定一个集合,任何一个对象是不是这个集合的元素是确定的)、互异性(集合中的元素互不相同)、无序性(集合中的元素没有顺序要求)。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如{1,2,3}。
- 描述法:用集合所含元素的共同特征表示集合的方法。
形式为{xp(x)},其中x是集合中的代表元素,p(x)是描述元素x特征的条件。
例如{xx > 0且x∈ R}表示正实数集。
- 区间表示法:对于数集,还可以用区间表示。
- 开区间(a,b)={xa < x < b}。
- 闭区间[a,b]={xa≤slant x≤slant b}。
- 半开半闭区间(a,b]={xa < x≤slant b},[a,b)={xa≤slant x < b}。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
- 真子集:如果A⊆ B,且B中至少有一个元素不属于A,那么A是B的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
- 空集varnothing是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{yy = f(x),x∈ A}叫做函数的值域。
高数笔记大一全部知识点总结高等数学是大一学生必修的一门课程,它是应用数学的重要基础,也是后续专业课程的前置知识。
以下是对大一高等数学课程的全部知识点进行的总结。
1. 数列与数学归纳法1.1 等差数列与等差数列的通项公式1.2 等比数列与等比数列的通项公式1.3 数列的求和公式与极限2. 函数与极限2.1 函数的定义与性质2.2 极限的定义与性质2.3 无穷大与无穷小2.4 函数的连续性与间断点3. 导数与微分3.1 导数的定义与几何意义3.2 常见函数的导数公式3.3 高阶导数与隐式函数求导 3.4 微分的定义与应用4. 微分中值定理与导数应用4.1 极值与最值4.2 高阶导数与凹凸性4.3 中值定理与罗尔定理4.4 泰勒公式与应用5. 积分与不定积分5.1 积分的定义与性质5.2 基本积分公式与换元积分法 5.3 分部积分与定积分5.4 数列和函数积分与应用6. 定积分与曲线长度6.1 定积分的定义与计算6.2 曲线长度的计算6.3 平面图形的面积与旋转体的体积 6.4 广义积分与收敛性7. 常微分方程7.1 微分方程的基本概念与分类7.2 可分离变量方程与齐次方程7.3 一阶线性微分方程与常数变易法 7.4 高阶线性微分方程与特征根法8. 多元函数微分学8.1 二元函数的偏导数与全微分8.2 隐函数与隐函数求导8.3 多元函数的极值与条件极值8.4 二重积分与累次积分以上是大一高等数学课程的全部知识点总结。
通过对这些知识点的学习,可以建立起扎实的数学基础,为后续专业课程的学习打下坚实的基础。
同时,高等数学也培养了我们的逻辑思维能力和问题解决能力,为我们的学习生涯做好了铺垫。
掌握这些知识点后,我们可以通过大量的习题和实例来巩固和应用所学知识,提高自己的数学思维和解题能力。
除了课堂学习外,可以参加数学竞赛、加入学术团队等方式,进一步拓宽数学知识的应用领域。
高等数学是一门重要的学科,不仅在理工科领域中有广泛的应用,也在其他学科中扮演着重要角色。
大一高数知识点归纳一、极限与连续1. 极限的概念- 数列极限的定义与性质- 函数极限的定义与性质- 无穷小与无穷大的概念- 极限的四则运算法则2. 极限的计算- 极限的代入法- 极限的因式分解法- 洛必达法则- 夹逼定理3. 连续函数- 连续性的定义- 连续函数的性质- 闭区间上连续函数的性质(最大值最小值定理)二、导数与微分1. 导数的概念- 导数的定义- 导数的几何意义与物理意义- 可导与连续的关系2. 常见函数的导数- 基本初等函数的导数- 导数的运算法则- 高阶导数3. 微分- 微分的定义- 微分的运算法则- 隐函数的微分法三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 导数的应用- 函数的单调性- 函数的极值问题- 曲线的凹凸性与拐点- 函数的渐近线四、不定积分1. 不定积分的概念- 原函数与不定积分的定义 - 不定积分的基本性质2. 常见函数的积分方法- 换元积分法- 分部积分法- 有理函数的积分五、定积分1. 定积分的概念- 定积分的定义- 定积分的性质2. 定积分的计算- 微积分基本定理- 定积分的换元法与分部积分法3. 定积分的应用- 平面图形的面积- 曲线的长度- 旋转体的体积六、级数1. 级数的基本概念- 级数的定义与分类- 收敛级数与发散级数2. 级数的收敛性判别- 正项级数的比较判别法- 比值判别法与根值判别法- 交错级数的收敛性判别3. 幂级数- 幂级数的收敛半径与收敛区间 - 泰勒级数与麦克劳林级数七、空间解析几何1. 向量与直线- 向量的运算与性质- 直线的方程与性质2. 平面与曲线- 平面的方程- 空间曲线的方程3. 多元函数的微分学- 偏导数与全微分- 多元函数的链式法则八、重积分1. 二重积分- 二重积分的定义与性质 - 二重积分的计算方法2. 三重积分- 三重积分的定义与性质 - 三重积分的计算方法九、曲线积分与格林公式1. 曲线积分- 曲线积分的定义与性质 - 曲线积分的计算2. 格林公式- 格林公式的表述- 应用格林公式计算曲线积分以上是大一高数的主要知识点归纳,每个部分都包含了关键的概念、定义、性质和计算方法。
大一上学期高数知识点总结一、导数与微分1. 函数的极限与连续性- 函数极限的定义与性质- 连续函数的定义与性质2. 导数与微分的概念- 导数的定义与几何意义- 微分的定义与应用3. 常见函数的导数- 幂函数、指数函数、对数函数、三角函数的导数计算4. 高阶导数与高阶微分- 高阶导数的概念及计算方法- 高阶微分的概念及应用二、常用函数与曲线的性质1. 一次函数与二次函数- 一次函数与二次函数的图像特征 - 一次函数与二次函数的性质及应用2. 指数函数与对数函数- 指数函数与对数函数的图像特征 - 指数函数与对数函数的性质及应用3. 三角函数与反三角函数- 基本三角函数的定义与性质- 反三角函数的定义与性质4. 参数方程与极坐标方程- 参数方程的概念与性质- 极坐标方程的概念与性质三、积分与定积分1. 不定积分与定积分- 不定积分的定义与性质- 定积分的定义与性质2. 常见函数的积分- 幂函数、指数函数、对数函数、三角函数的积分计算3. 积分中值定理与换元法- 积分中值定理的概念及应用- 换元法的基本思想与应用4. 微元法与面积体积计算- 微元法的基本原理与应用- 曲线下面积、旋转体体积的计算四、常微分方程1. 一阶常微分方程- 可分离变量方程的解法- 齐次方程的解法2. 线性常微分方程- 一阶线性齐次方程的解法- 一阶线性非齐次方程的解法3. 高阶常微分方程- 二阶常系数齐次方程的解法 - 二阶常系数非齐次方程的解法五、级数与幂级数1. 数项级数的概念与性质- 数项级数收敛的判定方法- 数项级数收敛的性质2. 幂级数的性质与收敛半径- 幂级数的收敛域与收敛半径- 幂级数的运算与收敛区间的确定3. 常见函数的幂级数展开- 指数函数、三角函数、对数函数的幂级数展开六、空间解析几何1. 空间直线与平面- 点、直线、平面的位置关系与方程- 直线与平面的交点及距离计算2. 空间曲线与曲面- 曲线的参数方程与性质- 曲面的方程与性质3. 空间向量的运算- 空间向量的基本运算法则- 向量积与混合积的计算以上是大一上学期高数的主要知识点总结,希望对你的复习有所帮助。
知识点总结高数一一、极限与连续1. 极限的概念及性质极限是数列或函数在趋于某个值时的性质,其定义包括数列极限和函数极限两种情况。
数列极限定义为:对于任意的ε>0,存在N∈N,使得当n>N时,|an-a|<ε成立。
函数极限定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-L|<ε成立。
极限的性质包括唯一性、有界性、局部性、夹逼性等。
2. 极限运算法则极限运算法则包括四则运算法则、复合函数极限法则、比较大小法则、夹逼定理等,通过这些法则可以简化极限运算的复杂性。
3. 无穷小与无穷大无穷小是指当自变量趋于某个值时,函数值无穷小于此值的函数。
无穷大则是指当自变量趋于某个值时,函数值无穷大于此值的函数。
在极限运算中,无穷小和无穷大的性质十分重要。
4. 连续的概念及性质连续函数的定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-f(a)|<ε成立。
连续函数的性质包括局部性、初等函数的连续性、复合函数的连续性等。
二、导数与微分1. 导数的概念与求导法则导数是函数在某一点处的变化率,导数的定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h。
求导法则包括基本导数公式、和差积商的求导法则、复合函数求导法则等。
2. 高阶导数与隐函数求导高阶导数为求导多次的结果,隐函数求导是指对于包含多个变量的函数,通过对某个变量求导来求得函数在该点的导数。
3. 微分的概念与微分公式微分是函数在某一点处的局部线性近似,微分的定义为:df(x)=f'(x)dx。
微分公式包括基本微分公式、换元法、分部积分法等。
4. 隐函数与参数方程的导数隐函数与参数方程的导数是指对于包含多个变量的方程,通过对某个变量求导来求得函数在该点的导数。
三、微分中值定理与泰勒公式1. 微分中值定理微分中值定理包括拉格朗日中值定理、柯西中值定理等,它们描述了函数在某些条件下的性质,对于函数的研究有重要意义。
高数大一超全知识点1. 定积分与不定积分在学习高等数学时,我们常常会遇到积分这一概念。
积分是微积分中的重要概念之一,可以分为定积分和不定积分。
不定积分表示某个函数的原函数,可以通过求导运算得到。
简单来说,求不定积分就是找到一个函数,当我们对这个函数求导时,得到原函数。
定积分表示在一定区间内函数的求和,可以用于计算曲线下的面积、物理学中的质量、空间的体积等。
定积分的计算需要用到积分的上限和下限。
2. 微分与微分方程微分是微积分中的另一个重要概念,它描述了函数的局部线性近似。
微分可以用来解决一些极值问题,如最大值和最小值问题。
微分方程则是描述一种变量与其导数之间的关系的方程。
微分方程有许多种类,例如常微分方程、偏微分方程等。
微分方程在自然科学和工程学中有广泛的应用,能够描述很多实际问题。
3. 极限与连续性极限是微积分中最基本的概念之一,它用于刻画函数在某一点的变化趋势。
通过极限的概念,我们可以定义导数和积分。
连续性是一个函数在定义域上没有突变或断裂的特性。
如果函数的极限存在且等于函数在该点的函数值,我们可以说这个函数在该点是连续的。
4. 应用问题高等数学中还包含着许多与实际问题相关的应用题。
这些应用问题可以通过积分、微分、极限等方法来解决。
例如,我们可以通过定积分来计算曲线下的面积,计算物体的质量等。
微分可以用来解决最优化问题,如寻找函数的最大值和最小值。
极限可以用来研究函数在某一点的性质和趋势。
5. 高级应用除了以上基本概念和应用,高等数学还包含一些更高级的概念和方法,如级数、多元函数、线性代数等。
级数是无穷项的和,它在数学分析和物理学中有广泛的应用。
多元函数研究的是有多个自变量的函数,它在图像处理、统计学等领域有重要的应用。
线性代数则是研究向量空间和线性方程组的数学分支,它在计算机图形学、机器学习等领域有广泛的应用。
通过学习这些高级的概念和方法,我们可以进一步扩展和应用数学的知识,为将来的学习和工作打下基础。
高等数学知识点总结大一大一高等数学知识点总结。
一、函数与极限。
1. 函数。
- 定义:设数集D⊆ R,则称映射f:D→ R为定义在D上的函数,通常记为y = f(x),x∈ D。
- 函数的特性。
- 有界性:若存在M>0,使得对任意x∈ X⊆ D,都有| f(x)|≤ M,则称f(x)在X上有界。
- 单调性:设函数y = f(x)的定义域为D,区间I⊆ D。
如果对于区间I上任意两点x_1及x_2,当x_1 < x_2时,恒有f(x_1)(或f(x_1)>f(x_2)),则称函数y =f(x)在区间I上是单调增加(或单调减少)的。
- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈D,有f(-x)=f(x),则称f(x)为偶函数;如果对于任意x∈ D,有f(-x)= - f(x),则称f(x)为奇函数。
- 周期性:设函数y = f(x)的定义域为D,如果存在一个正数T≠0,使得对于任意x∈ D有(x± T)∈ D,且f(x + T)=f(x),则称y = f(x)为周期函数,T称为y = f(x)的周期。
- 复合函数:设函数y = f(u)的定义域为D_1,函数u = g(x)在D上有定义且g(D)⊆ D_1,则由下式确定的函数y = f[g(x)],x∈ D称为由函数u = g(x)与函数y = f(u)构成的复合函数,它的定义域为D,变量u称为中间变量。
- 反函数:设函数y = f(x)的定义域为D,值域为W。
如果对于值域W中的任一y值,从关系式y = f(x)中可确定唯一的一个x值,则称变量x为变量y的函数,记为x = f^-1(y),y∈ W,称x = f^-1(y)为函数y = f(x)的反函数。
习惯上y = f(x)的反函数记为y = f^-1(x)。
2. 极限。
- 极限的定义。
- 数列极限:设{x_n}为一数列,如果存在常数a,对于任意给定的正数varepsilon(不论它多么小),总存在正整数N,使得当n > N时,不等式| x_n - a|都成立,那么就称常数a是数列{x_n}的极限,或者称数列{x_n}收敛于a,记为lim_n→∞x_n=a。
高数大一最全知识点总结高等数学作为一门重要的学科,对于大一学生来说是一门必修课程。
掌握高等数学的基本知识点,不仅对于日后的学习打下了坚实的基础,也有助于理解其他相关学科的内容。
本文将对高数大一学习中的各个知识点进行总结和归纳,帮助读者更好地理解和应用这些知识。
一、微分与导数1. 函数与极限- 一元函数与多元函数- 函数的极限定义- 常见函数的极限计算方法2. 导数与微分- 导数的定义与性质- 常见函数的导数计算方法- 微分的概念与应用3. 高级导数- 高阶导数的定义- 高阶导数的性质- 隐函数与参数方程的高阶导数计算二、积分与微分方程1. 不定积分与定积分- 不定积分的定义与性质- 常见函数的积分计算方法- 定积分的定义与性质- 积分中值定理及其应用2. 微分方程基础- 微分方程的概念- 一阶常微分方程的解法- 高阶常微分方程的解法3. 微分方程的应用- 物理问题中的微分方程- 生活中的微分方程应用- 模型问题中的微分方程建立与求解三、级数与数列1. 数列与极限- 数列极限的定义与性质- 常见数列极限计算方法- 无穷大与无穷小2. 常数项级数- 级数的概念与性质- 常数项级数的敛散性判定- 常数项级数的收敛性判定方法3. 幂级数- 幂级数的概念与性质- 幂级数的收敛区间与收敛半径的计算 - 幂级数的应用四、空间解析几何1. 三维空间中的点、直线、平面- 点的坐标表示- 直线的参数方程与一般方程- 平面的点法式与一般方程2. 直线与平面的位置关系- 直线与平面的交点- 直线与平面的夹角- 平面与平面的位置关系3. 空间曲线与曲面- 空间曲线的参数方程- 隐函数方程与参数方程的相互转化 - 曲面方程的一般形式与特殊形式五、多元函数与偏导数1. 多元函数的概念与性质- 多元函数的定义- 多元函数的极限与连续性判定- 多元函数的偏导数与全微分2. 偏导数的计算- 偏导数的定义与性质- 偏导数的计算方法与应用- 高阶偏导数的定义与计算3. 多元函数极值与条件极值- 多元函数的极值判定条件- 多元函数的最值计算- 有条件的极值问题总结:通过对高数大一知识点的总结,我们了解了微分与导数、积分与微分方程、级数与数列、空间解析几何以及多元函数与偏导数等重要内容。
高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
大一高数知识点总结XXX:大一高数知识点,重难点整理第一章基础知识部分1.1初等函数一、函数的概念1、函数的定义函数是从量的角度对运动变化的抽象表述,是一种刻画运动变化中变化量相依关系的数学模型。
设有两个变量x与y,如果对于变量x在实数集合D内的每一个值,变量y按照一定的法则都有唯一的值与之对应,那么就称x是自变量,y是x的函数,记作y=f(x),其中自变量x取值的集合D叫函数的定义域,函数值的集合叫做函数的值域。
2、函数的表示方法(1)解析法即用解析式(或称数学式)表示函数。
如y=2x+1,y=︱x︱,y=lg(x+1),y=sin3x等。
便于对函数进行精确地计算和深入分析。
(2)列表法即用表格形式给出两个变量之间函数关系的方法。
便于差的某一处的函数值。
(3)图像法即用图像来表示函数关系的方法非常形象直观,能从图像上看出函数的某些特性。
分段函数——即当自变量取不同值时,函数的表达式不一样,如1.2x?1.x?0?xsin。
f?xy。
x。
2x?1,x?00 x?0 x?0隐函数——相对于显函数而言的一种函数形式。
所谓显函数,即直接用含自变量的式子表示的函数,如y=x2+2x+3,这是常见的函数形式。
而隐函数是指变量x、y之间的函数关系式是由一个含x,y的方程F(x,y)=0给出的,如2x+y-3=0,e可得y=3-2x,即该隐函数可化为显函数。
参数式函数——若变量x,y之间的函数关系是通过参数式方程。
x?y而由2x+y-3=0?x?y?0等。
xt。
t?T?给出的。
y。
t?这样的函数称为由参数方程确定的函数,简称参数式方程,t称为参数。
反函数——如果在已给的函数y=f(x)中,把y看作自变量,x也是y的函数,则所确定的函数x=∮(y)叫做y=f(x)的反函数,记作x=fˉ1(y)或y=fˉ1(x)(以x表示自变量).2、函数常见的性子1、单调性(单调增加、单调减少)2、奇偶性(偶:关于原点对称,f(-x)=f(x);奇:关于y轴对称,f(-x)=-f(x).)3、周期性(T为不为零的常数,f(x+T)=f(x),T为周期)4、有界性(设存在常数M>,对任意x∈D,有f∣(x)∣≤M,则称f(x)在D上有界,如果不存在这样的常数M,则称f(x)在D上无界。
第一章~~第三章一、极限数列极限lim n n x ->∞函数极限lim ()x f x ->∞,lim ()x f x →+∞,lim ()x f x →-∞lim ()x x f x ->,0lim ()x x f x -->,0lim ()x x f x +->求极限(主要方法):(1)100sin 1lim1,lim(1),lim(1)x xx x x xe x e x x->->∞->=+=+=(2)等价无穷小替换(P76)。
当()0x ϕ→时,代换时要注意,只有乘积因子才可以代换。
(3)洛必达法则(000,,0,,0,1,0∞∞⋅∞∞-∞∞∞),只有0,0∞∞可以直接用罗比达法则。
幂指函数求极限:()lim ()ln ()lim ()v x v x u x u x e =;或,令()()v x y u x =,两边取对数ln ()ln ()y v x u x =,若lim ()ln ()v x u x a =,则()lim ()v x a u x e =。
结合变上限函数求极限。
二、连续 00lim ()()x x f x f x ->=左、右连续 000lim ()(),lim ()()x x x x f x f x f x f x -+->->==函数连续⇔函数既左连续又右连续闭区间上连续函数性质:最值,有界,零点(结合证明题),介值,推论。
三、导数 0000000()()()()'()limlim x x x f x f x f x x f x f x x x x->->-+-==-V V V 左导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x---->->-+-==-V V V右导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x+++->->-+-==-V V V 微分 ()'y A x z dy Adx y dx ο∆=⋅∆+==可导⇒连续 可导⇔可微 可导⇔既左可导又右可导求导数:(1) 复合函数链式法则[]()'[]'()dy dy du y f u u g x f u g x dx du dx====[()]''[()]'()'[()]([()])'y f g x y f g x g x f g x f g x ==≠(2) 隐函数求导法则两边对x 求导,注意y 、y '是x 的函数。
(3)参数方程求导'()()()/'()dy dy dx t x t y t dx dt dt t ψϕψϕ====22'()()()'()'()d t d dy d y dt t dt dx dx dx t dtψϕϕ== 四、导数的应用(1)罗尔定理和拉格朗日定理(证明题) (2)单调性(导数符号),极值(第一充分条件和第二充分条件),最值。
(3)凹凸性(二阶导数符号),拐点(曲线上的点,二维坐标,曲线在该点两侧有不同凹凸性)。
第四章 不定积分原函数 (())()F x f x '=→ 不定积分 ()()f x dx F x C =+⎰基本性质[()]()d f x dx f x dx =⎰ 或 [()]()df x dx f x dx =⎰()()F x dx F x c '=+⎰或()().dF x F x C =+⎰[()()dx dx d ]()()f x g x f x g x x +=+⎰⎰⎰ (分项积分)d (()d )k f x x k f x x =⎰⎰基本积分公式 (1)d k x kx C =+⎰; (2)11 (1d )1x x x C αααα+=+=-/+⎰(3)1ln ||dx x C x=+⎰ (4) dx xxe eC =+⎰(5) x ln d xxa a C a=+⎰ (6) d cos sin x x x C =+⎰ (7)d sin cos x x x C =-+⎰ (8) 2sec ta d n x x x C =+⎰(9) 2d csc cot x x x C =-+⎰ (10) d s x ec tan sec x x x C =+⎰(11)dx csc cot csc x x x C =-+⎰ (12)arcsin x C =+(13)2arctan 1d xx C x =++⎰除了上述基本公式之外,还有几个常用积分公式 1. tan ln |cos |;xdx x C =-+⎰ 2. cot ln |sin |;xdx x C =+⎰ 3. sec ln |sec tan |;xdx x x C =++⎰ 4. csc ln |csc cot |;xdx x x C =-+⎰5.2211arctan ;xdx C a x a a=++⎰6. arcsin;xC a=+⎰7. 2211ln ;2x adx C x a a x a-=+-+⎰ 8. 2arcsin ;2a x C a =9.ln |.x C =++求不定积分的方法1. 直接积分法:恒等变形,利用不定积分的性质,直接使用基本积分公式。
2. 换元法:第一类换元法(凑微分法)(())()()()(()d ).f x x x f u du F u C F x C ϕϕϕ'==+=+⎰⎰第二类换元法(变量代换法)()(())()()[()].d d f x x f t t t F t C F x C ϕϕψ'==+=+⎰⎰(注意回代)换元的思想:()(())()()()(())()()()(()).d d x t f t t dtt x f x xf t t tg t dt F t CF x C ϕϕϕψϕϕψ'=='===+=+⎰⎰⎰主要有幂代换、三角代换、倒代换 3. 分部积分法uv dx udv uv vdu uv u vdx ''==-=-⎰⎰⎰⎰v '的优先选取顺序为:指数函数;三角函数;幂函数第五章 定积分一、概念 1. 定义11()lim (),max{}nbi i i ai ni f x dx f x x λξλ→≤≤==∆=∆∑⎰2. 性质: 设()x f 、()x g 在[]b a ,区间上可积,则定积分有以下的性质.(1). a b dx b a -=⎰ ;(2). ()()[]⎰⎰⎰+=+ba ba ba dx x g n dx x f m dx x g n x mf )()(;(3).⎰⎰⎰+=bcc ab adx x f dx x f dx x f )()()(;(4). 若在[],a b 上,()0≥x f ,则0)(≥⎰b adx x f ;推论1. 若在[],a b 上,()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰推论2. ⎰⎰≤bab adx x f dx x f |)(||)(|(a b <)(5). 若函数()x f 在区间[]b a ,上可积,且()M x f m ≤≤,则)()()(a b M dx x f a b m ba-≤≤-⎰(6).(定积分中值定理) 设()x f 在区间[]b a ,上连续,则存在[]b a ,∈ξ,使()()a b f dx x f b a-=⎰ξ)(.3. 积分上限函数()xaf t dt ⎰及其性质(1).()x f dt t f x a='⎰))((,或()x f dt t f dxd xa =⎰)(; (2).如果()⎰=)(0)(x dt t f x ϕφ,则()))(()(0'='⎰x dt t f x ϕφ()()()x x f ϕϕ'=.(3). 如果()()()()x x x f t dt ϕψφ=⎰,则()()()(())x x x f t dt ϕψφ''=⎰()()()()()()'f x x f x x ϕϕψψ'=-.4. 广义积分(1). 无穷限积分()af x dx +∞=⎰()lim tat f x dx →+∞⎧=⎨⎩⎰收敛(极限存在)发散(极限不存在).()=⎰∞-b dx x f ()lim b tt f x dx →-∞⎧=⎨⎩⎰收敛(极限存在)发散(极限不存在).()⎰∞+∞-dx x f 收敛的充分必要条件是反常积分()0f x dx +∞⎰、()0f x dx -∞⎰同时收敛,并且在收敛时,有()⎰∞+∞-dx x f ()0f x dx +∞=⎰()0f x dx -∞+⎰.(2). 瑕积分a 为瑕点 ()()limb b a at a f x dx f x dx +→⎧==⎨⎩⎰⎰收敛(极限存在)发散(极限不存在)b 为瑕点 ()()lim bb aat bf x dx f x dx -→⎧==⎨⎩⎰⎰收敛(极限存在)发散(极限不存在)c 为瑕点 则()⎰badx x f 收敛⇔()⎰cadx x f 与()⎰bcdx x f 均收敛,并且在收敛时,有()=⎰b adx x f ()⎰c adx x f ()⎰+bcdx x f二、计算(一) 定积分的计算1、微积分基本公式:设函数()x f 在区间[]b a ,上连续,且()()x f x F =',则()()a F b F dx x f b a-=⎰)( , 牛顿-莱布尼兹(N-L )公式2、换元法:设函数()x f 在区间[]b a ,上连续,函数()t x ϕ=满足: ① 在区间[]βα,上可导,且()t ϕ'连续;② ()αϕ=a ,()βϕ=b ,当[,]t αβ∈时,[]b a x ,∈,则()()⎰⎰'=βαϕϕdt t t f dx x f b a)()(3、分部积分法:()|b b b a aauv dx uv u vdx ''=-⎰⎰, 或()|b bba aaudv uv vdu =-⎰⎰.4、偶倍奇零: 设函数()x f 在区间[]a a ,-上连续,则()()()()()2()a aaf x f x f x dx f x dx f x f x -⎧-=-⎪=⎨-=⎪⎩⎰⎰5、⎰⎰=22cos sin ππxdx xdx nn122!)!12(!)!2(2!)!2(!)!12(+==⎪⎩⎪⎨⎧⋅=+-k n kn k k k k π.6、分段函数的定积分。