(完整版)高数一知识点
- 格式:doc
- 大小:546.51 KB
- 文档页数:9
大一高数知识点总结全一、导数与微分1. 函数极限和连续性1.1 函数极限的定义和性质1.2 无穷大与无穷小1.3 函数的连续性与间断点2. 导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 高阶导数与隐函数求导二、微分中值定理与高阶导数应用1. 中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 泰勒公式与函数的局部性质2.1 泰勒公式及余项2.2 函数的单调性与极值2.3 函数的凹凸性与拐点3. 高阶导数的应用3.1 曲率与曲线的切线与法线3.2 凸函数与凹函数的判定三、定积分与不定积分1. 定积分的意义与性质1.1 定积分的定义1.2 定积分的性质与运算法则1.3 可积条件与Newton-Leibniz公式2. 不定积分2.1 不定积分的定义与基本公式2.2 基本不定积分的计算方法2.3 图形与面积的应用四、微分方程1. 常微分方程基本概念1.1 微分方程的定义与基本概念1.2 一阶线性微分方程1.3 可分离变量的微分方程2. 常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 变量变换与常系数线性微分方程3. 高阶线性微分方程3.1 n阶齐次与非齐次线性微分方程3.2 常系数线性齐次微分方程的特征方程 3.3 可降阶的线性非齐次微分方程五、多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限定义1.2 二元函数的连续性1.3 多元函数的极限与连续性2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 高阶偏导数与混合偏导数2.3 全微分与微分近似3. 隐函数与参数方程求导3.1 隐函数与参数方程的基本概念3.2 隐函数求导与相关性质3.3 参数方程求导与相关性质以上是大一高数的知识点总结,通过学习这些内容,能够掌握基本的导数与微分、定积分与不定积分、微分方程以及多元函数微分学的知识。
希望这份总结对你的学习有所帮助。
高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。
为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。
1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。
1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。
1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。
2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。
2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。
2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。
3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。
3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。
3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。
4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。
4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。
4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。
5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。
5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。
5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。
综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。
大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。
高1数学知识点总结一、代数1. 集合与函数的概念- 集合的表示、运算及其性质- 函数的定义、性质和常见类型(线性函数、二次函数、指数函数、对数函数、三角函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 代数式的运算- 整式的加减乘除运算- 因式分解- 分式的运算3. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式的性质和解集- 线性不等式的解集表示4. 二次方程与不等式- 二次方程的解法(开平方法、配方法、公式法、因式分解法)- 二次方程根的判别式- 二次不等式的解法5. 指数与对数- 指数的定义和运算性质- 对数的定义、性质和运算规则- 指数函数和对数函数的图像和性质二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和圆的方程- 空间几何体的表面积和体积计算2. 解析几何- 坐标系的建立和应用- 直线与平面的方程- 圆的方程- 空间直线与平面的方程三、三角学1. 三角函数- 三角函数的定义和性质- 三角函数的图像和周期性- 三角恒等变换2. 三角方程- 三角方程的解法- 三角形的解法(正弦定理、余弦定理)四、概率与统计1. 概率- 随机事件的概率- 条件概率和独立事件- 概率分布(二项分布、正态分布等)2. 统计- 数据的收集和整理- 描述性统计(平均数、中位数、众数、方差、标准差)- 推断性统计(抽样、置信区间、假设检验)以上是高1数学的主要知识点概述。
每个部分都需要通过大量的练习来巩固和深化理解。
教师和学生可以根据这个总结来规划教学和学习的重点,确保覆盖所有重要的概念和技能。
高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
大一高数笔记全部知识点第一章数列与极限1.1 数列1.1.1 数列的概念1.1.2 等差数列1.1.3 等比数列1.2 极限的概念与性质1.2.1 极限的定义1.2.2 极限存在的条件1.2.3 极限的性质1.3 极限运算法则1.3.1 无穷小量与无穷大量1.3.2 极限的四则运算第二章函数与连续2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的性质2.2 基本初等函数2.2.1 幂函数与指数函数2.2.2 对数函数与指数对数函数2.3 函数的极限与连续性2.3.1 函数的极限2.3.2 函数的连续性第三章导数与微分3.1 导数的概念与计算方法3.1.1 导数的定义3.1.2 常用函数的导数计算3.2 微分的概念与性质3.2.1 微分的定义3.2.2 微分的性质3.3 高阶导数与导数的应用3.3.1 高阶导数的定义3.3.2 导数的应用:切线与法线第四章积分与不定积分4.1 不定积分的概念与性质4.1.1 不定积分的定义4.1.2 不定积分的性质4.2 定积分的概念与性质4.2.1 定积分的定义4.2.2 定积分的性质4.3 积分的运算法则与应用4.3.1 积分的基本运算法则4.3.2 积分的应用:面积与曲线长度第五章多元函数与偏导数5.1 多元函数的概念与性质5.1.1 多元函数的定义5.1.2 多元函数的性质5.2 偏导数的概念与计算方法5.2.1 偏导数的定义5.2.2 常用函数的偏导数计算5.3 高阶偏导数与微分的应用5.3.1 高阶偏导数的定义5.3.2 微分的应用:切平面与法线以上是大一高数课程中的全部知识点。
通过学习这些知识,我们可以建立起数学的基础框架,为以后的学习打下坚实的基础。
每个知识点都有其重要性和实用性,在理解和掌握的过程中,我们要注重理论联系实际,通过例题和应用题的练习来提高解题能力。
希望同学们能够认真学习,并在课后进行适当的巩固和扩展。
加油!。
高等数学上册知识点第一章 函数与极限、、、函数1、函数定义及性质(有界性、单调性、奇偶性、周期性);2、反函数、复合函数、函数的运算;3、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、函数的连续性与间断点;函数在连续)(x f 0x )()(lim 00x f x f x x =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
、、、极限1、定义1、数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2、函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00、、、左极限: 右极限:)(lim )(00x f x f xx -→-=)(lim )(00x f x f xx +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 、、2、极限存在准则1、夹逼准则:1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim ax n n =∞→lim 2、单调有界准则:单调有界数列必有极限。
3、无穷小(大)量1、定义:若则称为无穷小量;若则称为无穷大量。
0lim =α∞=αlim2、无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小k Th1;)(~ααββαo +=⇔Th2 (无穷小代换)αβαβαβββαα''=''''lim lim lim ,~,~、、、、4、求极限的方法1、单调有界准则;2、夹逼准则;3、极限运算准则及函数连续性;4、两个重要极限:a) b)1sin lim 0=→xxx e xx xx xx =+=++∞→→11(lim )1(lim 105、无穷小代换:()0→x a)xx x x x arctan ~arcsin ~tan ~sin ~b)221~cos 1x x -c)()x e x ~1-a x axln ~1-d)()x x ~)1ln(+axx a ln ~)1(log +e)xx αα~1)1(-+第二章 导数与微分、、、导数1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:00)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数在点可导)(x f 0x )()(00x f x f +-'='⇔2、几何意义:为曲线在点处的切线的斜率。
完整版高数一知识点一、导数与微分高等数学中,导数是一种表示函数变化率的工具。
它是研究函数在某一点上的局部性质和变化趋势的基本概念。
导数可以通过极限的概念进行定义,表示函数在某一点上的瞬时变化率。
导函数的计算方法包括:1. 基本函数的导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
2. 四则运算法则:求导的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
3. 复合函数的求导:使用链式法则求解复合函数的导数。
微分是导数的应用之一,用于研究函数的近似变化。
微分的计算方法包括:1. 微分的定义:微分可以通过导数来进行计算,表示函数在某一点上的变化量。
2. 微分的近似计算:使用微分近似计算可以帮助我们在没有具体数值的情况下估计函数的变化。
二、不定积分与定积分不定积分是求解函数原函数的过程,也被称为反导数。
不定积分可以表示函数的面积、函数的平均值等。
计算不定积分的方法包括:1. 基本积分公式:根据一些基本函数的导数公式,可以得到相应的不定积分公式。
2. 积分的线性性质:积分具有线性性质,即函数的线性组合的积分等于各组成函数的积分之和。
3. 特殊函数的积分:对于一些特殊的函数,可以通过一些特殊的方法进行积分。
定积分是求解函数在某一区间上的面积的过程,也被称为积分。
定积分可以表示弧长、质量、体积等物理量。
计算定积分的方法包括:1. 定积分的定义:定积分可以通过分割区间,计算分割点上函数值与区间长度的乘积之和来进行计算。
2. 积分的性质:定积分具有一些性质,例如积分的线性性质、积分的区间可加性等。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式给出了定积分与不定积分之间的关系。
三、常微分方程常微分方程是研究函数的导数与自变量之间关系的方程。
它是高等数学中一个重要的分支,应用广泛。
常微分方程的求解方法包括:1. 可分离变量法:对于可分离变量的常微分方程,可以通过分离变量并积分的方法进行求解。
高一数学必修一必背知识点一、集合。
1. 集合的概念。
- 集合是由一些确定的、互不相同的对象所组成的整体。
这些对象称为集合的元素。
- 集合中的元素具有确定性(给定一个集合,任何一个对象是不是这个集合的元素是确定的)、互异性(集合中的元素互不相同)、无序性(集合中的元素没有顺序要求)。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如{1,2,3}。
- 描述法:用集合所含元素的共同特征表示集合的方法。
形式为{xp(x)},其中x是集合中的代表元素,p(x)是描述元素x特征的条件。
例如{xx > 0且x∈ R}表示正实数集。
- 区间表示法:对于数集,还可以用区间表示。
- 开区间(a,b)={xa < x < b}。
- 闭区间[a,b]={xa≤slant x≤slant b}。
- 半开半闭区间(a,b]={xa < x≤slant b},[a,b)={xa≤slant x < b}。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
- 真子集:如果A⊆ B,且B中至少有一个元素不属于A,那么A是B的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
- 空集varnothing是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{yy = f(x),x∈ A}叫做函数的值域。
高数笔记大一全部知识点总结高等数学是大一学生必修的一门课程,它是应用数学的重要基础,也是后续专业课程的前置知识。
以下是对大一高等数学课程的全部知识点进行的总结。
1. 数列与数学归纳法1.1 等差数列与等差数列的通项公式1.2 等比数列与等比数列的通项公式1.3 数列的求和公式与极限2. 函数与极限2.1 函数的定义与性质2.2 极限的定义与性质2.3 无穷大与无穷小2.4 函数的连续性与间断点3. 导数与微分3.1 导数的定义与几何意义3.2 常见函数的导数公式3.3 高阶导数与隐式函数求导 3.4 微分的定义与应用4. 微分中值定理与导数应用4.1 极值与最值4.2 高阶导数与凹凸性4.3 中值定理与罗尔定理4.4 泰勒公式与应用5. 积分与不定积分5.1 积分的定义与性质5.2 基本积分公式与换元积分法 5.3 分部积分与定积分5.4 数列和函数积分与应用6. 定积分与曲线长度6.1 定积分的定义与计算6.2 曲线长度的计算6.3 平面图形的面积与旋转体的体积 6.4 广义积分与收敛性7. 常微分方程7.1 微分方程的基本概念与分类7.2 可分离变量方程与齐次方程7.3 一阶线性微分方程与常数变易法 7.4 高阶线性微分方程与特征根法8. 多元函数微分学8.1 二元函数的偏导数与全微分8.2 隐函数与隐函数求导8.3 多元函数的极值与条件极值8.4 二重积分与累次积分以上是大一高等数学课程的全部知识点总结。
通过对这些知识点的学习,可以建立起扎实的数学基础,为后续专业课程的学习打下坚实的基础。
同时,高等数学也培养了我们的逻辑思维能力和问题解决能力,为我们的学习生涯做好了铺垫。
掌握这些知识点后,我们可以通过大量的习题和实例来巩固和应用所学知识,提高自己的数学思维和解题能力。
除了课堂学习外,可以参加数学竞赛、加入学术团队等方式,进一步拓宽数学知识的应用领域。
高等数学是一门重要的学科,不仅在理工科领域中有广泛的应用,也在其他学科中扮演着重要角色。
第一章~~第三章一、极限数列极限lim n n x ->∞函数极限lim ()x f x ->∞,lim ()x f x →+∞,lim ()x f x →-∞lim ()x x f x ->,0lim ()x x f x -->,0lim ()x x f x +->求极限(主要方法):(1)100sin 1lim1,lim(1),lim(1)x xx x x xe x e x x->->∞->=+=+=(2)等价无穷小替换(P76)。
当()0x ϕ→时,代换时要注意,只有乘积因子才可以代换。
(3)洛必达法则(000,,0,,0,1,0∞∞⋅∞∞-∞∞∞),只有0,0∞∞可以直接用罗比达法则。
幂指函数求极限:()lim ()ln ()lim ()v x v x u x u x e =;或,令()()v x y u x =,两边取对数ln ()ln ()y v x u x =,若lim ()ln ()v x u x a =,则()lim ()v x a u x e =。
结合变上限函数求极限。
二、连续 00lim ()()x x f x f x ->=左、右连续 000lim ()(),lim ()()x x x x f x f x f x f x -+->->==函数连续⇔函数既左连续又右连续闭区间上连续函数性质:最值,有界,零点(结合证明题),介值,推论。
三、导数 0000000()()()()'()limlim x x x f x f x f x x f x f x x x x->->-+-==-V V V 左导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x---->->-+-==-V V V右导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x+++->->-+-==-V V V 微分 ()'y A x z dy Adx y dx ο∆=⋅∆+==可导⇒连续 可导⇔可微 可导⇔既左可导又右可导求导数:(1) 复合函数链式法则[]()'[]'()dy dy du y f u u g x f u g x dx du dx====[()]''[()]'()'[()]([()])'y f g x y f g x g x f g x f g x ==≠(2) 隐函数求导法则两边对x 求导,注意y 、y '是x 的函数。
(3)参数方程求导'()()()/'()dy dy dx t x t y t dx dt dt t ψϕψϕ====22'()()()'()'()d t d dy d y dt t dt dx dx dx t dtψϕϕ== 四、导数的应用(1)罗尔定理和拉格朗日定理(证明题) (2)单调性(导数符号),极值(第一充分条件和第二充分条件),最值。
(3)凹凸性(二阶导数符号),拐点(曲线上的点,二维坐标,曲线在该点两侧有不同凹凸性)。
第四章 不定积分原函数 (())()F x f x '=→ 不定积分 ()()f x dx F x C =+⎰基本性质[()]()d f x dx f x dx =⎰ 或 [()]()df x dx f x dx =⎰()()F x dx F x c '=+⎰或()().dF x F x C =+⎰[()()dx dx d ]()()f x g x f x g x x +=+⎰⎰⎰ (分项积分)d (()d )k f x x k f x x =⎰⎰基本积分公式 (1)d k x kx C =+⎰; (2)11 (1d )1x x x C αααα+=+=-/+⎰(3)1ln ||dx x C x=+⎰ (4) dx xxe eC =+⎰(5) x ln d xxa a C a=+⎰ (6) d cos sin x x x C =+⎰ (7)d sin cos x x x C =-+⎰ (8) 2sec ta d n x x x C =+⎰(9) 2d csc cot x x x C =-+⎰ (10) d s x ec tan sec x x x C =+⎰(11)dx csc cot csc x x x C =-+⎰ (12)arcsin x C =+(13)2arctan 1d xx C x =++⎰除了上述基本公式之外,还有几个常用积分公式 1. tan ln |cos |;xdx x C =-+⎰ 2. cot ln |sin |;xdx x C =+⎰ 3. sec ln |sec tan |;xdx x x C =++⎰ 4. csc ln |csc cot |;xdx x x C =-+⎰5.2211arctan ;xdx C a x a a=++⎰6. arcsin;xC a=+⎰7. 2211ln ;2x adx C x a a x a-=+-+⎰ 8. 2arcsin ;2a x C a =9.ln |.x C =++求不定积分的方法1. 直接积分法:恒等变形,利用不定积分的性质,直接使用基本积分公式。
2. 换元法:第一类换元法(凑微分法)(())()()()(()d ).f x x x f u du F u C F x C ϕϕϕ'==+=+⎰⎰第二类换元法(变量代换法)()(())()()[()].d d f x x f t t t F t C F x C ϕϕψ'==+=+⎰⎰(注意回代)换元的思想:()(())()()()(())()()()(()).d d x t f t t dtt x f x xf t t tg t dt F t CF x C ϕϕϕψϕϕψ'=='===+=+⎰⎰⎰主要有幂代换、三角代换、倒代换 3. 分部积分法uv dx udv uv vdu uv u vdx ''==-=-⎰⎰⎰⎰v '的优先选取顺序为:指数函数;三角函数;幂函数第五章 定积分一、概念 1. 定义11()lim (),max{}nbi i i ai ni f x dx f x x λξλ→≤≤==∆=∆∑⎰2. 性质: 设()x f 、()x g 在[]b a ,区间上可积,则定积分有以下的性质.(1). a b dx b a -=⎰ ;(2). ()()[]⎰⎰⎰+=+ba ba ba dx x g n dx x f m dx x g n x mf )()(;(3).⎰⎰⎰+=bcc ab adx x f dx x f dx x f )()()(;(4). 若在[],a b 上,()0≥x f ,则0)(≥⎰b adx x f ;推论1. 若在[],a b 上,()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰推论2. ⎰⎰≤bab adx x f dx x f |)(||)(|(a b <)(5). 若函数()x f 在区间[]b a ,上可积,且()M x f m ≤≤,则)()()(a b M dx x f a b m ba-≤≤-⎰(6).(定积分中值定理) 设()x f 在区间[]b a ,上连续,则存在[]b a ,∈ξ,使()()a b f dx x f b a-=⎰ξ)(.3. 积分上限函数()xaf t dt ⎰及其性质(1).()x f dt t f x a='⎰))((,或()x f dt t f dxd xa =⎰)(; (2).如果()⎰=)(0)(x dt t f x ϕφ,则()))(()(0'='⎰x dt t f x ϕφ()()()x x f ϕϕ'=.(3). 如果()()()()x x x f t dt ϕψφ=⎰,则()()()(())x x x f t dt ϕψφ''=⎰()()()()()()'f x x f x x ϕϕψψ'=-.4. 广义积分(1). 无穷限积分()af x dx +∞=⎰()lim tat f x dx →+∞⎧=⎨⎩⎰收敛(极限存在)发散(极限不存在).()=⎰∞-b dx x f ()lim b tt f x dx →-∞⎧=⎨⎩⎰收敛(极限存在)发散(极限不存在).()⎰∞+∞-dx x f 收敛的充分必要条件是反常积分()0f x dx +∞⎰、()0f x dx -∞⎰同时收敛,并且在收敛时,有()⎰∞+∞-dx x f ()0f x dx +∞=⎰()0f x dx -∞+⎰.(2). 瑕积分a 为瑕点 ()()limb b a at a f x dx f x dx +→⎧==⎨⎩⎰⎰收敛(极限存在)发散(极限不存在)b 为瑕点 ()()lim bb aat bf x dx f x dx -→⎧==⎨⎩⎰⎰收敛(极限存在)发散(极限不存在)c 为瑕点 则()⎰badx x f 收敛⇔()⎰cadx x f 与()⎰bcdx x f 均收敛,并且在收敛时,有()=⎰b adx x f ()⎰c adx x f ()⎰+bcdx x f二、计算(一) 定积分的计算1、微积分基本公式:设函数()x f 在区间[]b a ,上连续,且()()x f x F =',则()()a F b F dx x f b a-=⎰)( , 牛顿-莱布尼兹(N-L )公式2、换元法:设函数()x f 在区间[]b a ,上连续,函数()t x ϕ=满足: ① 在区间[]βα,上可导,且()t ϕ'连续;② ()αϕ=a ,()βϕ=b ,当[,]t αβ∈时,[]b a x ,∈,则()()⎰⎰'=βαϕϕdt t t f dx x f b a)()(3、分部积分法:()|b b b a aauv dx uv u vdx ''=-⎰⎰, 或()|b bba aaudv uv vdu =-⎰⎰.4、偶倍奇零: 设函数()x f 在区间[]a a ,-上连续,则()()()()()2()a aaf x f x f x dx f x dx f x f x -⎧-=-⎪=⎨-=⎪⎩⎰⎰5、⎰⎰=22cos sin ππxdx xdx nn122!)!12(!)!2(2!)!2(!)!12(+==⎪⎩⎪⎨⎧⋅=+-k n kn k k k k π.6、分段函数的定积分。