应力分析基本知识
- 格式:doc
- 大小:44.50 KB
- 文档页数:15
弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
材料力学平面应力知识点总结在材料力学中,平面应力是指只存在于某个平面内的应力情况。
研究平面应力是为了了解材料在受力过程中的应变、变形和破坏行为,对于工程设计和材料优化具有重要意义。
下面将对平面应力的知识点进行总结。
1. 平面应力的定义和表示方法平面应力是指只存在于某个平面内的力学状态。
平面应力可以分为两个分量:法向应力和切应力。
法向应力是垂直于选定平面的应力成分,用σ表示;切应力是平行于选定平面的应力成分,用τ表示。
在数学上,平面应力可以用矢量来表示。
平面应力矢量的大小等于切应力的大小,方向垂直于选定平面,与法向应力成90度夹角。
2. 平面应力的主应力和主应力方向主应力是指平面应力中的最大和最小的应力值。
主应力的大小分别为σ1和σ2,其中σ1≥σ2。
主应力方向是指与最大主应力相对应的应力方向。
求主应力和主应力方向的方法可以通过解平面应力的主应力方程或主应力方向方程得到。
3. 平面应力的等效应力等效应力是一种衡量平面应力状态下应力强度的参数。
等效应力的计算公式可以通过平面应力中的主应力计算得到。
对于二维平面应力,等效应力的计算公式为σeq = √(σ1^2 + σ2^2 - σ1σ2)。
等效应力可以用来评估材料的破坏强度,对于工程设计具有重要的指导意义。
4. 平面应力的应力转移和应变分布平面应力下,力沿着某个方向作用于材料表面,而垂直于该方向的应力为零。
这会导致应力在材料内部的转移和分布。
在受力方向上,应力呈现线性分布。
而在垂直于受力方向的方向上,应力呈现抛物线分布。
了解平面应力的应力转移和应变分布规律,有助于预测材料的变形和破坏行为。
5. 平面应力的应力应变关系平面应力下的应力应变关系可以用胡克定律来表示。
胡克定律表明,应力与应变之间的关系为线性关系,且比例常数为弹性模量。
对于平面应力情况下的材料,胡克定律可以简化为二维应力应变关系。
这种线性关系使得我们可以通过应变来计算应力,或者通过应力来计算应变,从而对材料的变形行为进行研究和分析。
材料力学梁的应力知识点总结梁是一种常见的结构元件,在工程中广泛应用。
了解梁的应力知识点对于工程设计和分析非常重要,本文将对材料力学梁的应力知识点进行总结。
1. 弯曲应力在弯曲载荷下,梁会发生弯曲变形,产生弯曲应力。
弯曲应力分为正应力和剪应力两部分。
梁的顶端受拉产生正应力,底端受压产生正应力。
横截面上由于剪力的存在,产生剪应力。
弯曲应力与梁的几何形状、材料性质和载荷有关。
2. 矩形截面的弯曲应力分布对于矩形截面的梁,弯曲应力的分布是不均匀的。
顶部和底部的纤维受到最大应力,处于拉伸或压缩状态。
靠近中性轴的纤维受到较小的应力。
弯曲应力的分布可用弯矩与惯性矩的比值来表示。
3. 剪应力和剪力流在梁的截面上,由于剪力的存在,产生剪应力。
剪应力的分布是沿纵横两个方向呈对称分布的。
剪应力在截面上的变化呈线性分布,最大值出现在截面的边缘。
剪力流是指单位深度上的剪力大小,剪应力和剪力流之间存在直接的线性关系。
4. 应力分量的变换在梁的应力分析中,常常需要对应力分量进行变换。
常用的应力分量变换公式有平面应力变换公式和平面应变变换公式。
5. 横截面形状的影响梁的横截面形状对其应力分布和强度有显著影响。
常见的梁截面形状有矩形、圆形和I型等。
圆形截面具有均匀的应力分布特点,适用于承受压力的情况。
I型截面具有较高的抗弯强度,适用于悬挑梁和跨大距离的情况。
6. 梁的断裂当梁受力达到其强度极限时,可能会发生断裂。
断裂形式可以是横断面的剪断、疲劳断裂或脆性断裂等。
设计中需要考虑梁的强度和刚度,以避免出现断裂。
总结:材料力学梁的应力知识点对于工程领域非常重要。
弯曲应力、剪应力和剪力流是梁应力分析的关键内容;矩形截面的弯曲应力分布是不均匀的,可以用弯矩与惯性矩的比值表示;横截面形状对梁的应力分布和强度有重要影响。
通过深入理解和应用这些知识点,可以对梁的行为和性能进行合理评估和设计。
5、了解三组特殊方向面与三向应力状态应力圆,掌握一点处的最大正应力、最大切应力的计算。
6、掌握广义虎克定律及其应用。
7、了解应变能密度、体积改变能密度与畸变能密度的概念和计算。
重点、难点重点:一点处应力状态的概念、描述与研究目的;平面应力状态的应力坐标变换式与应力圆,主应力、主方向与面内最大切应力;广义虎克定律及其应用。
难点:对构件内危险点处的最大切应力()、第一主方向与最大切应力及其作用方位客观存在的理解。
广义虎克定律的应用(解决应力分析与应变分析的工程实际问题)教学方法安排三次课堂讨论:1、材料破坏与应力状态的关系:塑性材料与脆性材料在相同外力作用下的破坏形式为什么不同?塑性材料与脆性材料在相同外力作用下的机械性能(屈服滑移线、颈缩、断口等)2、应力圆是否描述了一点的应力状态,包含了一点应力状态的各种信息?3、如何应用广义虎克定律解决应力分析和应变分析问题?课外作业第五章应力状态分析前面两章的分析结果表明,一般情形下杆件横截面上不同点的应力是不相同的。
本章还将证明,过同一点的不同方向面上的应力,一般情形下也是不相同的。
因此,当提及应力时,必须指明"哪一个面上哪一点"的应力或者"哪一点哪一个方向面"上的应力。
此即"应力的点和面的概念"。
所谓"应力状态"又称为一点处的应力状态,是指过一点不同方向面上应力的集合。
应力状态分析是用平衡的方法,分析过一点不同方向面上应力的相互关系,确定这些应力中的极大值和极小值以及它们的作用面。
与前几章中所采用的平衡方法不同的是,平衡对象既不是整体杆或某一段杆,也不是微段杆或其一部分,而是三个方向尺度均为小量的微元局部。
此外,本章中还将采用与平衡解析式相比拟的方法,作为分析和思考问题的一种手段,快速而有效地处理一些较为复杂的问题,从而避免死背硬记繁琐的解析公式。
§5-1一点处应力状态描述及其分类对于受力的弹性物体中的任意点,为了描述其应力状态,一般是围绕这一点作一个微六面体,当六面体在三个方向的尺度趋于无穷小时,六面体便趋于所考察的点。
构件应力知识点总结大全一、应力的定义应力是单位面积的内部分子间或分子与外力之间的相互作用力,通常表示为F/A,其中F 是力的大小,A是力作用的面积。
应力是衡量材料承受外部载荷的能力,是材料内部原子和分子间的相互作用,是导致应变的根本原因。
二、应力的分类1. 拉伸应力:指材料在拉伸载荷作用下的应力,通常表示为σ=F/A,其中F是施加的拉伸力,A是截面积。
2. 压缩应力:指材料在压缩载荷作用下的应力,通常表示为σ=F/A,其中F是施加的压缩力,A是截面积。
3. 剪切应力:指材料在受到剪切力作用下的应力,通常表示为τ=F/A,其中F是施加的剪切力,A是受力面积。
4. 弯曲应力:指材料在受弯曲载荷作用下的应力,通常表示为σ=Mc/I,其中M是弯矩,c 是截面离轴心的距离,I是截面的惯性矩。
三、构件的设计应力1. 构件在使用过程中会受到各种外部载荷的作用,包括静载荷、动载荷和温度载荷等,设计时需要考虑这些载荷对构件的影响。
2. 构件设计应力需要满足安全性、可靠性和经济性的要求,通常需要考虑极限状态和使用状态下的应力情况。
3. 构件设计应力还需要考虑疲劳寿命、屈服强度、断裂韧性等材料性能的影响,以保证构件在使用寿命内不发生疲劳破坏。
四、构件的应力分析方法1. 理论计算:包括静力计算、动力计算和温度应力计算等,可以通过数学模型和力学原理进行应力分析。
2. 数值模拟:包括有限元分析、计算流体动力学等,可以通过计算机模拟构件受力情况,得到应力分布和变形情况。
3. 实验测试:包括拉伸试验、压缩试验、弯曲试验等,可以通过实验手段直接测量构件的应力和应变情况。
五、构件的应力优化设计1. 材料选型:选择合适的材料可以提高构件的强度和刚度,减小应力集中和减轻构件的重量。
2. 结构设计:合理的结构设计可以改善构件受力的状态,减小应力集中和提高构件的承载能力。
3. 衬垫和支承:采用合适的衬垫和支承结构可以改善构件的应力分布,减小应力集中和延长构件的使用寿命。
材料力学应力状态分析材料力学是研究物质内部力学性质和行为的学科,其中应力状态分析是材料力学中的重要内容之一。
应力状态分析是指对材料内部受力情况进行分析和研究,以揭示材料在外力作用下的应力分布规律和应力状态特征,为工程设计和材料选用提供依据。
本文将从应力状态的基本概念、分类和分析方法等方面展开讨论。
首先,我们来介绍一下应力状态的基本概念。
应力是指单位面积上的力,是描述物体内部受力情况的物理量。
在材料力学中,通常将应力分为正应力和剪应力两种基本类型。
正应力是指垂直于截面的应力,而剪应力是指平行于截面的应力。
在实际工程中,材料往往同时受到多种应力的作用,因此需要对应力状态进行综合分析。
其次,我们将对应力状态进行分类。
根据应力的作用方向和大小,可以将应力状态分为拉应力状态、压应力状态和剪应力状态三种基本类型。
拉应力状态是指材料内部受到拉力作用的状态,压应力状态是指材料内部受到压力作用的状态,而剪应力状态是指材料内部受到剪切力作用的状态。
这三种应力状态在工程实践中都具有重要的意义,需要我们进行深入的分析和研究。
接下来,我们将介绍应力状态分析的方法。
应力状态分析的方法有很多种,常用的有应力分析法、应变分析法和能量方法等。
应力分析法是通过应力分布的计算和分析来揭示应力状态的特征,应变分析法则是通过应变分布的计算和分析来揭示应力状态的特征,而能量方法则是通过能量原理和平衡条件来揭示应力状态的特征。
这些方法各有特点,可以根据具体情况选择合适的方法进行分析。
最后,我们需要注意的是,在进行应力状态分析时,需要考虑材料的本构关系、边界条件和载荷情况等因素,以确保分析结果的准确性和可靠性。
同时,还需要注意应力状态分析的结果对工程实践的指导意义,以便更好地指导工程设计和材料选用。
总之,材料力学应力状态分析是一个复杂而重要的课题,需要我们进行深入的研究和分析。
只有深入理解应力状态的特征和规律,才能更好地指导工程实践,为实际工程问题的解决提供科学依据。
材料力学应力分析知识点总结应力是材料力学研究中的关键概念之一,它描述了物体内部的受力状态。
在材料力学中,应力分析是十分重要的,它使我们能够了解材料在受力时的行为和特性。
本文将对材料力学应力分析的相关知识点进行总结,包括概念、分类和计算方法等。
一、应力的概念应力是指材料内部单位面积上的力,用符号σ表示,单位为帕斯卡(Pa)。
在力学中,应力可分为正应力、剪应力和法向应力等几种形式。
正应力是垂直于截面方向的应力,常用符号σ表示;剪应力是平行于截面方向的应力,常用符号τ表示;法向应力是指垂直于截面的应力,也可称为径向应力。
二、应力的分类根据受力方向不同,应力可分为一维、二维和三维应力。
一维应力是指只在一条方向上有应力存在,例如拉伸或压缩,常用符号σ表示。
二维应力是指在平面内有应力存在,常见的有正应力和剪应力。
三维应力是指在空间内存在应力,常用符号σx、σy和σz表示。
三、应力的计算方法1. 一维应力的计算方法:对于拉伸应力,应力值可通过应力公式σ = F/A计算,其中F为作用在物体上的力,A为力作用的截面面积。
对于压缩应力,计算方法与拉伸应力相同,但结果为负值。
2. 二维应力的计算方法:对于正应力,可通过计算垂直于所考察点(x,y)的方向上的力除以相应的面积得到。
例如,正应力σx可通过计算剪断力F除以剪断面积A得到。
对于剪应力,计算方法是计算平行于所考察点的方向上的力除以相应的面积。
例如,剪应力τxy可通过计算平行于x方向的力除以垂直于该方向的长度得到。
3. 三维应力的计算方法:在三维应力情况下,应力的计算稍显复杂,在此不再详述。
但通常可以通过应力分量之间的关系进行计算,例如通过Mohr圆进行图解分析。
四、应力分析的应用应力分析在工程实践中具有广泛的应用,特别是在结构力学、材料力学和土木工程中。
通过对材料的应力分析,我们可以了解材料在不同应力下的表现,为工程设计和材料选型提供指导。
在结构力学中,应力分析是设计安全和可靠结构的关键步骤之一。
应力分布知识点总结一、应力的概念应力是物体内部单位面积上的内力,是描述物体内部分子间相互作用的力。
在材料力学中,应力通常分为正应力和剪应力两种。
正应力是垂直于物体表面的应力,剪应力则是平行于物体表面的应力。
二、应力的分类根据力的作用方式和受力构件的形状,可以将应力分为以下几种:1. 拉应力:是垂直于截面的应力,常见于受拉、受压、受弯构件中;2. 压应力:也是垂直于截面的应力,但方向相反,常见于受压构件中;3. 剪应力:是平行于截面的应力,常见于受剪构件中;4. 弯曲应力:是由弯矩引起的应力,常见于受弯构件中。
三、应力的分布在物体内部,由于受力作用,应力并不是均匀分布的。
根据受力方式和物体的形状,应力的分布会有所不同。
以下是常见的应力分布情况:1. 拉应力分布:在受拉构件中,由于各点所受拉力的大小不同,导致内部应力也不同。
通常呈现出线性分布,即截面上离中心越远,应力越大。
2. 压应力分布:在受压构件中,同样由于受压力的大小不同,导致内部应力也不同。
通常也是呈现出线性分布。
3. 剪应力分布:在受剪构件中,由于剪力的大小不同,导致内部应力也不同。
通常剪应力呈现出梯形分布,即截面上应力在中心线附近最大,向两侧递减。
4. 弯曲应力分布:在受弯构件中,由于弯矩的存在,导致内部应力呈现出复杂的分布情况。
通常为受拉一侧应力增大,受压一侧应力减小,并且在材料截面上也呈现出一定的非线性分布。
四、应力的计算1. 线性弹性材料中的应力计算:对于线性弹性材料,可以使用胡克定律来计算应力,即应力与应变成正比。
公式为σ=Eε,其中σ为应力,E为弹性模量,ε为应变。
2. 非线性材料中的应力计算:对于非线性材料,由于应力与应变不再呈线性关系,需要使用材料的本构关系来计算应力。
3. 复合材料中的应力计算:对于复合材料,由于不同方向的应力不同,需要使用分析方法或有限元方法来计算各个方向上的应力。
五、应力集中在一些特定的情况下,由于几何形状的不对称或者受力的集中,会导致应力集中的情况发生。
应力分析报告1. 引言应力是指物体内部受到的力的分布情况,它是材料力学中的重要概念。
准确地分析和评估应力对于设计和制造安全可靠的结构至关重要。
本报告旨在通过分析应力的产生原因、类型和影响,以及相应的应对措施,来帮助读者更好地理解和应对应力问题。
2. 应力的产生原因应力的产生是由于物体受到外力的作用,如重力、摩擦力、压力等。
外力作用在物体表面上时,会在物体内部产生内应力,从而使物体发生形变或破坏。
3. 应力的类型根据力的作用方式和方向的不同,应力可分为拉应力、压应力、剪应力等多种类型。
拉应力是指力使物体在某个方向上产生延伸,而压应力则是使物体在该方向上产生压缩。
剪应力是垂直于物体某一面的平行力使该面上的物体向两侧滑动。
理解不同类型的应力对于分析和解决应力问题至关重要。
4. 应力的影响应力会对物体的性能和可靠性产生重要影响。
如果应力超过了物体的强度极限,就会导致物体破坏。
此外,应力还会引起物体的形变和变形,降低结构的稳定性和寿命。
因此,及时识别和处理应力问题对于确保结构的安全性和可靠性至关重要。
5. 应对应力问题的措施在面对应力问题时,我们可以采取一系列措施来减轻或消除应力的影响。
首先,合理设计和选择材料,确保其强度能够满足实际应力的要求。
其次,加强结构的支撑和连接,提高其整体稳定性。
此外,定期进行结构检测和维护,及时发现和修复潜在的应力集中区域。
6. 结论应力分析是结构设计和制造中的关键环节,它能够帮助我们更好地理解和应对应力问题。
通过准确分析应力的产生原因、类型和影响,并采取相应的措施来减轻或消除应力的影响,我们能够提高结构的安全性和可靠性。
因此,在未来的工作和研究中,应进一步加强应力分析的研究和应用,以提高结构设计和制造的质量和效率。
以上是关于应力分析报告的简要介绍,希望能对读者有所启发,并提供对应力问题的更深入理解。
应力分析知识点总结一、引言应力分析是指在实际工程中,对物体内外受到的力在空间和时间上的分布规律进行研究,从而了解物体受力情况的一种理论和方法。
应力分析在工程领域中有着重要的应用,可以帮助工程师们更好地设计和制造各种工程结构,确保结构的安全性和稳定性。
本文将从应力分析的基本概念、应力分析的理论基础、常用的应力分析方法以及应力分析在工程中的应用等方面进行总结和介绍。
二、应力分析的基本概念1. 应力的定义应力是指物体内部分子间的相互作用所产生的一种内在力,通常表示为单位面积上的力。
在工程中,应力常常用来描述物体受力时的内部力状态,可以分为正应力和剪应力两种类型。
正应力是指垂直于物体截面的应力,可以表示为施加在物体上的正向压力或拉力。
而剪应力是指与物体截面平行的应力,通常形成剪切力。
2. 应变的定义应变是指物体在受力作用下发生的形变现象,通常用来描述物体受力后的形状和大小变化。
应变可以分为线性应变和剪切应变两种类型,线性应变指物体在受到正应力作用下发生的长度变化,而剪切应变则是描述物体在受到剪应力作用下产生的形变。
3. 应力和应变的关系应力和应变之间存在着一定的关系,这一关系通常通过材料的力学性能参数来描述。
在弹性范围内,应力与应变之间存在着线性关系,可以通过杨氏模量、泊松比等参数来描述。
而在非弹性范围内,应力和应变之间的关系则需要通过材料的本构方程来描述。
三、应力分析的理论基础1. 弹性力学理论弹性力学理论是应力分析的重要理论基础,其研究范围包括材料的应力分布规律、应力和应变的关系、材料的本构关系等内容。
弹性力学理论可以帮助工程师们更好地理解和预测物体在受力条件下的力学性能,进而设计和优化工程结构。
2. 材料力学性能参数材料力学性能参数是描述材料抗力性能的重要指标,包括杨氏模量、泊松比、屈服强度、极限强度、断裂韧性等内容。
这些参数可以帮助工程师们更好地了解材料的力学特性,从而在设计和制造过程中选择合适的材料和工艺。
应⼒分析基础知识及建模2020.07.22第⼀部分应⼒分析简介 (1)1.0 应⼒分析任务 (1)1.1管道静⼒分析的任务 (1)1.2管道动⼒分析的任务 (1)1.3应⼒分析的⽬的 (2)2.0 管系应⼒分析 (3)2.1管道系统中的应⼒ (3)2.2管道系统应⼒ (5)2.3影响管道系统分析的参数 (6)2.4冷紧 (6)2.5应⼒分析应⽤经验 (6)3.0 需要应⼒分析管道的确定 (7)3.1 GB 50316的规定 (7)3.2 GB/T 20801的规定 (8)3.3 ASME B31.3 的规定 (8)3.4主要的标准规范 (8)3.5碳钢管道的许⽤应⼒ (8)4.0 编辑计算书 (9)5.0 应⼒分析结果校审注意事项 (10)6.0 ⽔压试验和⽓压试验 (12)6.1试验⽅法的选择基础 (12)6.2保压时间 (12)第⼆部分软件介绍 (13)1.0 初始界⾯ (13)2.0 管系输⼊界⾯ (15)3.0 管系输⼊基本内容 (17)4.0 材料 (19)5.0 保温、内衬 (21)6.0 温度压⼒设置 (21)7.0 增加材料库 (22)第三部分⽀架形式模拟 (23)1.0 普通⽀架的模拟 (23)1.1 U型⽀架 (23)1.2 承重⽀架 (23)1.3 导向⽀架 (24)1.4 限位⽀架 (26)1.5 固定⽀架 (26)1.6 吊架 (27)1.7 ⽔平拉杆 (27)1.8 弹簧⽀架模拟 (28)1.9 弹簧安装荷载 (31)2.0 附塔管道⽀架的模拟 (32)3.0 弯头上⽀架 (34)4.0 液压阻尼器 (36)5.0 CAESARII可模拟虾⽶弯,但变径虾⽶弯不能模拟 (37)6.0 承重⽀架沉降模拟 (37)第四部分管道应⼒分析中弯头和三通的特殊性 (38)1.0 弯头的K和SIF值 (38)1.1弯头的SIF (38)1.2弯头的柔性系数K (38)1.3影响弯头SIF和柔性系数K的因素 (38)2.0 带法兰弯头的模拟 (39)3.0 假管⽀架分析 (39)3.1 Caesar中带假管的弯头分析 (39)3.2 弯头假管⽀架的应⼒分析和特殊形式假管⽀架的SIF和柔性计算 (40)4.0 CAESAR中三通模拟 (40)4.1 ⾮标三通 (40)4.2 三通柔性对管道应⼒分析的影响 (40)4.3 三通的详细分析 (41)第五部分管道⽀架的设计与选型 (42)1.0 管道⽀架的作⽤ (42)1.1 操作⼯况和试验⼯况⽀撑管道的重量 (42)1.2 热胀荷载 (42)1.3 承受偶然的地震荷载 (42)1.5 抑制管道振动 (42)1.6 承受偶然的风荷载 (42)1.7 在系统进⾏备⽤设备切换过程中⽀撑 (43)1.8 控制噪⾳ (43)1.9 维修⼯况下⽀撑管道 (43)1.10 关闭情况下提供的⽀撑 (43)1.11 安装状态下提供的⽀撑 (43)2.0 管道⽀架设计导则 (44)2.1 管道跨距 (44)2.2 ⾮保温⽀撑 (44)3.0 ⽀架摩擦⼒在应⼒分析中的应⽤ (45)4.0 弹簧选型 (46)4.1 可变弹簧选型步骤 (46)4.2 恒⼒弹簧选型步骤 (47)4.3 弹簧选型注意步骤 (47)5.0 热态持续应⼒校核 (48)6.0 减振和防冲击⽀架 (49)6.1 减振⽀架 (49)6.2 刚性限位拉杆 (51)6.3 阻尼器 (52)7.0 如何模拟阻尼器 (54)第六部分管件的模拟 (55)1.0 法兰和阀门的模拟 (55)2.0 ⼤⼩头模拟 (56)3.0 安全阀的模拟 (57)4.0 弯头的模拟 (58)5.0 ⽀管连接形式 (59)6.0 膨胀节的模拟 (60)6.1 ⼤拉杆横向型膨胀节 (60)6.2 铰链型膨胀节 (72)7.0 ⼤⼝径管道的模拟 (78)7.1 管道壁厚计算 (78)7.3 管道柔性 (79)7.4 局部应⼒ (79)7.5 ⼤⼝径管道建模 (79)第七部分⾼温⾼压管道分析 (81)1.0 典型特点 (81)2.0 典型管道 (82)3.0 材料选择 (82)4.0 ⾼温蠕变 (82)第⼋部分埋地管道应⼒分析 (88)1.0 长输管道应⼒分析 (88)1.1 地下长直部分 (88)1.2 出⼊⼟站场部分 (89)1.3 压缩机和泵站部分 (89)2.0 埋地管道应⼒分析过程 (90)2.1 系统建模 (90)第九部分夹套管道应⼒分析 (94)1.0 夹套管基本知识 (94)1.1 什么情况使⽤夹套管 (94)1.2 Caesar中输⼊的密度 (94)1.3 夹套管应⼒校核 (94)1.4 焊缝校核的许⽤值 (96)1.5 模型的建⽴ (96)2.0 夹套管基本知识 (97)第⼗部分设备模拟 (101)1.0 塔 (101)1.1 板式塔的模拟 (101)1.2 填料塔的模拟 (102)1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (105)2.0 ⾼塔管道的应⼒分析 (106)2.1 分析输⼊ (107)2.2 ⾼塔温度纵断图 (107)2.4 和塔连接管道的⽀撑 (109)2.5 管⼝载荷校验 (110)3.0 ⾼塔⽴式再沸器管道的应⼒分析 (111)3.1 应⽤规范和标准 (111)3.2 输⼊要求 (111)3.3 模型温度基准 (112)3.4 再沸器往往通过管道迸⾏模拟 (112)3.5 ⽀撑式布置 (113)4.0 管壳式换热器管道布置及应⼒分析 (116)4.1管程&壳程流体选择的⼀般原则 (116)4.2管壳式换热器的管道布置和⽀撑 (117)4.3管道应⼒分析注意事项 (118)5.0 换热器,再沸器 (119)5.1 换热器模拟也分两种情况 (119)5.2 ⾼塔⽴式再沸器管道应⼒分析 (120)6.0 板式换热器 (126)7.0 空冷器 (127)7.1 空冷器的制造 (128)7.2 空冷器的单元布置 (128)7.3 空冷器使⽤标准 (128)7.4 空冷器管束 (129)7.5 不同类型翅⽚管 (129)7.6 翅⽚材料 (130)7.7 顶盖 (130)7.8 空冷器不同类型的控制 (131)7.9 空冷器的类型 (131)7.10 空冷器的布置 (131)7.11 空冷器管道布置 (132)7.12 空冷器接管的管道应⼒分析 (134)7.13 空冷器管⼝校核 (134)7.14 空冷器进⼝管道和出⼝管道不在同⼀侧 (135)7.15空冷器进⼝管道和出⼝管道在同⼀侧 (137)8.0 泵 (139)8.1 泵的模拟 (140)8.2 分析⼯况的准备 (140)8.3 计算结果的分析 (141)8.4 转动设备的特殊考虑 (141)9.0 压缩机,透平 (141)9.2压缩机管⼝载荷校核 (144)9.3离⼼压缩机分析需要注意的事项 (144)10.0 加热炉管道布置与应⼒分析 (145)10.1加热炉管道系统及其布置 (145)10.2加热炉⼯艺管道分析 (146)10.3管道应⼒分析模型建⽴ (147)第⼗⼀部分校核设备法兰冷对中 (150)第⼗⼆部分管⼝校核 (152)1.0 设备管⼝载荷校验 (152)1.1介绍 (152)1.2静设备的管⼝载荷 (152)1.3转动设备的管⼝载荷 (153)1.4转动设备的管⼝载荷 (154)1.5设备管⼝FEA检查⽅法 (154)2.0 WRC107 (156)3.0 Nema 23 (160)4.0 API617 (162)5.0 API610 (164)6.0 开⼝接管外荷载校核 (167)7.0 CAESARII软件中WRC107和WRC297校核步骤 (168) 7.1 WRC107的使⽤范围 (168)7.2 WRC297的使⽤范围 (168)7.3 WRC107和297的区别 (168)7.4 WRC限制 (169)7.5 使⽤WRC较核时需要的输⼊数据 (169)7.6 使⽤WRC较核时需要的输⼊数据 (169)7.7 FEA107和NozzlePRo软件介绍 (172)8.0 压⼒容器管⼝载荷表注意事项 (174)第⼗三部分法兰泄露分析 (176)1.0 法兰泄露分析的⽅法 (176)2.0 CAESARⅡ当量压⼒法校核法兰泄漏 (177)3.0 CAESAR II中NC3658.3法兰泄漏分析 (179)4.0 CAESAR II中 ASME VIII卷法兰泄漏分析 (182)5.0 垫⽚对法兰泄漏的控制 (185)5.1 垫⽚阻⽌泄漏的⼯作原理 (186)5.2 垫⽚类型 (186)5.3 常⽤垫⽚结构 (187)5.4 垫⽚规范 (188)5.5 垫⽚的选择 (188)5.6 影响响垫⽚性能的参数 (189)第⼗四部分⼯况组合 (191)1.0 地震 (192)2.0 风载 (194)3.0 偶然载荷编辑⼯况 (197)4.0 安全阀起跳⼯况 (197)5.0 沉降 (199)第⼗五部分特殊情况 (200)1.0 ⾮线性不收敛问题 (200)2.0 中间点受⼒ (203)3.0 介质密度 (204)第⼗六部分补偿器模拟 (205)1.0 旋转补偿器 (205)2.0 旋转补偿器建模 (211)第⼗七部分振动 (216)1.0 振动基本知识 (216)1.1系统内部的振动 (216)1.2系统外部的振动 (216)3.0 振动解决⽅案 (219)3.1风载荷引起的管道振动 (219)3.2地震载荷引起的管道振动 (220)3.3两相流管道振动 (220)3.4⽔锤引起的管道振动 (221)3.5喘振引起的管道振动 (221)3.6设备振动引起的管道振动 (222)3.7往复压缩机和往复泵管道的振动 (222)4.0 蒸汽振动解决⽅案 (222)第⼗⼋部分热拱 (225)1.0 热拱现象 (225)第⼗九部分结果分析 (228)1.0 弹簧 (228)2.0 单元应⼒ (229)3.0 约束反⼒ (230)4.0 节点位移 (230)5.0 符号代表 (230)6.0 局部坐标受⼒ (231)第⼆⼗部分转动设备的允许受⼒ (232)1.0 汽轮机和压缩机的受⼒限制 (232)2.0 离⼼泵的受⼒限制 (236)第⼆⼗⼀部分静设备的允许受⼒ (240)1.0 加热炉的允许受⼒ (240)3.0 法兰的允许受⼒ (242)第⼆⼗⼆部分转动设备的柔性设计 (243)1.0 离⼼泵管道的柔性设计 (243)2.0 汽轮机和离⼼压缩机管道的柔性设计 (244)第⼆⼗三部分冷紧和⾃冷紧 (246)1.0 冷紧 (246)2.0 ⾃冷紧 (247)第⼆⼗四部分动态分析 (248)1.0 ⾃振频率分析 (248)2.0 安全阀反⼒计算 (250)3.0谐波分析 (252)4.0响应谱分析 (254)5.0地震 (258)6.0模态分析详解 (259)第⼆⼗五部分应⼒分析基本知识汇总 (271)。
材料力学应力状态知识点总结材料力学是研究物体在外力作用下的力学性质和变形规律的学科。
而材料的应力状态是材料力学中的重要概念,它描述了材料内部的力学状态和应力分布情况。
本文将对材料力学应力状态的相关知识点进行总结和讨论。
一、概述材料力学中的应力状态描述了材料受到力的情况,主要包括应力的类型、作用面以及应力的大小和方向等。
常见的应力类型有正应力、剪应力和法向应力等。
二、正应力正应力是指材料内部单位截面上的内力除以该截面的面积所得到的值。
正应力的作用面垂直于该面,并且指向该面。
根据正应力的作用面,可以将正应力分为法向应力和切应力。
1. 法向应力法向应力是指与作用面垂直的应力,主要包括拉应力和压应力两种类型。
拉应力是指作用面上的拉力对单位面积的分布情况,用正值表示;压应力则是指作用面上的压力对单位面积的分布情况,用负值表示。
2. 切应力切应力是指作用面上的切力对单位面积的分布情况。
切应力的方向沿着作用面的切向,它可以使物体出现剪切变形。
切应力常常与正应力相互作用,共同影响材料的力学行为。
三、剪应力剪应力是指作用在材料内部引起切变形的内力作用于单位面积的横截面积。
在材料内部的应力矢量图中,剪应力是与作用面方向垂直的应力分量。
四、应力的大小和方向应力的大小和方向对材料的力学性质和变形规律具有重要影响。
在材料受到外力作用时,应力的大小会决定材料的强度和变形能力;应力的方向则会影响材料的断裂方向和裂纹扩展方向。
根据材料力学的原理和实际应用,可以通过引入应力变换理论和应力变形关系来具体分析和计算材料内部的应力状态。
应力变换理论可以将复杂的应力状态转化为简单的应力状态,并通过研究力的平衡条件和变形规律,求解出具体的应力分布情况。
总结:材料力学应力状态是研究材料受力情况的重要内容。
正应力包括法向应力和切应力,它们分别描述了材料受到的拉应力、压应力和剪应力;而剪应力则是引起切变形的内力作用于单位面积的横截面积。
应力大小和方向对材料力学性质和变形规律具有重要影响。
需要课件请或强度理论(一)强度理论的概念1.材料破坏的两种类型材料破坏型式不仅与材料本身的材质有关,而且与材料所处的应力状态、加载速度温度环境等因素有关。
材料在常温、静载荷下的破坏型式主要有以下两种:脆性断裂材料在无显然的变形下骤然断裂。
塑性屈服(流动) 材料浮上显著的塑性变形而丧失其正常的工作能力。
2.强度理论在复杂应力状态下关于材料破坏缘故的假设,称为强度理论。
研究强度理论的目的,在于利用容易应力状态下的实验结果,来建立材料在复杂应力状态下的强度条件。
(二)四个常用的强度理论四个常用强度理论的强度条件可以统一地写成式中σr称为相当应力,其表达式为最大拉应力理论σr1=σ1(第一强度理论)最大拉应变理论σr2=σ1-ν(σ1+σ2)(第二强度理论)最大剪应力理论σr3=σ1-σ3(第三强度理论)形状改变比能理论(第四强度理论)[σ]为材料的许用应力。
第1 页/共18 页对于工程上常见的一种二向应力状态如图5—9—3所示,其特点是平面内某一方向的正应力为零。
设σy=0,则该点的主应力为代入(5—9-15)式得:第三强度理论(最大剪应力理论)的相当应力为第四强度理论(形状改变比能理论)的相当应力为最大拉应力理论、最大拉应变理论是关于脆性断裂的强度理论;最大剪应力理论、形状改变比能理论是关于塑性屈服的强度理论。
强度理论的选用在三向拉应力作用下,材料均产生脆性断裂,故宜用第一强度理论;而在三向压缩应力状态下,材料均产生屈服破坏,故应采用第三或第四强度理论。
当材料处于二向应力状态作用下时:脆性材料易发生断裂破坏,宜用第一或第二强度理论;塑性材料易发生塑性屈服破坏,宜用第三或第四强度理论。
[例5-9-1] 已知构件上某点的应力单元体如图5-9-4(a),(b)所示(图中应力单位为MPa)。
试求指定斜截面上的应力。
[解] 图示单元体处于平面应力状态。
(1)在图示坐标中代人公式(5-9-1)、(5-9-2)得σα、τσ方向如图中所示。
材料力学应力应变知识点总结材料力学是研究物体的力学性质和行为的学科。
其中,应力和应变是材料力学中的重要概念。
应力是指力对物体单位面积的作用,应变是物体单位长度的变形程度。
本文将对材料力学中的应力应变相关知识点进行总结。
一、应力的概念和分类应力是指单位面积内受力的大小。
根据应力的方向和大小,可以将应力分为以下几类:1.1 张应力:当物体内外部作用力的方向相反,使物体发生延伸或拉长的变形时,产生的应力称为张应力。
1.2 压应力:当物体内外部作用力的方向相同,使物体发生压缩或缩短的变形时,产生的应力称为压应力。
1.3 剪应力:当物体内外部作用力平行但方向相反,使物体内部产生剪切变形时,产生的应力称为剪应力。
1.4 弯曲应力:当物体受到外力作用时,在物体的截面上会出现内部受力的分布,使物体发生弯曲变形,产生的应力称为弯曲应力。
1.5 组合应力:在实际工程应用中,物体受到多种不同方向的力作用时,会同时产生不同方向的应力,这种情况下的应力称为组合应力。
二、应力的计算和表示计算应力需要确定作用力的大小和作用面积的大小。
根据不同的情况,应力的计算和表示方式也不同。
2.1 一维应力计算:当物体的受力方向与截面法线方向一致时,应力的计算公式为σ=F/A,其中σ表示应力,F表示作用力,A表示作用面积。
2.2 平面应力计算:当物体受力的方向不与截面法线方向一致时,需要通过平面应力的计算方法来确定应力的大小和方向。
常见的平面应力计算方法有叠加原理、应力分析法等。
2.3 主应力和主应力方向:物体在某一点上的应力是沿着不同方向的应力的代数和,其中最大的应力称为主应力,最大应力所涉及的方向称为主应力方向。
主应力和主应力方向的计算对于材料的强度评估和结构设计具有重要意义。
三、应变的概念和计算应变是指物体在受力作用下产生的长度变化和形状变化。
可以将应变分为以下几类:3.1 线性应变:当物体受到轴向拉伸或压缩作用时,长度发生变化,此时的应变称为线性应变。
材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。
在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。
材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。
应力有三个分量:法向应力、剪应力和旋转应力。
法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。
应力状态的描述可以用应力矢量来表示。
应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。
常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。
平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。
强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。
常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。
最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。
实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。
材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。
为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。
综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。
通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。
所有资料版权属艾思弗软件公司所有,未经许可,不得拷贝!!管道应力分析软件(系列培训教材)管道应力分析基础知识北京市艾2思弗计算机软件技术有限责任公司2003年1月15日管道应力分析基础知识1.管道应力分析的原则管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支撑或端点附加位移造成应力问题。
2.管道应力分析的主要内容管道应力分析分为静力分析和动力分析。
静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏;2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏;3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行;4)管道支吊架的受力计算——为支吊架设计提供依据;5)管道上法兰的受力计算——防止法兰汇漏。
动力分析包括:l)管道自振频率分析——防止管道系统共振;2)管道强迫振动响应分析——控制管道振动及应力;3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振;4)往复压缩机(泵)压力脉动分析——控制压力脉动值。
3.管道上可能承受的荷载(1)重力荷载:包括管道自重、保温重、介质重和积雪重等;(2)压力荷载:压力载荷包括内压力和外压力;(3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支撑沉降等;(4)风荷载;(5)地震荷载;(6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击:(7)两相流脉动荷载;(8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动;(9)机械振动荷载:如回转设备的振动。
4.管道应力分析的目的(1)为了使管道和管件内的应力不超过许用应力值;(2)为了使与管系相连的设备的管道荷载在制造商或国际规范(如23、610、6 17等)规定的许用范围内;(3)为了使与管系相连的设备管口的局部应力在的允许范围内;(4)为了计算管系中支架和约束的设计荷载;(5)为了进行操作工况碰撞检查而确定管于的位移;(6)为了优化管系设计。
1.管道应力分析的原则管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。
2.管道应力分析的主要内容管道应力分析分为静力分析和动力分析。
静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏;2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏;3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行;4)管道支吊架的受力计算——为支吊架设计提供依据;5)管道上法兰的受力计算——防止法兰汇漏。
动力分析包括:l)管道自振频率分析——防止管道系统共振;2)管道强迫振动响应分析——控制管道振动及应力;3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振;4)往复压缩机(泵)压力脉动分析——控制压力脉动值。
3.管道上可能承受的荷载(1)重力荷载:包括管道自重、保温重、介质重和积雪重等;(2)压力荷载:压力载荷包括内压力和外压力;(3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等;(4)风荷载;(5)地震荷载;(6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击:(7)两相流脉动荷载;(8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动;(9)机械振动荷载:如回转设备的振动。
4.管道应力分析的目的1)为了使管道和管件内的应力不超过许用应力值;2)为了使与管系相连的设备的管日荷载在制造商或国际规范(如NEMA SM-23、API-610、API-6 17等)规定的许用范围内;3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内;4)为了计算管系中支架和约束的设计荷载;5)为了进行操作工况碰撞检查而确定管于的位移;6)为了优化管系设计。
5.管道柔性设计方法的确定一般说来,下述管系必须利用应力分析软件(如 CAESAR II)通过计算机进行计算及分析。
1)与贮罐相连的,公称管径12”及以上且设计温度在100度及上的管线;2)离心式压缩机(API 617)及往复式压缩机(API 618)的3”及以上的进、出口管线:3)蒸汽透平(NAME SM23)的入口、出口和抽提管线;4)泵(API 610)——公称管径4”及以上且温度 100度及以上或温度-20度及以下的吸入。
排出管线;5)空冷器(API 661)——公称管径6”及以上且温度 120度及以上的进、出口管线;6)加热炉(API 560)——与管口相连的6”及以上和温度 200度及以上的管线;7)相当长的直管,如界区外的管廊上的管线;8)法兰处的泄漏会造成重大危险的管线,如氧气管线、环氧乙烷管线等。
9)公称管径4”及以上且100度及以上或-50度及以下的所有管线;6.摩擦系数的确定除非另有规定,在进行管道柔性分析时摩擦系数应作如下考虑:滑动支架:钢对钢 0.3不锈钢对聚四氟乙烯 0.1聚四氟乙烯对聚四氟乙烯 0.08钢对混凝土 0.6滚动支架:钢对钢(滚珠) 0.3钢对钢(滚柱) 0.3注:滚珠沿轴向运动时应采用滑动摩擦系数.7.管道柔性设计管道柔性是反映管道变形难易程度的一个物理概念,表示管道通过自身变形吸收热胀、冷缩和其它位移变形的能力。
进行管道设计时,应在保证管道具有足够的柔性来吸收位移应变的前提下,使管道的长充尽可能短或投资尽可能少。
在管道柔性设计中,除考虑管道本身的热胀冷缩外,还应考虑管道端点的附加位移。
设计时,一般采用下列一种或几种措施来增加管道的柔性:(1)改变管道的走向;(2)选用波形补偿器、套管式补偿器或球形补偿器;(3)选用弹性支吊架。
8.管道柔性设计的目的管道柔性设计的目的是保证管道在设计条件下具有足够的柔性,防止管道回热胀冷缩、端点附加位移、管道支承设置不当等原因造成下列问题;(1)管道应力过大引起金属疲劳和(或)管道推力过大造成支架破坏;(2)管道连接处产生泄漏;(3)管道推力或力矩过大,使与其相连接的设备产生过大的应力或变形,影响设备正常运行。
9.应进行详细柔性设计的管道(1)进出加热炉及蒸汽发生器的高温管道;(2)进出汽轮机的蒸汽管道;(3)进出离心压缩机,透平鼓风机的工艺管道;(4)进出离心分离机的工艺管道;(5)进出高温反应器的管道;(6)温度超过400℃的管道;(7)利用图表或其他简化法初步分析后,表明需要进一步详细分析的管道:(8)与有受力要求的其他设备相连的管道。
10.管道柔性设计计算结果的内容(1)输入数据;(2)各节点的位移和转角;(3)各约束点的力和力矩;(4)各节点的应力;(5)二次应力最大值的节点号、应力值和许用应力范围值;(6)弹簧参数表。
11.管道柔性设计合格的标准(1)管道上各点的二次应力值应小于许用应力范围;(2)管道对设备管口的推力和力矩应在允许的范围内;(3)管道的最大位移量应能满足管道布置的要求。
12.冷紧问题冷紧是指在安装时(冷态)使管道产生一个初位移和初应力的一种方法。
如果热胀产生的初应力较大时,在运行初期,初始应力超过材料的屈服强度而发生塑性变形,或在高温持续作用下,管道上产生应力松弛或发生蠕变现象,在管道重新回到冷态时,则产生反方向的应力,这种现象称为自冷紧。
冷紧的目的是将管道的热应变一部分集中在冷态,从而降低管道在热态卜的热胀应力和对端点的推力和力矩,也可防止法兰连接处弯矩过大而发生泄漏。
但冷紧不改变热胀应力范围。
冷紧比为冷紧值与全补偿量的比值。
通常应尽量避免采用冷紧,在必须采用冷紧的情况下,要遵循下列原则:● 为了降低管道运行初期在工作状态下的应力和管道对连接设备或固定点的推力、力矩以及位移量,可以采用冷紧,但冷紧不能降低管道的应力范围;● 对于材料在蠕变条件下(碳钢380度以上,低合金钢和高铬钢420度以上)工作的管道进行冷紧时,冷紧比(亦即冷紧值与全补偿量的比值)应不小于0.7。
对于材料在非蠕变条件下工作的管道,冷紧比它取0.5。
对冷紧有效系数,热态取2/3,冷态取1。
● 对连接转动设备的管道,不宜采用冷紧。
● 与敏感设备相连的管道不宜采用冷紧。
因为由于施工误差使得冷紧量难于控制,另一方面,在管道安装完成要将与敏感设备管口相连的管法兰卸开,以检查该法兰与设备法兰的同轴度和平行度,如果采用冷紧将无法进行这一检查。
13.带约束的金属波纹管膨胀节类型(1)单式铰链型膨胀节,由一个波纹管及销轴和铰链板组成,用于吸收单平面角位移;(2)单式万向铰链型膨胀节,由一个波纹管及万向环、销轴和铰链组成,能吸收多平面角位移;(3)复式拉杆型膨胀节,由用中间管连接的两个波纹管及拉杆组成,能吸收多平面横向位移和膨胀节本身的轴向位移;(4)复式铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板组成,能吸收单平面横向位移和膨胀节本身的轴向位移;(5)复式万向铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板组成,能吸收互相垂直的两个平面横向位移和膨胀节本身的轴向位移;(6)弯管压力平衡型膨胀节,由一个工作波纹管或用中间管连接的两个工作波纹管及一个平衡波纹管构成,工作波纹管与平衡波纹管间装有弯头或三通,平衡波纹管一端有封头并承受管道内压,工作波纹管和平衡波纹管外端间装有拉杆。
此种膨胀节能吸收轴向位移和/或横向位移。
拉杆能约束波纹管压力推力。
常用于管道方向改变处;(7)直管压力平衡型膨胀节,一般由位于两端的两个工作波纹管及有效面积等于二倍工作波纹管有效面积、位于中间的一个平衡波纹管组成,两套拉杆分别将每一个工作波纹管与平衡波纹管相互连接起来。
此种膨胀节能吸收轴向位移。
拉杆能约束波纹管压力推力。
带约束的金属波纹管膨胀节的共同特点是管道的内压推力(俗称盲板力)没有作用于固定点或限位点外,而是由约束波纹膨胀节用的金属部件承受。
14.对转动设备允许推力的限制管道对转动设备的允许推力和力矩就由制造厂提出,当制造厂无数据时,可按下列规定进行核算:(1)单列、中心线安装、两点支承的离心泵,其允许推力和力矩应符合API610规定;(2)尺寸较小的非冷凝式通用汽轮机,蒸汽管道对汽轮机接管法兰的最大允许推力和力矩应符合NEMA SM23的规定。
(3)离心压缩机的管道对压缩机接管法兰的最大允许推力和力矩应取NEMA SM23规定值的1.85倍。
15.热膨胀量(初位移)的确定(l)封头中心管口热膨胀量的计算封头中心管口只有一个方向的热膨胀,即垂直方向,考虑到从分钦塔固定点至封头中心管口之间可能存在操作温度和材质的变化,故总膨胀量按下式计算;(2)封头斜插管口热膨胀量的计算封头斜插管口有两个方向的热膨胀,即垂直方向和水平方向的热膨胀,垂直方向的热膨胀量计算同式,水平方向的热膨胀量按下式计算:(3)上部筒体径向管口有两个方向的热膨胀,即垂直方向和水平方向的热膨胀,垂直方向的热膨胀量计算同式,水平方向的热膨胀量按下式计算:16.管道设计中可能遇到的振动(l)往复式压缩机及往复泵进出日管道的振动;(2)两相流管道呈柱塞流时的振动;(3)水锤:(4)安全阀排气系统产生的振动;(5)风载荷、地震载荷引起的振动。
17.往复压缩机、泵的管道振动分析的内容振动分析应包括:(1)气(液)柱固有频率分析,使其避开激振力的频率;(2)压力脉动不均匀度分析,采用设置缓冲器或孔板等脉动抑制措施,将压力不均匀度控制在允许范围内:(3)管系结构振动固有频率、振动及各节点的振幅及动应力分析,通过设置防振支架优化管道布置,消除过大管道振动。
18.共振当作用在系统上的激振力频率等于或接近系统的因有频率时,振动系统的振幅会急剧增大,这种现象称为共振。
往复泵管道设计中可能引发共振的因素有:管道布置出现共振管长:缓冲器和管径设计不当造成流体固有频率与激振频率重叠导致气(液)柱共振;支承型式设置不当,转弯过多等造成管系机械振动固有频率与激振力频率重叠。
要避免发生共振,应使气(液)柱固有频率、管系的结构固有频率与激振力频率错开。
管道设计时应进行振动分析,合理设置缓冲器,避开共振管长,尽可能减少弯头,合理设置支架。
19.管道支吊架的类型管道支吊架可分为三大类:承重支吊架、限制性支吊架和防振支架。
承重支吊架可分为:刚性支吊架、可调刚性支吊架、弹簧支吊架和恒力支吊架。
限制性支吊架可分为:固定支架、限位支架和导向支架。
防振支架可分为:减振器和阻尼器。
20.管道支吊架选用的原则(1)在选用管道支吊架时,应按照支承点所承受的荷载大小和方向、管道的位移情况、工作温度是否保温式保冷、管道的材质等条件选用合适的支吊架:(2)设计管道支吊架时,应尽可能选用标准管卡、管托和管吊;(2)焊接型的管托、管吊比卡箍型的管托、管吊省钢材,且制作简单,施工方例,因此,除下列情况外,应尽量采用焊接型的管插和管吊;l)管内介质温度等于或大于400度的碳素钢材质的管道;2)低温管道;3)合金钢材质的管道:4)生产中需要经常拆卸检修的管道;21.管道支吊架的作用第一:承受管道的重量荷载(包括自重、介质重等);第二:起限位作用,阴止管道发生非预期方向的位移;第三:控制振动,用来控制摆动、振动或冲击。