数学人教版八年级下册17.1勾股定理的探索及证明
- 格式:doc
- 大小:498.50 KB
- 文档页数:5
人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理教案【教学目标】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题;3.了解利用拼图验证勾股定理的方法..【教学重点】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题.【教学难点】了解利用拼图验证勾股定理的方法.【教学过程设计】一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究知识点一:勾股定理【类型一】直接运用勾股定理例1如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用例2在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC 的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC 的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明例3探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD=S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.知识点二:勾股定理与图形的面积例4 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.【板书设计】17.1 勾股定理课时1 勾股定理1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.【教学反思】在课堂教学中应注意调动学生学习数学的积极性.让学生满怀激情地投入到数学学习中,提高数学课堂教学效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理学案【学习目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.【学习重点】掌握用面积法来证明勾股定理,体会数形结合的思想.【学习难点】能够运用勾股定理进行有关的运算.【自主学习】一、知识回顾网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?AB CCBA方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c=__________________________;右图:S c=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c=__________________________;右图:S c=__________________________.二、合作探究考点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”=________,证明:∵S大正方形S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 公式变形:222222, ,=+--.a cb bc a c a b知识点2:利用勾股定理进行计算【典例探究】例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【跟踪训练】求下列图中未知数x、y的值:三、知识梳理内容勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论四、学习中我产生的疑惑【学习检测】1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22. 如图,Rt△ABC(∠C=90°)的主要性质:(用几何语言表示)(1)两锐角之间的关系:____________________.(2)若∠B=30°,则∠B的对边和斜边:_________.3.如果直角三角形的两直角边分别为a、b,斜边为c,那么_________.4. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.5.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.6.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.7.如图所示,所有的四边形都是正方形,三角形是直角三角形,其中最大的正方形的边长为6,则正方形A,B的面积的和为_______.8.求斜边长17cm、一条直角边长15cm的直角三角形的面积.9.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.10.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底端B的距离AB。
17.1.1勾股定理教学设计
一、教材分析:
勾股定理是直角三角形的一条非常重要的性质,它将数与形密切地联系起来,揭示了一个直角三角形三边之间的数量关系,是后续学习解直角三角形的基础,是三角形知识的深化。
二、学情分析:
八年级学生已对直角三角形有了初步的认识,具备了一定的分析和归纳能力,积累了一定的数学活动经验;但在数学说理和一些重要数学思想方法上尚不能熟练,缺乏严谨的逻辑推理能力,需要进一步的培养。
三、教学目标:
(1)知识与技能:体验勾股定理的探索过程,理解勾股定理反映的直角三角形三边之间的数量关系,能利用已知两边求直角三角形另一边的长;
(2)过程与方法:在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想;
(3)情感与态度:在探索勾股定理的过程中,体验获得结论的快乐,培养合作意识和探索精神。
四、教学重、难点:
重点:探索和证明勾股定理
难点:用拼图方法证明勾股定理
五、教学过程:
导入新课
出示2002年国际数学家大会会标,学生观察会标上的弦图,
问题1:同学们知道这是什么图案吗?它由哪些我们学过的基
本图形组成?
师生活动:教师引导学生寻找图形中的直角三角形、正方形,
并说明直角三角形的全等关系。
教师补充说明:这个图案被称为“赵爽弦图”.什么是勾股定理?勾股定理与弦图有什么关系呢?
设计意图:重视引言教学,从国际数学家大会的会标说起,设置悬念,引入课题。
活动一:观察猜想
探究等腰直角三角形三边之间的数量关系 问题2:多媒体出示:相传2500年前,毕达哥拉斯有一次在朋友家做客时,发现朋友家的用砖铺成的地面中反映了直角三角形的某种数量关系。
假如你就是毕达哥拉斯,请观察图案,看看能发现什么?
学生活动:发现有等腰直角三角形、正方形。
追问:图中三个小正方形A 、B 、C 的面积有什么关系?
学生活动:学生独立观察图形,分析、思考其中的规律,得出结论,正方形A 的面积加正方形B 的面积等于正方形C 的面积。
追问:若中间的等腰直角三角形的三边长分别为a 、b 、c ,那三边之间存在什么关系?
学生活动:学生由正方形的面积等于边长的平方,归纳出,2
22c b a =+。
设计意图:由毕达哥拉斯的发现引出等腰直角三角形三边间的关系,为后边学生在网格中探索直角三角形三边关系提供方法。
问题3:是不是所有等腰直角三角形三边间都存在上述数量关系呢? 师生活动:1、多媒体出示图片(在边长为1的小正方形网格中,有等腰直角三角形,分别以三角形的各边为边,向外作正方形A 、B 、C )课前备好。
提出问题:
(1)完成下表:求出各个小正方形的面积。
(2) A 、B 、C 三个小正方形的面积有什么关系? (3)等腰直角三角形三边之间有什么关系?
2、学生活动:学生根据问题,分组交流并展示交流成果。
引导学生思考:求正方形C 的面积的方法。
(主要是割补法)
3、归纳总结:等腰直角三角形两条直角边的平方和,等于斜边的平方。
A
B C
A
B
C
图1
图2
A 的面积
B 的面积
C 的面积
图1
图2
设计意图:从最特殊的等腰直角三角形入手,为后边的一般化做铺垫,并且从特殊情况入手,符合学生的认知规律,有利于学生参与探索,感受数学学习的过程。
体会观察、猜想、归纳这一数学结论发现的过程, 初步体会特殊到一般的数学方法。
探究一般直角三角形三边之间的数量关系
问题4:一般直角三角形三边间是否仍有以上的数量关系呢?
师生活动:1、出示图片(在边长为1的小正方形网格中,有直角三角形,分别以三角形的各边为边,向外作正方形A 、B 、C )课前备好。
提出问题:
(1)完成下表:求出各个小正方形的面积。
(2) A 、B 、C 三个小正方形的面积有什么关系? (3)直角三角形三边之间有什么关系?
2、学生活动:学生根据问题,分组交流并展示交流成果。
3、归纳总结:直角三角形两条直角边的平方和,等于斜边的平方。
通过以上探索归纳出以下结论(命题):直角三角形两条直角边的平方和,等于斜边的平方。
设计意图:进一步让学生体会观察、猜想、归纳这一数学结论发现的过程, 体会特殊到一般的数学方法。
活动二:推理论证
问题5:这个命题是否是真命题呢? (引出勾股定理的证明) 教师:要求学生拿出准备好的四个全等的直角三角形完成拼图:
拼图要求:(1)将两直角边分别标为a 、b ,斜边为c
(2)拼出的图形有一个边长为c 的正方形
图3
A
B
C
A
B
C
图4
A 的面积
B 的面积
C 的面积
图3
图4
b a c
(3)尝试用拼出的图形证明2
22c b a =+
学生活动:学生分组讨论如何拼图,并尝试用拼出的图形证明勾股定理。
方法一:
:将四个全等的直角三角形拼成如图所示的正方形,
(a-b )2+ ab ×4=c 2 2
22c b a =+
方法二:将四个全等的直角三角形拼成如图所示的正方形
(a+b)
2
=c 2
+ ab ×4
222c b a =+
教师补充:传说中赵爽的证法。
勾股定理有400多种证法,同学们可课下收集资料,了解更多证明方法。
通过推理论证得出猜想得出的命题为真命题,得到勾股定理:
勾股定理(毕达哥拉斯定理) :直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形两直角边分别为a 、b,斜边为c ,
那么 222c b a =+
设计意图:通过动手操作更好地调动学生的学习积极性,把学习的主动权交给学生。
让学生完整的经历“观察-猜想-归纳-验证”的数学过程,体会数形结合及由特殊到一般的思想方法。
介绍勾股定理的命名:.约 2000年前,西汉数学著作《周髀算经》中就记载了“…故折矩,勾广三,股修四,经隅五”的说法;意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。
以后人们就简单地把这个事实说成“勾三股四弦五”。
当时把较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.所以我国称它为勾股定理.西方国家称勾股定理为毕达哥拉斯定理。
设计意图:通过介绍勾股定理的有关知识,使学生对勾股定理加深了解,培养学生的爱国情怀。
活动三:学以致用
1
212
b
a c b
a c
1. 求下图中字母x 、y 、z 所表示的正方形的面积 .
2.求下列直角三角形中未知边的长:
设计意图:通过实战练习,巩固所学知识。
活动四:归纳小结
通过这节课的学习,你有哪些收获?
设计意图:帮助学生梳理所学,并培养学生的总结概括、语言表达能力。
活动五:当堂检测
1、如图,由三个正方形拼成的的图形中,字母B 所代表的正方形的面积是 .
2、Rt △ABC 中,∠C=90°,a 、b 、c 分别是∠A、 ∠B 、 ∠C 的对边,
(1)若a=6,b=8,则c= . (2)若c=17,b=15,则a= . (3)若c=61,a=60,则b= .
设计意图:针对所学内容,检查学生的学习效果,以便查漏补缺,调整教学。
8
x
17
16
20
x
12
5
x。