当前位置:文档之家› 初中数学相似三角形的周长与面积.docx

初中数学相似三角形的周长与面积.docx

初中数学相似三角形的周长与面积.docx
初中数学相似三角形的周长与面积.docx

xx学校xx学年xx学期xx试卷

姓名:_____________ 年级:____________ 学号:______________

题型选择题填空题简答题xx题xx题xx题总分

得分

一、xx题

(每空xx 分,共xx分)

试题1:

已知△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为

(A)1:2 (B)1:4 (C)2:1 (D)4:1

试题2:

在和中,,如果的周长是16,面积是12,那么的周长、面积依次为()

A.8,3 B.8,6 C.4,3 D.4,6

试题3:

、分别是、的中点,则()

A. 1∶2 B.1∶3 C.1∶4 D. 2∶3

试题4:

下列说法错误的是()

A.如果把一个三角形的各边扩大为原来的5倍,那么它的周长也扩大为原来的5倍

B.相似三角形对应高的比等于对应中线的比

评卷人得分

C .相似多边形的面积比等于周长比的平方

D.如果把一个多边形的面积扩大为原来的5倍,那么它的各边也扩大为原来的5倍

试题5:

两个相似多边形的相似比为2:3,它们的面积和为78cm2,则较大的多边形的面积为( )

A.54cm2

B.42cm2

C.56cm2

D.52cm2

试题6:

顺次连结三角形三边的中点,所成的三角形与原三角形对应高的比是()

A. B. C. D.

试题7:

如图所示,在△ABC中,DE∥BC,BD=10,DA=15,BE=8,则 EC= ,= ,

_______

试题8:

在相似三角形中,已知其中一个三角形三边的长是4,6,8,另一个三角形的最小边长是2,则另一个三角形的周长

试题9:

如图所示,D、E分别是AC、AB上的点,AE/AC=AD/AB=3/5,已知△ABC的面积为100CM2 .求四边形BCDE的面积.

试题10:

如图,矩形ABCD中,AB=4,BC=12,AF:FD=1:3,BF=5,CE⊥BF,于点E,交AD

于点G,求△BCE的周长.

试题1答案:

B

试题2答案: A

试题3答案:

C

试题4答案:

D

试题5答案:

A

试题6答案:

C

试题7答案:

12,

试题8答案:

9

试题9答案:

证:∵AE/AC=AD/AB=3/5, ∠A=∠A

∴△ABC∽△ADE

试题10答案:

证:∵矩形ABCD, ∴∠A=∠E=90°∠AFB=∠EBC,AD=BC ∴△ABF∽△EBC

∵BC=12, AF:FD=1:3

∴AF=3

∵BF=5, ∴C△ABF=12,

∴C△ABF:C△BCE=BF:BC=5:12

∴C△BCE=144/5

(完整版)初中数学竞赛相似三角形专题

初二竞赛专题:相似三角形 1.如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明: 111 AB CD EF += . 2.如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长. 3.如图,在梯形ABCD 中,AD BC ∥,396AD BC AB ===,,,4CD =,若EF BC ∥,且 梯形AEFD 与梯形EBCF 的周长相等,求EF 的长. 两个常见模型:如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点, 则 BD EG DC FG = . O F E D C B A F E D C B A F E D C B A G F E D C B A B D A E G F C

4.一条直线与三角形ABC的三边BC,CA,AB(或其延长线)分别交于D,E,F(如图2-68所示).求证: 5.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d. 6.如图,边长为1的等边ABC △,BC边上有一点D,1 3 BD=,AC上有一点E ,60 ADE ∠=o,求EC的长.7.已知,B是AC中点,D、E在AC的同侧,且ADB EBC ∠=∠,DAB BCE ∠=∠,证明:BDE ADB ∠=∠. E D C B A D E B C A

8.如图,在ABC △中,60BAC ∠=o ,点P 是ABC △内一点,且APB BPC CPA ∠=∠=∠,若8PA =,6PC =,求PB 的长. 9.如图,在锐角ABC △中,AD 、CE 分别为BC 、AB 边上的高,ABC △和BDE △的面积分别等于18和2, 22DE =,求点B 到AC 的距离. 10.如图所示,已知3个边长相等的正方形相邻并排,求EBF EBG ∠+∠. 11.如图,在ABC △中,AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证: 2FD FB FC =?. E D C A B P C B A H G B A

相似三角形的比例关系及相似三角形证明的变式

相似三角形的比例关系及相似三角形证明的变式 【知识疏理】 一, 相似三角形边长比,和周长比以及面积比的关系! 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------。 二, 相似三角形证明的变式 1,相似三角形当中常以乘积的形式出现,如: 例1、 已知:如图1,BE 、DC 交于点A ,∠E=∠C 。求证:DA ·AC=BA ·AE 图2 题目比较简单,学生独立完成,启发学生总结:①本题找对应角的特殊方法是对顶角相等;②要想证明乘积式或比例式,应先证明三角形相似。 2,对特殊图形的认识 例2、已知:如图3,Rt △ABC 中,∠ABC=90o,BD ⊥AC 于点D 。 图3 (1) 图中有几个直角三角形?它们相似吗?为什么? (2) 用语言叙述第(1)题的结论。 (3) 写出相似三角形对应边成比例的表达式。 总结: (1) 有一对锐角相等的两个直角三角形相似; (2) 本题找对应角的方法是公共角及同角的余角相等; A B C A'B'C'图(4)图1 B A C

双垂直图形中的BD 2=AD ·CD ,AB 2=AD ·AC ,BC 2=CD ·CA ,BC ·AB=AC ·BD 等结论很重要,它们在计算、证明中应用很普遍,但需先证明两个三角形相似得到结论,再加以应用。在此基础上,将双垂直图形转化 为“公边共角”,讨论、探究, A B C 得到结论:由公边共角的两个相似三角形中,公边是两个三角形中落在一条直线上的两边的比例中项,即若△ABD ∽△ACB ,则AB 2=AD ·AC 。 【课堂检测】 一选择题 1、一个三角形的三边长为5,5,6,与它相似的三角形最长边为10,则后一个三角形的面积为( ) A 、3100 B 、20 C 、54 D 、25 108 2、如图,梯形ABCD 中,AB ∥CD ,如果S △ODC :S △BDC =1:3,那么S △ODC :S △ABC 的值是( ) A 、 51 B 、61 C 、71 D 、9 1 D C A D O P A B B C (第2题图) (第4题图) 3、已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比是1:4,则两底的比是( ) A 、1:2 B 、1:4 C 、1:8 D 、1:16 4、已知,梯形ABCD 中,AD ∥BC ,∠ABC=900,对角线AC ⊥BD ,垂足为P ,已知AD :BC=3:4,则BD :AC 的值是 ( ) A、3:2 B、2:3 C、3:3 D、3:4 5、如图,已知:∠BAO=∠CAE=∠DCB ,则下列关系式中正确的是( ) A 、AE BC AD A B = B 、AD B C AE AC = C 、AE BC DE AB = D 、AD AB AE AC =

二次函数与相似三角形问题(含答案)

y x E Q P C B O A 综合题讲解 函数中因动点产生的相似三角形问题 练习1、如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 练习2、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式. (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?

练习3 、如图所示,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标. (2)过点A 作AP∥CB 交抛物线于点P ,求四边形ACBP 的面积. (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 练习4、在平面直角坐标系xOy 中,已知二次函数2 (0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点 A 在点 B 的左边) ,与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,. (1)求此二次函数的表达式;(由一般式... 得抛物线的解析式为2 23y x x =-++) (2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.

上海市初三数学相似三角形经典题型

相似三角形的判定练习 例题分析: 例1:已知如图,在△ABC 中,D 是AB 上的一点,连结CD ,∠ACD=∠B,求证:2 AE AD AC = 例2:如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB ,垂足为D , (1)求证:△ACD ∽△ABC ∽△CBD (2)求证:222(1) (2) (3)AC AD AB CD AD DB BC BD AB === 例3:已知如图,点D 是AB 上的一点,CA ⊥AB,EB ⊥AB,CD ⊥DE,求证:△ACD ∽△BDE 例4:在△ABC 中,AB=6,AC=9,D 为AC 上的一点,AD=3,在AB 上找一点E ,使得△ADE 与△ABC 相似?并求出AE 的长。

两个三角形相似的六种图形: 1. 如图在△ABC中,D是BC边的中点,且AD=AC,DE⊥BC,交AB于点E,EC交AD于点F. 求证:△ABC∽△FCD; A E F B D C 2、已知:如图,△ABC中,∠ACB=900,AB的垂直平分线交AB于D,交BC延长线于F。 求证:CD2=DE·DF 3. 如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的延长线于E.求证:DE2=BE·CE. 4.如图,已知△ABC中,AB=AC,AD是BC边上的中线,CF∥BA,BF交AD于P点,交AC于E点。求证:BP2=PE·PF。

5.如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB 6.如图4,在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB的延长线于点F. 求证:AB DF AC AF . 7.已知如图,在平行四边形ABCD中,,求证:△AOB∽△ABC 8. 已知:如图,ΔABC中,CE⊥AB,BF⊥AC.求证:(1)△AEC∽△AFB (2) △AEF∽△ACB

初中数学九年级上册相似三角形的周长和面积之比专项练习题

第2课时 相似三角形的周长和面积之比 1、若△ABC ∽△DEF,△ABC 的面积为81cm 2,△DEF 的面积为36cm 2 ,且AB=12cm,则DE= cm 2、如图,ΔABC 中,DE ∥FG ∥BC,AD ∶DF ∶FB=1∶2∶3,则S 四边形DFGE ∶S 四边形FBCG = _________. 3、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面 上形成(圆形)的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡 离地面3米,则地面上阴影部分的面积为 ( -) A.、0.36π米2 B 、0.81π米2 C 、2π米2 D 、3.24π米2 4、如图,分别取等边三角形ABC 各边的中点D 、E 、F ,得△DEF .若△ABC 的边长为a . (1)△DEF 与△ABC 相似吗?如果相似,相似比是多少? (2)分别求出这两个三角形的面积. (3)这两个三角形的面积比与边长之比有什么关系吗? 5、如图,在ΔABC 中,BA=BC=20cm ,AC=30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x 。(1)当x 为何值时,PQ ∥BC ?(2)当 3 1=??ABC BCQ S S ,求ABC BPQ S S ??的值;

A B C Q M D N P E 6、在△ABC 中,AE ∶EB=1 ∶2,EF ∥BC ,AD ∥BC 交CE 的延长线于D ,求 S △AEF ∶S △BCE 的值。 7、如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 8、如图,在△ABC 中,DE ∥FG ∥BC ,GI ∥EF ∥AB ,若△ADE 、△EFG 、△GIC 的面积分别为20cm 2、45cm 2、80cm 2,求△ABC 的面积。

相似三角形的面积问题题型总结+答案

相似三角形的有关面积问题 复习引入: 求三角形面积常用方法 1、面积公式: 2、等高法: 3、相似三角形: 【精选例题】 【例题】如图,平行四边形ABCD 中,AE:EB=2:3,则S △APE:S △CPD=______. 解答:4:25。 【例题】如图,AC 是平行四边形ABCD 的对角线,且BE=EF=FD, 求S △AMH: S 平行四边形ABCD 的值。 解答:∵平行四边形ABCD ,∴AB//CD ,AD//BC ∴△BME ∽△DAE ,△DHF ∽△BMF ∴BM :DA=BE :DE,DH :BM=DF :BF 又 ∵BE=EF=FD,所以BE :DE=DF :BF=1:2 ∴AD=2BM,BM=2DH,所以AD=4DH,∴AH=4 3AD ∴S △AMH:S 平行四边形ABCD= 8 3。 变式:如图,在平行四边形ABCD 中,AE:EB=2:3.则△AEF 和△CDF 的周长比______. 解答:∵四边形ABCD 是平行四边形,∴AB=CD,AB//CD , ∴∠EAF=∠DCF ,∠AEF=∠CDF ,∴△AEF ∽△CDF , S ΔABD S ΔACD =a b h b a H D C B A h a S=1 2 ah E S ΔADE S ΔABC = a 2 b 2 b a D C B A P E D C B A

M 1F 1E 1M E F A B C ∴△AEF 的周长:△CDF 的周长=AE :CD=2:5. 变式:如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为_________. 答案∵四边形ABCD 是平行四边形,∴AD=CB,CB//AD,BC//AB ∴△DEF ∽△AEB , ∵DE:AB=2:3,∴DE:AE=2:5,∴S △DEF:S △AEB=4:25, ∵△BEF 的面积为4,∴S △AEB=25, ∴S 四边形ABFD=S △AEB?S △DEF=21, ∵AD=CB ,DE:AD=2:3,∴DEBC=23, ∵AB//CD ,∴△BEF ∽△CDF ,∴S △DEF:S △CBF=4:9,∴S △CBF=9, ∴S 平行四边形ABCD=S 四边形ABFD+S △CBF=21+9=30 【例题】如图,EE 1//FF 1//MM 1//BC,若AE=EF=FM=MB,则S △AEE 1:S 四边形EE 1F 1F:S 四边形FF 1M 1M:S 四边形MM 1CB 为_____. 答案:设S △AEE 1=x ∵ EE 1//FF 1∴ △AEE 1∽△AFF 1 (平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的 三角形与原三角形相似) ∴ 2 21 1AF AE AFF S AEE S =?? (相似三角形面积比等于对应边的平方比) ∵ AE=EF ∴ 21=AF AE ∴ 4111=??AFF S AEE S ∴ S △AFF1=x 4 ∴ S 四边形EE 1F 1F=x 3 同理可得 S 四边形FF 1M 1M=x 5 S 四边形MM1CB=x 7 ∴ S △AED:S 四边形EE1F1F:S 四边形FF 1M 1M:S 四边形MM 1CB=1:3:5:7 变式:如图,在△ABC 中,FG//DE//AB ,且AF=FG=CG 。设△ABC 被分成的三部分的面积分别为S 1,S 2和S 3,求S 1:S 2:S 3。 解答:∵F 、G 为AC 边上的三等分点,D 、E 为AB 边上的三等分点 ∴ AF :AG :AC=1:2:3 ∵ FD//EG//BC ,∴ S △CFG :S △CDE :S △CAB=1:4:9,∴ S1:S2:S3=1:3:5 变式:如图,DE//FG//BC ,设△ABC 被分成的三部分的面积分别为 S1,S2,S3,且S1=S2=S3, 则AD:DF:FB= 。 G F E D A

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题? 二次函数中因动点产生的相彳以三角形问题一般有三个解题途径: ①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 例题1:已知抛物线的顶点为A (2, 1),且经过原点O,与X轴的另一个交点为B. 1 2 y = --x~ +x (1)求抛物线的解析式:(用顶点式求得抛物线的解析式为 4 ) (2)连接OA、AB.如图2,在x轴下方的抛物线上是否存在点P,使得二OBP与二OAB 相似?若存在,求出P点的坐标:若不存在,说明理由。 解:如图2,由抛物线的对称性可知:AO=AB二AOB=CABO. 若二BOP与匚A0B相似,必须有二POB = OBOA =匚BPO 设0P交抛物线的对称轴于A?点,显然AX2-1) 1 y = --x 二直线OP的解析式为2 一一x =一一x? + 由2 4 得x 1 = 0, x 2 =6 -JP(6,~3) 过P 作PE二x 轴,在RtZBEP 中,BE=2,PE=3, 二PB=厢拜. 二PB=OB,HBOP* 二BPO、 ZOPB0与匚BAO不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该 抛物线上不存在点R使得ZBOP与ZAOB相似.

例题2:如图所示,已知抛物线与兀轴交于A、B两点,与y轴交于点c. (1)求A、B、C三点的坐标. (2)过点A作APZCB交抛物线于点P,求四边形ACBP的面积. (3)在x轴上方的抛物线上是否存在一点过M作MG丄兀轴于点G, 使以A、M. G 三点为顶点的三角形与APCA相似.若存在,请求岀M点的坐标; 解:(1)令尸°,得?-1=0 解得“±1 令x=o,得〉‘=一1 二A(70)B(I,°)c(°,j) (2)匚OA=OB=OC= 1 □ ZBAC=厶ACO= ZBCO= 45 ZAPZCB, E Z PAB=45 过点P作PE丄x轴于E,则△ APE为等腰直角三角形 令OE=" > 贝iJPE=Q + l + 0 ::点p在抛物线上“+1=/_i 解得5=2,心=一1 (不合题意,舍去)二PE=3 1 1 1 「1 ———x2xl + —x2x3 = 4 二四边形ACBP的而积S = 2 A B?OC+ 2 A B?PE=2 2 (3).假设存在 二Z PAB= Z BAC =45 匚PA 丄AC ZMG丄 * 轴于点G, □ Z MGA= Z PAC = 90 在Rt 二AOC 中,OA=OC= 1 二AC=Q 在Rt 二PAE 中, AE=PE= 3 ZAP= 3^2 设M点的横坐标为m ,则M(加,m~ -1) □点M在y轴左侧时,贝0VT 图2

初三数学《相似三角形》知识点归纳

初三数学《相似三角形》知识提纲 (何老师归纳) 一:比例的性质及平行线分线段成比例定理 (一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离 3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:c d a b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。 ③ 比例中项:若 c a b c a b c b b a ,,2是则即?==的比例中项. (二)比例式的性质 1.比例的基本性质:b c a d d c b a =?= 2. 合比:若 ,则或a b c d a b b c d d a b a c d c =±=±±=± 3. 等比:若 ……(若……)a b c d e f m n k b d f n =====++++≠0 4、黄金分割: 把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=2 1 5-AB ≈0.618AB , (三)平行线分线段成比例定理 1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图:当AD∥BE∥CF 时,都可得到 = . = , = , 语言描述如下: = , = , = . (4)上述结论也适合下列情况的图形: n m b a =

2019中考相似三角形面积比公式推论

2019xx相似三角形面积比公式推论 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 相似三角形面积比 【一相似三角形】相似三角形知识放送: 对应角相等,对应边成比例的两个三角形叫做相似三角形。 相似三角形性质定理: 相似三角形的对应角相等。 相似三角形的对应边成比例。 相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 相似三角形的周长比等于相似比。 相似三角形的面积比等于相似比的平方。 相似三角形面积比判定定理推论 推论一: 顶角或底角相等的两个等腰三角形相似。 推论二: 腰和底对应成比例的两个----------- 精选公文范文---------- 1等腰三角形相似。 推论三: 有一个锐角相等的两个xx相似。 推论四:

直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。 推论五: 如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。 推论六: 如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。 相似三角形面积比性质 1. 相似三角形对应角相等,对应边成比例。 2. 相似三角形的一切对应线段的比等于相似比。 3. 相似三角形周长的比等于相似比。 4. 相似三角形面积的比等于相似比的平方。 5. 相似三角形内切圆、夕卜接圆直径比和周长比都和相似比相同,内切圆、外 -------- 精选公文范文--------- 2接圆面积比是相似比的平方 6. 若a: b =b: c,即b的平方=ac则b叫做a,c的比例中项 /d=a/b 等同于ad=bc. 8.必须是在同一平面内的三角形里相似三角形对应角相等,对应边成比例 相似三角形周长的比等于相似比各位读友大家好,此文档由网络收集而 来,欢迎您下载,谢谢---------- 精选公文范文 --------- 3

初中数学《相似三角形》优秀教案

相似三角形 一、知识概述 (一)相似三角形 1、对应角相等,对应边成比例的两个三角形,叫做相似三角形. 温馨提示: ①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例,其应用广泛. 2、相似三角形对应边的比叫做相似比. 温馨提示: ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似.

①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理(1):两角对应相等,两三角形相似. 判定定理(2):两边对应成比例且夹角相等,两三角形相似. 判定定理(3):三边对应成比例,两三角形相似. 温馨提示: ①有平行线时,用上节学习的预备定理; ②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理(1)或判定定理(2); ③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等. 2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.

《相似三角形的周长与面积》教案

《相似三角形的周长与面积》教案 一、教学目标 1.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方. 2.能用三角形的性质解决简单的问题. 二、重点、难点 1.重点:相似三角形的性质与运用. 2.难点:相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解. 3.难点的突破方法 (1)相似三角形的性质:①对应角相等,对应边成比例;②相似三角形周长的比等于相似比; ③面积的比等于相似比的平方.(还可以补充④相似三角形对应高的比等于相似比) (2)应用相似三角形的性质,其前提条件是两个三角形相似,不满足前提条件,不能应用相应的性质.如:两个三角形周长比是,它们的面积之比不一定是,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题. (3)在应用性质2“相似三角形面积的比等于相似比的平方”时,要注意有相似比求面积必要平方,这一点学生容易掌握,但反过来,由面积比求相似必要开方,学生往往掌握不好,教学时可增加一些这方面的练习.如:如果两个相似三角形面积的比为3∶5 ,那么它们的相似比为________,周长的比为________. (4)讲完性质后,可先安排一组简单的题目让学生巩固,然后再讲例题. 三、例题的意图 本节课安排了两个例题,例1是补充的一个例题,它紧扣性质,是性质的简单运用,但要注意它是逆用性质“相似三角形周长的比等于相似比”来进行运算的.例2 是教材P53的例6 ,它是通过求相似的过程中,求出相似比,再综合运用两条性质求出其周长与面积的.难度略高于例1.其目的是想让学生能够综合、灵活的运用相似三角形的性质解决问题.

函数与相似三角形

函数与相似三角形 一、(2013陕西)在平面直角坐标系中,一个二次函数的图像经过A (1,0)B (3,0)两点. (1)写出这个二次函数图像的对称轴; (2)设这个二次函数图像的顶点为D,与y 轴交与点C ,它的对称轴与x 轴交与点E ,连接AC 、DE 和DB.当△AOC 与△DEB 相似时,求这个二次函数的表达式. [提示:如果一个二次函数的图像与x 轴的交点为A 1(,0)x B 2(,0)x ,那么它的表达式可表示为 12()()y a x x x x =-- .] 二、(2013上海)如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2 (0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,AO OB == 2,0 120AOB ∠=. (1)求这条抛物线的表达式; (2)联结OM ,求AOM ∠的大小; (3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标. M A B O x y 图9

三、(2013凉山州)如图,抛物线22y ax ax c =-+(0a ≠)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G 。 (1)求抛物线的解析式; (2)抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长。 (3)在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、 F 为顶点的三角形和AEM △相似?若存在,求出此时m 的值,并直接判断PCM △的形状;若不存在, 请说明理由。 A B C l P M F G D O E x y (第28题图)

最新初中数学相似三角形-难题-易错题(附详解)

2013初中相似三角形难题易错题 一.填空题(共2小题) 1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF. 2.如图,?ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________. 二.解答题(共17小题) 3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:. 4.如图所示,?ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求 证:.

5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:. 6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d. 7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.

8.已知:P为?ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:. 9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN. 10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示). 求证:.

11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB. 12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F. 求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2. 13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.

第一点是相似三角形面积比等于对应边长比的平方

第一点是相似三角形面积比等于对应边长比的平方 Prepared on 22 November 2020

第一点是相似三角形面积比等于对应边长比的平方;第二点是同高不同底的两个三角形面积之比等于这两个三角形的底边之比 对应角相等,对应边成比例的两个三角形叫做相似三角形。(similar triangles)互为相似形的三角形叫做相似三角形。 相似三角形的认识 对应角相等,对应边成比例的两个三角形叫做相似三角形。(similar triangles)。 互为相似形的三角形叫做相似三角形 相似三角形的判定方法 根据相似图形的特征来判断。(对应边成比例,对应角相等) 1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似; (这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明) 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似; 3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; 4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似; 绝对相似三角形 1.两个全等的三角形一定相似。 2.两个等腰直角三角形一定相似。 3.两个等边三角形一定相似。 直角三角形相似判定定理 1.斜边与一条直角边对应成比例的两直角三角形相似。 2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。 三角形相似的判定定理的推论 推论一:顶角或底角相等的那个的两个等腰三角形相似。 推论二:腰和底对应成比例的两个等腰三角形相似。 推论三:有一个锐角相等的两个直角三角形相似。 推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。 推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。 相似三角形的性质 1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。 2.相似三角形周长的比等于相似比。 3.相似三角形面积的比等于相似比的平方。 相似三角形的特例

三角函数和相似三角形综合题

三角函数和相似三角形综合题 1、(2017?哈尔滨)在Rt △ABC 中,∠C=90°,AB=4,AC=1,则cosB 的值为( ) A .14 D 2、(2017?金华)在Rt △ABC 中,∠C=90°,AB=5,BC=3,则tanA 的值是( ) A .34 B.43 C.35 D.45 3、(2017?聊城)在Rt △ABC 中,cosA=12 ,那么sinA 的值是( ) A .2 B .2 C .3 D .12 4、(2017?安顺)如图,⊙O 的直径AB=4,BC 切⊙O 于点B ,OC 平行于弦AD ,OC=5,则AD 的长为( ) A .65 B .85 C .5 D .5 5、(2017?滨州)如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( ) A . B . C . D . 6、(2017?白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之 一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

7、(2017?淮安)A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km, ,) 8、(2017?常德)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参 考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414) 9(2017?张家界)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

初三数学的相似三角形的常见模型

相似三角形常见模型一【知识清单】 【典例剖析】 知识点一:A字型的相似三角形 A字型、反A字型(斜A字型) B(平行) B (不平行)

(1)如图,若BC DE ∥,则ABC ADE ∽△△ (2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则 ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连接DE ,可得?=∠+∠180C BDE ,线段BC DE 21=,AE AD 3 2=, 求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, F E D C B A B M 1F 1E 1M E F A B C M N A B C D E F

::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD ∥BC ,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 知识点二:8字型相似三角形 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (1)如图,若CD AB ∥,则DOC AOB ∽△△ (2)如图,若C A ∠=∠,则CDJ ABJ ∽△△ 1、已知,P 为平行四边形ABCD 对角线,AC 上一点,过点 P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相 交于点E ,F ,G ,H 求证:PE PH PF PG = P H G F E D C B A

相似三角形和三角函数

1. 相似三角形的判定定理: 推论一一直角三角形相似: (1) 直角三角形被斜边上的高分成两个直角三角形和原三角形相似。 (2) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 2. 性质定理: (1) 对应角相等。 (2) 对应边成比例。 (3) 对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4) 周长比等于相似比。 (5) 面积比等于相似比的平方。 3. 相似三角形的传递性 如果△ABC S ^I B I C I ,M I B I C I s 公2B 2C 2,那么△ ABC "A 2B 2C 2 精选文档 相似三角形考点 4、 比例的性质 a c (1) 比例的基本性质: =— b d a c a b (2) 合比性质: =- b d b (3) 等比性质:a =- = L =m b d n ad 二be (bd H 0) e d d a e L m a 八 b d L (b d L n u) n b

精选文档 如果两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形 叫做位似图形,这个点叫做位似中心。对应边的比叫做位似比,位似比等于相似比。 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边 c 的平方。 a 2 b 2 c 2 2、如下图,在 Rt △ AB (中,/ C 为直角,则/ A 的锐角三角函数为(ZA 可换成/B ): 3、特殊角的三角函数值(重要) 三角函数 30 ° 45 ° 60 ° \ 疋 义 表达式 正 弦 sin A - A 的对边 斜边 a sin A — c 余 弦 cosA - A 的邻边 斜边 .b cos A - c 正 切 tan A - A 的对边 A 的邻边 tan A — b

初中数学相似三角形六大证明技巧(推荐)

相似三角形6大证明技巧 相似三角形证明方法 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型.

“旋转相似”与“一线三等角” 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =?

通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证: DC CF AE AD =. A B C F D E 【例2】 如图,ABC △中,90BAC ∠=?,M 为BC 的中点,DM BC ⊥交CA 的延长线于 D ,交AB 于 E .求证:2AM MD ME =? C B A E D M 【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E , 交AD 于F .求证: BF AB BE BC =. D B A C F E 技巧一:三点定型 比例式的证明方法

相关主题
文本预览
相关文档 最新文档