n
(1.12)
向量2-范数为
x ( x, x) ( xi2 )
i 1 1 2 n 1 2
2
28
若给定实数 i 0(i 1,2,, n), 称{i } 为权系数,
R n 上的加权内积为
( x, y ) i xi yi
p( x) H n 表示为
p( x) a0 a1 x an x n ,
它由 n 1 个系数 (a0 , a1 ,, an ) 唯一确定.
(1.2)
1, x, , x n是线性无关的, 它是 H n 的一组基,故
H n span{1, x, , x n },
且 (a0 , a1 ,, an ) 是 p (x) 的坐标向量,H n 是 n 1维的.
17
类似地,对连续函数空间 C[a, b] ,若 f ( x) C[a, b] ,
可定义三种常用范数如下:
f
f
max f ( x) ,
a x b
b
称为 范数, 称为 1-范数,
1 2
1
a
f ( x) dx,
b
f
2
( f 2 ( x)dx) ,
a
称为 2-范数.
可以验证这样定义的范数均满足定义2中的三个条件.
(1.7)
称为格拉姆(Gram)矩阵, 则 G 非奇异的充分必要条件是 u1 , u2 ,, un 线性无关.
24
证明 方程组
G非奇异等价于 det G 0,其充要条件是齐次
( j u j , uk ) (u j , uk ) j 0, k 1,2, , n(1.8)
第3章