高二数学立体几何体复习2
- 格式:doc
- 大小:53.00 KB
- 文档页数:2
P 高二数学立体几何练习(二)1.设n m ,是两条不同直线,,αβ是两个不重合的平面,在下列条件,:①,m n 是α内一个三角形的两条边,且//,//m n ββ;②α内有不共线的三点到β的距离都相等;③,αβ都垂直于同一条直线a ;④n m ,是两条异面直线,,m n αβ⊂⊂,且//,//m n βα.其中不能判定平面//αβ的条件是 .2.设b a ,是两条不同直线,,αβ是两个不同平面,给出下列四个命题:①若,,a b a α⊥⊥ b α⊄,则//b α;②若//,a ααβ⊥,则a β⊥;③若,a βαβ⊥⊥,则//a α或a α⊂;④若,,a b a b αβ⊥⊥⊥则αβ⊥.其中正确的命题是____ _.3.空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系___4.在四棱锥P-ABCD 中,PA ⊥底面ABCD ,底面各边都相等,M 是PC 上的一动点,当点M 满足___________时,平面MBD ⊥平面PCD .5.已知正ABC ∆的边长为a ,那么ABC ∆的平面直观图A B C '''∆的面积为____ _.6.三个平面两两垂直,它们的交线交于一点O ,P 到三个面的距离分别为3、4、5,则OP 的长为 .7.正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是___________ .8.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 是AA 1的中点,则A 1到平面MBD 的距离为______.9.下列四个命题其中错误..的命题的是 ① 垂直于同一条直线的两条直线相互平行;② 垂直于同一个平面的两条直线相互平行; ③ 垂直于同一条直线的两个平面相互平行;④ 垂直于同一个平面的两个平面相互垂直.10.若l 为一条直线,α,β,γ为三个互不重合的平面,给出下面三个命题:①α⊥γ,β⊥γ,则α⊥β;②α⊥γ,β∥γ,则α⊥β;③l ∥α,l ⊥β,则α⊥β. 其中正确的命题的是11.如图,四棱锥ABCD 中,底面ABCD 是正方形,O 是正方形ABCD 的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(Ⅰ)PA ∥平面BDE ;(Ⅱ)平面PAC ⊥平面BDE .12.如图,四棱锥P —ABCD 中, PA ⊥平面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,CD ⊥AD ,CD=2AB ,E 为PC 中点.(I) 求证:平面PDC ⊥平面PAD ;(II) 求证:BE//平面PAD .A B C D EP13。
8.1 基本立体图形(精练)【题组一多面体】1.(2020·广西崇左市·崇左高中)下列几何体中是棱锥的有( )A.0个B.1个C.2个D.3个2.(2020·广西桂林市·桂林十八中)下列命题正确的是( )A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可以都是棱柱3.(2020·全国高三专题练习)一个棱锥所有的棱长都相等,则该棱锥一定不是( ) A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥4.(2021·江苏高一课时练习)棱台不具备的特点是( )A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点5.(2021·河南焦作市)某几何体有6个顶点,则该几何体不可能是( )A.五棱锥B.三棱柱C.三棱台D.四棱台6.(2020·全国高三专题练习(文))下列说法中正确的是( )A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是梯形的几何体叫棱台D.有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥7.(2020·朝阳县柳城高级中学)下列说法正确的是( )A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直D.棱台的侧棱延长后交于一点,侧面是等腰梯形8.(2021·江苏高一课时练习)下列说法正确的是________(填序号).①底面是正多边形的棱锥为正棱锥;②各侧棱都相等的棱锥为正棱锥;③各侧面都是等腰三角形的棱锥为正棱锥;④各侧面都是全等的等腰三角形的棱锥是正棱锥;⑤底面是正多边形且各侧面全等的棱锥为正棱锥.9.(2020·全国高三专题练习)给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.10.(2020·全国高三专题练习)下列关于棱锥、棱台的说法中,正确说法的序号是________①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④棱台的各侧棱延长后必交于一点;⑤棱锥被平面截成的两部分不可能都是棱锥.11.(2021·江苏高一课时练习)如图,下列几何体中,_______是棱柱,_______是棱锥,_______是棱台(仅填相应序号).【题组二旋转体】1.(2020·浙江)以下空间几何体是旋转体的是( )A .圆台B .棱台C .正方体D .三棱锥2.(2020·东台创新高级中学高一月考)给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线都可以构成直角三角形; ③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是( )A .①③B .②④C .①④D .②③3.(2020·全国高一课时练习)如图所示,观察下面四个几何体,其中判断正确的是( )A .①是圆台B .②是圆台C .③是圆锥D .④是圆台4.(2032·上海市)有下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点连线的长度是母线的长度;②圆锥顶点与底面圆周上任意一点连线的长度是母线的长度;③圆柱的任意两条母线所在直线互相平行;④过球上任意两点有且只有一个大圆;其中正确命题的序号是_____【题组三 组合体】1.(2020·全国高一课时练习)说出图中物体的主要结构特征.2.(2020·全国高一课时练习)如图,以直角梯形ABCD的下底AB所在直线为轴,其余三边旋转一周形成的面围成一个几何体,说出这个几何体的结构特征.3.(2020·全国高一课时练习)如图,说出图中两个几何体的结构特征.4.(2020·全国高一课时练习)试指出图中组成各几何体的基本元素.【题组四截面问题】1.(2020·江西吉安市·高三其他模拟(文))如图是一个正方体的表面展开图,则图中“0”在正方体中所在的面的对面上的是( )A.2 B.1 C.高D.考2.(2021·江苏高一课时练习)如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是( )A.三棱锥B.四棱锥C.三棱柱D.组合体3.(2020·唐山市第十一中学高二期中)用一个平面去截一个几何体,得到的截面是三角形面,这个几何体不可能是( )A.棱锥B.圆锥C.圆柱D.正方体4.(2021·江苏高一课时练习)如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )A.①②B.①③C.①④D.①⑤。
上海高二立体几何知识点一、概述立体几何是数学中研究空间内各种几何体的形状、大小、位置等性质的一门学科。
上海高二立体几何知识点是指上海高二学生需要掌握的与立体几何相关的重要知识点。
本文将为大家介绍上海高二立体几何的核心概念、公式以及解题方法等内容。
二、立体几何的基本概念和性质2.1空间几何体的分类空间几何体主要包括点、线、面以及体。
其中,点是空间的最基本的元素,线是由无数个点构成的,面是由无数个线构成的,体是由无数个面构成的。
2.2空间几何体的性质不同的空间几何体具有不同的特征和性质。
例如,平面内的点与点之间可以通过直线相连,而在空间内则需要使用线段。
此外,空间几何体还具有对称性、轴对称性、等距性等重要性质。
三、立体几何的重要知识点3.1立体的表面积和体积计算计算立体的表面积和体积是立体几何中的基本问题。
根据不同立体的特征,具体的计算公式有所不同。
例如,计算正方体的表面积可以使用公式:$S=6a^2$,其中$a$表示边长。
计算长方体的体积可以使用公式:$V=l wh$,其中$l$、$w$和$h$分别表示长、宽和高。
3.2空间固体与投影空间固体的投影是指将立体物体在某个平面上的投影图形。
在计算空间固体的投影时,需要考虑物体与投影面的相对位置关系。
例如,计算柱体在水平面上的投影可以使用公式:$S=\p ir^2$,其中$r$表示柱体的半径。
3.3空间几何体的位置关系在立体几何中,空间几何体的位置关系通常包括在平面内的位置关系和在空间内的位置关系两个方面。
对于在平面内的位置关系,常见的问题包括如何判断两条直线的平行性以及如何判断两条直线的垂直性。
在空间内的位置关系问题中,常见的问题包括如何判断两个平面的平行性以及如何判断两个平面的垂直性。
3.4空间几何体的相似性空间几何体的相似性是指两个或多个几何体在形状上具有相似的特征。
根据相似性理论,我们可以通过已知几何体的一些特征来推导出未知几何体的特征。
例如,如果两个几何体的对应边成比例,且对应角相等,则可判定两个几何体相似。
bbgxxbj高二选必一数学人教B版章节第一章空间向量与立体几何1.2空间向量在立体几何中的应用1.2.4二面角第1课时二面角及其度量一、单选题(本大题共6小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.已知平面内有一个以AB为直径的圆,,点C在圆周上异于点A,,点D,E分别是点A在PC,PB上的射影,则 ( )A. 是二面角的平面角B. 是二面角的平面角C. 是二面角的平面角D. 是二面角的平面角2.如果一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的大小关系是 ( )A. 相等B. 互补C. 相等或互补D. 不能确定3.已知和均为边长为a的等边三角形,且,则二面角的大小为 ( )A. B. C. D.4.如图所示,点P是二面角棱上的一点,分别在,平面内引射线PM,PN,若,,则二面角的大小为 ( )A. B. C. D.5.正方形ABCD所在平面外有一点P,平面ABCD,若,则平面PBC与平面ABCD的夹角为 ( )A. B. C. D.6.如图,在正方体ABCD中,棱长为1,过AB作平面交棱,分别为E,若平面与底面ABCD所成的角为,则截面ABEF的面积为 ( )A. B. C. D.二、填空题(本大题共3小题,共15分)7.若P是所在平面外一点,且和都是边长为2的正三角形,,则二面角的大小为__________.8.四边形ABCD是边长为2的正方形,MA和PB都与平面ABCD垂直,且,则平面PMD 与平面ABCD所成角的余弦值为__________.9.在正方体中,截面与底面ABCD所成的二面角的正切值为__________.三、解答题(本大题共1小题,共12分。
解答应写出文字说明,证明过程或演算步骤)10.本小题12分已知在三棱锥中,平面ABC,,求二面角的余弦值.答案和解析1.【答案】B【解析】【分析】本题考查二面角,线面垂直的判定,属于中档题;根据题意做出图形,证明平面PAC继而证明平面PBC,所以有平面ADE即可得结果.【解答】解:因为,,所以,因为AB为圆的直径,所以,,所以平面PAC,所以,因为D为A在PC上的射影,所以,又,所以平面PBC,所以,又,,所以平面ADE,所以是二面角的平面角 .故选2.【答案】C【解析】【分析】本题考查二面角的概念,属于基础题.根据二面角的概念可知,当这两个二面角的两个面均同向或均异向时,它们相等;当这两个二面角的两个面中,一组同向,另一组异向时,它们互补,即可求解.【解答】解:当这两个二面角的两个面均同向或均异向时,它们相等;当这两个二面角的两个面中,一组同向,另一组异向时,它们互补.故选3.【答案】C【解析】【分析】本题主要考查了二面角的大小计算,属于基础题.取BC的中点E,连结EA,ED,得到,,得到二面角的平面角,利用等边三角形的性质计算即可.【解答】解:如图,取BC的中点E,连接、,根据等边三角形的性质得,,即为所求,又,,所以是等边三角形,则故选4.【答案】D【解析】【分析】本题考查的知识点是二面角及其度量,属于基础题,我们要根据二面角的定义,在两个平面的交线上取一点Q,然后向两个平面引垂线,构造出二面角的平面角,然后根据平面几何的性质,求出含二面角的平面角的三角形中相关的边长,解三角形即可得到答案.【解答】解:过AB上一点Q分别在,内做AB的垂线,交PM,PN于M点和N点,则即为二面角的平面角,如下图所示:设,,,,又由,易得为等边三角形,则,解三角形QMN易得,故答案为5.【答案】B【解析】【分析】本题主要考查线面垂直的判定及性质,利用空间向量求二面角,属于中档题.以A点为原点,建立空间直角坐标系,不妨设,写出各点的坐标,由线面垂直的判定及性质得到为平面PAB的法向量,过A作,可证明平面PCD,故为平面PCD的法向量,利用〈,〉可得平面PAB与平面PCD所成的二面角的大小.【解答】解:由题意可以A点为原点,建立如图所示的空间直角坐标系,不妨设,则,,,平面ABCD,平面ABCD,,又,,面PAB,平面PAB,为平面PAB的法向量,即,过A作,,则E为PD中点,由题意,,,PA,面PAD,面PAD,面PAD,,,PD,面PCD,则平面PCD,故为平面PCD的法向量,且,,平面PAB与平面PCD所成的二面角的大小为故答案选6.【答案】D【解析】【分析】本题考查二面角与空间几何体的截面问题,为基础题.【解答】解:由图可知,平面与底面ABCD所成的角等同于,可得,且截面ABEF为矩形,可得截面面积为7.【答案】【解析】【分析】本题主要考查了二面角及其度量,考查空间想象能力、运算能力和推理论证能力,属于基础题.取BC的中点D,连接PD、AD,根据二面角的平面角的定义可知为二面角的平面角,在三角形PDA中求出此角即可.【解答】解:取BC的中点D,连接PD、AD,、均为正三角形,,,为二面角的平面角.又,,故答案为8.【答案】或【解析】【分析】本题考查二面角的求法,解题时要认真审题,注意面积法的合理运用.考虑在平面ABCD同侧或异侧,结合,能求出【解答】解:设平面PMD与平面ABCD所成角的大小为,在平面ABCD上的射影为,易得当在平面ABCD同侧时,如图所示:,,当在平面ABCD异侧时,如图所示:,,,,所以平面PMD与平面ABCD所成角的余弦值为或故答案为或9.【答案】【解析】【分析】本题考查了二面角的求法,考查了转化思想,属于基础题.连接AC交BD于点O,连接,根据条件可知为所求的角,再求出即可.【解答】解:如图所示,连接AC交BD于点O,连接,则,,为二面角的平面角,设,则,所以10.【答案】方法一:如图,过点B作于点E,则E为AC的中点,过点E作于点F,连接因为平面ABC,平面PAC,所以平面平面又因为,平面ABC,平面平面,所以平面由三垂线定理有,所以是二面角的平面角.设,由E是AC的中点,得,,所以,所以方法二:利用射影面积公式如图,过点B作于点E,连接因为平面ABC,平面PAC,所以平面平面ABC,又因为,平面ABC,平面平面,所以平面PAC,所以是在平面PAC上的射影.设,则,,所以在中,AB边上的高,所以又设二面角的大小为,由射影面积公式有【解析】本题考查二面角的求解,为一般题.。
高二数学上半期期中总结复习专题一语录天下:你就是一道风景,没必要在别人风景里面仰视。
一、直线、平面、简单几何体:1、学会三视图的分析:正视图、侧视图、俯视图。
表(侧)面积与体积公式:⑴柱体:①表面积:S=S 侧+2S 底;②侧面积:S 侧=rh π2;③体积:V=S 底h⑵锥体:①表面积:S=S 侧+S 底;②侧面积:S 侧=rl π;③体积:V=31S 底h :⑶台体①表面积:S=S 侧+S 上底S 下底②侧面积:S 侧=l r r )('+π ⑷球体:①表面积:S=24R π;②体积:V=334R π常见题型:1)求图形形状;2)求图形表面积和体积。
例1.一几何体的三视图如右所示,则该几何体的体积为 A.200+9π B. 200+18π C. 140+9πD. 140+18π变式训练:某几何体的三视图如图所示,则该几何体的体积是 .例2.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是(A)45,8 (B) 845,3 (C) 84(51),3(D) 8,8变式训练1:某几何函数的三视图如图所示,则该几何的体积为 (A )18+8π (B )8+8π (C )16+16π (D )8+16π变式训练2:一个四面体的顶点在点间直角坐系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可为(A ) (B ) (C ) (D )侧视图俯视图444 22242主视图2、位置关系的证明(主要方法):注意立体几何证明的书写、格式。
(1)直线与平面平行:①线线平行⇒线面平行;②面面平行⇒线面平行。
(2)平面与平面平行:①线面平行⇒面面平行。
(3)垂直问题:线线垂直⇒线面垂直⇒面面垂直。
核心是线面垂直:垂直平面内的两条相交直线3、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)⑴异面直线所成角的求法:平移法:平移直线,构造三角形; ⑵直线与平面所成的角:直线与射影所成的角常见题型:1)证明:直线与平面平行:①线线平行⇒线面平行;②面面平行⇒线面平行。
金湖二中高二数学期末复习讲义——《立体几何》班级 学号 姓名一、基础知识熟记和理解下列定理的内容(文字、图形、符号)1.线面平行的判定定理是:如果平面外一条直线和平面内一条直线平行,那么这条直线和平面平行,图形: 即////l m l l m ααα⊄⎫⎪⊂⇒⎬⎪⎭2.线面平行的性质定理是:若直线与平面平行,过该直线的平面与已知平面相交,所得的交线与已知直线平行,图形: 即 ////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭3.面面平行的判定定理是:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面互相平行, 图形: 即//////l m l m O l m αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭ 4.面面平行的性质定理是:两个平面互相平行,其中一个平面内的直线与另一个平面平行, 图形: 即////l l αββα⎫⇒⎬∀⊂⎭。
5.线面垂直的判定定理是:如果一条直线和平面内的两条相交直线垂直,那么这条直线和平面垂直,图形: 即m n m n O l l ml n ααα⊂⎫⎪⊂⎪⎪=⇒⊥⎬⎪⊥⎪⊥⎪⎭6.线面垂直的性质定理是:如果一条直线和一个平面垂直,那么这条直线垂直于平面内的任意一条直线,图形: 即l l g g αα⊥⎫⇒⊥⎬∀⊂⎭。
7.面面垂直的判定定理是:如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直,图形: 即l l βαβα⊥⎫⇒⊥⎬⊂⎭8.面面垂直的性质定理是:如果两个平面互相垂直,其中一个平面内垂直于两平面的交线的直线垂直于另一个平面, 图形: 即l l m l m αβαβαβ⊥⎫⎪⊂⎪⇒⊥⎬=⎪⎪⊥⎭。
二、例题讲练例1.1.已知直线,m n ,平面,αβ,给出下列命题中正确的序号是 (1) 若,m m αβ⊥⊥,则αβ⊥; (2) 若//,//m m αβ,则//αβ; (3) 若,//m m αβ⊥,则αβ⊥;(4) 若异面直线,m n 互相垂直,则存在过m 的平面与n 垂直.2.设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:(1)//////αββγαγ⎫⇒⎬⎭(2)//m m αββα⊥⎫⇒⊥⎬⎭(3)//m m ααββ⊥⎫⇒⊥⎬⎭(4)////m n m n αα⎫⇒⎬⊂⎭,其中,假命题有 (把你认为正确的命题序号都填上).3.一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .例2.如图, 在直三棱柱111C B A ABC -中,5,4,3===AB BC AC ,点D 是AB 的中点。
高二数学起点(Ⅰ、Ⅱ)段考复习题(1)姓名____________________2012.10.22 出题人:贺思轩1.下列说法正确的是 ( C )A .三点确定一个平面B .四边形一定是平面图形C .梯形一定是平面图形D .平面α和平面β有不同在一条直线上的三个交点2.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β 的是( B )A .⊥αβ,且m ⊂α B .m ∥n ,且n ⊥βC .⊥αβ,且m ∥αD .m ⊥n ,且n ∥β3.一个空间几何体的三视图如图所示,则该几何体的体积为( D )A .12B .6C . 4D .24.将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 中点,则AED ∠的大小为( D )A .45B .30C .60D .905.PA ,PB ,PC 是从P 引出的三条射线,每两条的夹角都是60º,则直线PC 与平面PAB 所成的角的余弦值为( C ) A .12BCD6.一个三棱锥S ABC -的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为13,已知该三棱锥的四个顶点都在一个球面上,则这个球的表面积为( A )A .16πB . 32πC . 36πD . 64π7.有一个棱长为1的正方体,按任意方向正投影,其投影面积的最大值是( D )A . 1B .2 C .D .8.在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与'AC 所成的角为45 的点P 的个数为( B )A .0B .3C .4D .6A'B'C'D'AB CD9.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F //面A 1BE ,则B 1F 与平面CDD 1C 1 所成角的正切值构成的集合是( C )A . {}2B .C .{|22}t t ≤≤ D .{|2}t t ≤≤ 10.若点C (21a +,1a +,2)在点P (2,0,0),A (1,-3,2),B (8,-1,4)确定的平面上,则a 的值为_______________。
第二章空间向量与立体几何复习与小结(一)一、教学目标:1、掌握空间向量的概念、运算及其应用;2、掌握利用空间向量解决立体几何问题的方法。
二、重难点分析:本课的主要内容有:空间向量及其运算和空间向量的应用两部分. 1、空间向量及其运算:重点:向量的线性运算和数量积运算及其应用。
难点:空间向量的共线条件、共面条件和空间向量的分解定理。
理解了这些定理就能很好地掌握向量的各种知识及其关系.(1)空间向量的线性运算:重点:空间向量的运算和运算律;难点:应用向量解决立体几何中的问题.平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间内的平移,空间任意两个向量都是共面向量,因此空间向量加法、减法、数乘向量的意义及运算律与平面向量类似。
(2)空间向量基本定理:重点:空间向量共线和共面的条件,空间向量分解定理。
难点:对这些定理条件的理解与运用、空间向量分解定理的作图。
(3)两个向量的数量积:重点:两个向量的数量积的计算方法及其应用。
难点:两个向量数量积的几何意义以及把立体几何问题转化为向量计算问题。
由于空间任意两个向量都可转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同。
(4)空间向量的直角坐标运算:重点:向量的坐标运算、夹角公式、距离公式、空间向量平行和垂直的条件。
难点:向量坐标的确定、公式的应用。
2、空间向量的应用重点:直线的方向向量与直线的向量方程;平面的法向量与平面的向量表示;直线与平面的夹角;二面角及其度量;距离,难点:利用平面的法向量求直线与平面的夹角以及二面角、点到平面的距离。
(1)直线的方向向量与直线的向量方程:重点:直线的方向向量,平行关系的论证,用向量运算求证两条直线垂直或求两条直线所成的角。
难点:直线的方向向量,平面α的共面向量的选取及其表示。
(2)直线与平面的夹角:重点:斜线和平面所成的角(或夹角)的求法。
空间向量基本定理基础过关练题组一 空间向量基本定理及相关概念的理解1.设x=a+b ,y=b+c ,z=c+a ,且{a ,b ,c}是空间的一个基底,给出下列向量组:①{a ,b ,x};②{x ,y ,z};③{b ,c ,z};④{x ,y ,a+b+c},则其中可以作为空间的基底的向量组有(深度解析) A.1个 B.2个 C.3个 D.4个2.若p:a ,b ,c 是三个非零向量;q:{a ,b ,c}为空间的一个基底,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.已知{e 1,e 2,e 3}为空间的一个基底,若a=e 1+e 2+e 3,b=e 1+e 2-e 3,c=e 1-e 2+e 3,d=e 1+2e 2+3e 3,且d=αa+βb+γc,则α,β,γ分别为 . 题组二 用空间的基底表示空间向量4.在三棱柱A 1B 1C 1-ABC 中,D 是四边形BB 1C 1C 的中心,且AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(深度解析)A.12a+12b+12c B.12a-12b+12c C.12a+12b-12cD.-12a+12b+12c5.(2020广东汕头金山中学高二上期中)已知正方体ABCD-A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x ,y 的值分别为( )A.1,1B.1,12 C.12,12 D.12,16.已知PA⊥平面ABCD ,四边形ABCD 为正方形,G 为△PDC 的重心,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =i ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =j ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =k ,试用基底{i ,j ,k}表示AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .题组三利用空间向量基本定理解决几何问题7.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,平行六面体的各棱长均相等.给出下列结论:①A1M∥D1P;②A1M∥B1Q;③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.其中正确结论的个数为( )A.1B.2C.3D.48.(2020黑龙江省实验中学高二上期中) 如图,在三棱柱ABC-A1B1C1中,底面ABC为正三角形,侧棱垂直于底面,AB=4,AA1=6.若E是棱BB1的中点,则异面直线A1E与AC1所成角的余弦值为( )A.√1313B.2√1313C.3√1313D.√13269.如图所示,在正方体ABCD-A1B1C1D1中,O为AC与BD的交点,G为CC1的中点,求证:A1O⊥平面GBD.10.如图所示,在平行四边形ABCD 中,AD=4,CD=3,∠ADC=60°,PA⊥平面ABCD ,PA=6,求线段PC 的长.能力提升练题组一 利用基底表示空间向量 1.(2020安徽淮北一中高二上期中,)已知M 、N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN上,且MP=2PN ,设向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.16a+16b+16c B.13a+13b+13c C.16a+13b+13cD.13a+16b+16c2.(2019北京第八十中学高二下月考,)已知空间的一个基底{a ,b ,c},m=a-b+c ,n=xa+yb+c ,若m ,n共线,则x= ,y= . 3.(2020广东深圳实验学校高二上期中,)如图,在三棱锥O-ABC 中,G 是△ABC 的重心(三条中线的交点),P 是空间任意一点.(1)用向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 表示向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,并证明你的结论;(2)设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +z AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,x ,y ,z∈R,请写出点P 在△ABC 的内部(不包括边界)的充分必要条件(不必给出证明).题组二证明平行和垂直4.(多选)()在三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,且PA=PB=PC=3,G是△PAB的重心,E,F分别为BC,PB上的点,且BE∶EC=PF∶FB=1∶2,则下列说法正确的是(深度解析)A.EG⊥PGB.EG⊥BCC.FG∥BCD.FG⊥EF5.(2020海南五指山农垦实验中学高二上期中,)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=√2AD,若E、F分别为PC、BD的中点.求证:2(1)EF∥平面PAD;(2)EF⊥平面PDC.(用向量方法证明)深度解析6.(2020陕西西北大学附属中学高二上期中,)如图所示,已知四面体ABCD的棱长为1,点E,F,G分别⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c,{a,b,c}为空间向量的一个基底,计算:⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,AA是AB,AD,CD的中点,设AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;(2)|AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ |.⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA(1)AA7.(2020浙江余姚中学高二上期中,)在所有棱长均为2的三棱柱ABC-A 1B 1C 1中,∠B 1BC=60°,求证:(1)AB 1⊥BC; (2)A 1C⊥平面AB 1C 1.题组三 求线段长度和两条异面直线所成角 8.(多选)()如图,一个结晶体的形状为平行六面体ABCD-A 1B 1C 1D 1,其中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中正确的是( )A.AC 1=6√6B.AC 1⊥DBC.向量A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是60°D.BD 1与AC 所成角的余弦值为√63 9.(2020浙江杭州学军中学高二上期中,)棱长为a 的正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与AB 所成角的大小是 ,线段EF 的长度为 . 10.(2020天津一中高二期末,)如图,在直三棱柱ABC-A 1B 1C 1中,CA=CB=1,∠BCA=90°,棱AA 1=2,点N为AA 1的中点. (1)求AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的模;(2)求cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >的值.答案全解全析 基础过关练1.C 结合长方体,如图,可知向量a ,b ,x 共面,x ,y ,z 不共面,b ,c ,z 不共面,x ,y ,a+b+c 也不共面,故选C.方法归纳 判断给出的某一个向量组中的三个向量能否作为基底,关键是要判断它们是否共面,如果从正面难以入手,常用反证法或借助一些常见的几何图形帮助我们进行判断.2.B 空间不共面的三个向量可以作为空间的一个基底,若a ,b ,c 是三个共面的非零向量,则{a ,b ,c}不能作为空间的一个基底;但若{a ,b ,c}为空间的一个基底,则a ,b ,c 不共面,所以a ,b ,c 是三个非零向量,所以p 是q 的必要不充分条件,故选B.3.答案 52,-1,-12解析 由题意得,a 、b 、c 为三个不共面的向量,∴由空间向量基本定理可知必然存在唯一的有序实数组(α,β,γ),使d=αa+βb+γc.∴d=α(e 1+e 2+e 3)+β(e 1+e 2-e 3)+γ(e 1-e 2+e 3)=(α+β+γ)e 1+(α+β-γ)e 2+(α-β+γ)e 3. 又∵d=e 1+2e 2+3e 3,∴{A +A +A =1,A +A -A =2,A -A +A =3⇒{A =52,A =-1,A =-12.4.D A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =12(A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-12a+12b+12c ,故选D. 方法归纳 用基底表示向量的策略:(1)若基底确定,则充分利用向量加法、减法的三角形法则和平行四边形法则以及数乘向量的运算律表示向量;(2)若没有设定基底,首先选择基底,选择基底时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.5.C AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以x=12,y=12,故选C. 6.解析 如图所示,延长PG 交CD 于E ,则E 为CD 的中点.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =13(-k+i+j-k+j)=13i+23j-23k.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=-i+k+13i+23j-23k =-23i+23j+13k.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =i+(-23A +23A +13A )=13i+23j+13k.7.C ∵A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,∴A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ ,从而A 1M∥D 1P ,∵D 1P ⊂平面DCC 1D 1,A 1M ⊄平面DCC 1D 1,∴A 1M∥平面DCC 1D 1,同理A 1M∥平面D 1PQB 1,故①③④正确.又B 1Q 与D 1P 不平行,∴A 1M 与B 1Q 不平行,故②不正确.故选C.8.A 设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}构成空间的一个基底, A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ =a-12c ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b+c ,cos<A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=A 1E ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗|A 1E ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗| =(A -12A )·(A +A )|A -12A ||A +A |=5×2√13=-√1313, 所以异面直线A 1E 与AC 1所成角的余弦值为√1313.9.证明 AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 是三个不共面的向量,它们构成空间的一个基底{AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ },A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ , AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =[12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ]·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ ·AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =[12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ]·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=0, 所以A 1O⊥DG,A 1O⊥BG,又DG ,BG ⊂平面GBD ,BG∩DG=G,所以A 1O⊥平面GBD.10.解析 因为在平行四边形ABCD 中,∠ADC=60°,所以∠BAD=120°,又PA⊥平面ABCD ,所以PA⊥AB,PA⊥AD.因为AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=√AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=√9+16+36+2×3×4×(-12)-0-0=7,即线段PC 的长为7.能力提升练1.C AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+13×12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13b+13c+16a ,故选C. 2.答案 1;-1解析 ∵m ,n 共线,∴∃λ∈R,使m=λn, ∴a-b+c=λ(xa+yb+c),得{1=AA ,-1=AA ,1=A ,解得{A =1,A =1,A =-1.3.解析 (1)AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ). 证明如下:AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13[(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )] =13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ).(2)若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +z AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,x ,y ,z∈R,则点P 在△ABC 的内部(不包括边界)的充分必要条件是: x+y+z=1,且0<x<1,0<y<1,0<z<1.4.ABD 如图,设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}是空间的一个正交基底, 则a·b=a·c=b·c=0,取AB 的中点H ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(a+b)=13a+13b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13a+13b-23b-13c=13a-13b-13c ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c-b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13a+13b-13b=13a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13b-(13A +23A )=-13c-13b ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,A 正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,B 正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ≠λAA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ∈R),C 不正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,D 正确.故选ABD.解题反思 本题在解决过程中,重点应用了以下知识点.如图,△ABC 中,若BD ∶DC=λ∶μ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA +A AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA +A AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .在分线段成比例的图形中,要注意这个公式的应用.5.证明 (1)AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ,DA ,PD ⊂平面PAD , 所以EF∥平面PAD.(2)因为侧面PAD⊥底面ABCD ,侧面PAD∩底面ABCD=AD ,底面ABCD 是正方形,所以CD⊥平面PAD ,CD⊥PA. 设AD=1,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2-2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,即1=12+12-2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 所以AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,所以AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0, 所以EF⊥PD,EF⊥CD,由PD ,CD ⊂平面PCD ,PD∩CD=D,可得EF⊥平面PCD.解题反思 用向量方法证明线面平行或垂直,理论依据是线面平行的判定定理和线面垂直的判定定理,其中涉及的线线平行用共线向量证明,涉及的线线垂直用数量积为0证明.6.解析 (1)由题意得|a|=|b|=|c|=1,a·b=a·c=b·c=12,∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12c-12a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-a , ∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(12A -12A )·(-a)=-14+12=14.(2)∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(b+c)-12a ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(12A +12A -12A )2=14a 2+14b 2+14c 2+12b·c -12b·a -12a·c=12, ∴|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√22.7.证明 (1)易知<AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=120°,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2×(-12)+2×2×12=0.所以AB 1⊥BC.(2)易知四边形AA 1C 1C 为菱形,所以A 1C⊥AC 1.因为AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2×12-4-2×2×12+4 =0,所以AB 1⊥A 1C ,又AC 1∩AB 1=A ,所以A 1C⊥平面AB 1C 1.8.AB 因为以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°, 所以AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6×6×cos60°=18,(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+2AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +2AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=36+36+36+3×2×18=216,则|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=6√6, 所以A 正确;AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2-AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=0,所以B 正确; 显然△AA 1D 为等边三角形,则∠AA 1D=60°.因为A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,且向量A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是120°,所以A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是120°,所以C 不正确; 因为AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=6√2,|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=6√3,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=36,所以cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=6√2×6√3=√66,所以D 不正确.故选AB. 9.答案π4;√22a 解析 设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}是空间的一个基底,∴|a|=|b|=|c|=a ,a·b=a·c=b·c=12a 2.∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(a+b)-12c ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12a 2+12a·b -12a·c=12a 2,|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(12A +12A -12A )2=√22a ,∴cos<AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=12A 2√22a ×a =√22,∴异面直线EF 与AB 所成的角为π4.10.解析 (1)∵在直三棱柱ABC-A 1B 1C 1中,CA=CB=1,∠BCA=90°, ∴AB=√2,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 1,故AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +14AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=2+14×4=3, ∴|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√3.(2)∵CA=CB=1,∠BCA=90°, ∴∠ABC=45°,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |cos(180°-∠ABC)=√2×1×cos135°=-1, 又AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =4, ∴AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+0+0+4=3,又|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6×√5=√30, ∴cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=√30=√3010.。
第20课时 立体几何体复习
学习要求
1.温故本章内容,使知识系统化,条理化.分
清重点,明确难点,再现注意点,达到巩固
与知性新的效果。
2. 会证线线、线面、面面的平行与垂直的
问题,会求简单的线线、线面、面面间的角
与距离以及简单几何体的面积与体积的问
题. 【课堂互动】 自学评价 1.空间几何体(柱锥台球,三视图) 的概念: 2.平面的基本性质(3个公理与3个推论) :. 3.空间两直线的位置关系(3种关系): 4. 直线和平面的位置关系(3种关系): 5.平面和平面的位置关系(2种关系) : 6.空间几何体的表面积和体积公式. 7.三种角与六种距离的简单计算方法: 8.物体按正投影向投影面投射所得到的图形叫 .光线自物体的前面向后投射所得的投影称为 ,自上向下的称为 .自左向右的称为 . 【精典范例】 例1:已知平面外两平行直线中的一条平行于这个平面,求证另一条直线也平行于这个平面.
例2:已知直线AC,DF 被三个平行平面
α,β,γ所截,交点为A,B,C 及D,E,F.求证: AB DE BC EF =
例3.在正方体ABCD-A 1B 1C 1D 1中,O 为AC 和
BD 的交点,G 为CC 1中点,求证:A 1O ⊥面
GBD .
例4.四面体ABCD 中, AB ,BC ,BD 两两垂
直,且AB =BC =2, E 是AC 的中点,异面直
线AD 与BE 所成角的余弦值为10
,求四面体听课随笔
ABCD的体积.
例5.设P、A、B、C是球O表面上的四点, PA、PB、PC两两垂直, 且PA=PB=PC=1, 则球的体积为_____ , 球的表面积为____ .
例6.平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠DCB=135°,沿对角线AC将四边形折成直二面角,求证:
(1)求证:AB⊥面BCD
(2)求面ABD与面ACD成的角.
追踪训练
1.已知a//b,且c与a,b都相交,求证:a,b,c 共面.
2.空间四边形ABCD中, AB=CD , 且AB与CD成60°角, E、F分别为AC、BD的中点, 则EF与AB所成角的度数为.
3.设长方体三棱长分别为a,b,c,若长方体所有棱长的和为24,一条对角线长为5,体积为2,则1/a+1/b+1/c= ( ) A 11/4 B 4/11
C 11/2
D 2/11
4.正四棱台的斜高与上、下底面边长之比为5:2:8,体积为14, 则棱台的高为( )
A 3
B 2
C 5
D 4
5. 一个正四面体的所有棱长都为20.5,四个顶点都在同一个球面上, 则这个球的表面积为( )
A 3π
B 4π
C 5π
D 6π。