高中数学解析几何练习题
- 格式:doc
- 大小:448.00 KB
- 文档页数:5
2.6 直线与圆、圆与圆的位置关系2.6.1 直线与圆的位置关系A级必备知识基础练1.(2022江苏盐城伍佑中学高二月考)点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,|PA|=1,则点P的轨迹方程是()A.(x-1)2+y2=4B.(x-1)2+y2=2C.x2+y2=2xD.x2+y2=-2x2.圆x2+y2=1与直线y=kx-3有公共点的充要条件是()A.k≤-2或k≥2B.k≤-2C.k≥2D.k≤-2或k>23.(2022山东高二学情联考)过点P(1,-2)的直线与圆C:(x+2)2+(y-1)2=5相切,则切线长为()A. B.2C.2D.4.(多选题)(2022重庆育才中学高二月考)已知圆M的一般方程为x2+y2-8x+6y=0,则下列说法正确的是()A.圆M的圆心为(4,3)B.圆M的半径为5C.圆M被x轴截得的弦长为6D.圆M被y轴截得的弦长为65.圆x2+y2-2x-8y+13=0截直线ax+y-1=0所得的弦长为2,则a=()A.-B.-C. D.26.已知圆C与直线x-y=0及x-y=4都相切,圆心在直线x+y=0上,则圆C的方程为.7.若点P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为.8.已知圆C:x2+y2-6x-8y+21=0,直线l过点A(1,0).(1)求圆C的圆心坐标及半径;(2)若直线l与圆C相切,求直线l的方程;(3)当直线l的斜率存在且与圆C相切于点B时,求|AB|.B级关键能力提升练9.(2020全国Ⅰ,文6)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.410.已知直线l:x-y+m=0与圆x2+y2=4交于A,B两点,O为坐标原点,且=0,则实数m为()A.2B.2C.±2D.±211.(多选题)(2022云南罗平县高二检测)过点(2,2),斜率为k的直线与圆x2+y2-4x=0的位置关系可能是()A.相离B.相切C.相交但不过圆心D.相交且经过圆心12.(多选题)(2022辽宁葫芦岛协作校高二联考)已知直线l:3x+4y=0,圆C:x2-4x+y2=m-5,则()A.m的取值范围为(0,+∞)B.当直线l与圆C相切时,m=C.当1<m<2时,l与圆C相离D.当直线l与圆C相交时,m的取值范围是13.已知k∈R,若直线l:y=kx+1被圆x2-2x+y2-3=0所截,则截得的弦长最短为,此时直线l的方程为.14.如图,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A交于M,N两点.(1)求圆A的方程;(2)当|MN|=2时,求直线l的方程.C级学科素养创新练15.(2022黑龙江大庆中学高二月考)若圆x2+y2-2x-6y+1=0上恰有三点到直线y=kx的距离为2,则k的值为()A.2B.1C.D.16.若直线l:y=ax-3与圆C:x2+y2=4相交,求a的取值范围.参考答案2.6直线与圆、圆与圆的位置关系2.6.1直线与圆的位置关系1.B∵PA是圆的切线,|PA|=1且圆的半径为r=1,∴点P到圆心的距离恒为.又圆心(1,0),设P(x,y),由两点间的距离公式得(x-1)2+y2=2,即点P的轨迹方程是(x-1)2+y2=2.故选B.2.A若直线与圆有公共点,则圆心(0,0)到直线kx-y-3=0的距离d=≤1,即≥3,∴k2+1≥9,即k2≥8,解得k≤-2或k≥2.∴圆x2+y2=1与直线y=kx-3有公共点的充要条件是k≤-2或k≥2.故选A.3.D由圆C:(x+2)2+(y-1)2=5,可得圆心C(-2,1),半径r=,过点P(1,-2)的直线与圆C:(x+2)2+(y-1)2=5相切,两条切线长相等,只取其中一条切线,设切点为M,则CM⊥PM,由题得|PC|==3,|CM|=r=,所以切线|PM|=.故选D.4.BD将x2+y2-8x+6y=0化为圆的标准方程是(x-4)2+(y+3)2=25,所以圆M的圆心坐标为(4,-3),半径为5,故A错误,B正确;圆心(4,-3)到x轴的距离为3,所以圆M被x轴截得的弦长为2=8,故C错误;对选项D,圆心(4,-3)到y轴的距离为4,所以圆M被y轴截得的弦长为2=6,故D正确.故选BD.5.A将x2+y2-2x-8y+13=0化为(x-1)2+(y-4)2=4,则该圆圆心为(1,4),半径为2.又弦长为2,则圆心到直线距离为=1.根据点到直线距离公式可知d==1,化简可得(a+3)2=a2+1.解得a=-,故选A.6.(x-1)2+(y+1)2=2设圆心为点C(a,-a),由点到直线的距离公式得,解得a=1,所以圆心为(1,-1),且半径为,故圆的方程为(x-1)2+(y+1)2=2.7.x-y-3=0圆心坐标为点C(1,0),由题可得,k PC==-1.又|CP|⊥|AB|,因此k AB=1.因为直线AB过点P,可知直线AB的方程为y+1=x-2,即x-y-3=0.8.解将圆C的方程化成标准式方程得(x-3)2+(y-4)2=22.(1)圆C的圆心坐标是(3,4),半径为2.(2)当直线l的斜率不存在时,直线l的方程是x=1,满足题意;当直线l的斜率存在时,可设直线l的方程是y=k(x-1),即kx-y-k=0.由圆心(3,4)到直线l的距离等于圆C的半径,可得=2,解得k=,故直线l的方程是3x-4y-3=0.综上所述,直线l的方程是x=1或3x-4y-3=0.(3)由(2)可得直线l的方程是3x-4y-3=0.圆C的圆心是点C(3,4),则|AC|==2,所以|AB|==4.9.B圆的方程可化为(x-3)2+y2=9.因为=2<3,所以点(1,2)在圆内.如图所示,设圆心O1(3,0),A(1,2),当弦BC与O1A垂直时弦最短,因为|O1A|==2,|O1B|=3,所以|AB|==1,所以|BC|=2|AB|=2.10.C由=0可知∠AOB=90°.由于圆半径为r=2,则圆心(0,0)到直线l的距离d=,解得|m|=2,即m=±2,故选C.11.BC由题得,圆的标准方程为(x-2)2+y2=4,则圆心为(2,0),半径为2.设过点(2,2),斜率为k的直线为y=k(x-2)+2,即kx-y-2k+2=0,∴圆心到kx-y-2k+2=0的距离d=≤2,∴当d=2时,直线与圆相切;当d<2时,直线与圆相交但直线不过圆心.故B,C正确,A,D错误.故选BC.12.BC圆C的标准方程为(x-2)2+y2=m-1,则圆C的圆心为C(2,0),半径r=,由r=>0,得m>1,故A错误;因为C(2,0)到直线l的距离为,所以当直线l与圆C相切时,r=,解得m=,故B正确; 当1<m<2时,0<r<1<,所以直线l与圆C相离,故C正确;当直线l与圆C相交时,,解得m>,故D错误.故选BC.13.2y=x+1圆x2-2x+y2-3=0的标准方程为(x-1)2+y2=22,所以圆心为O(1,0),半径为r=2.直线l:y=kx+1过定点P(0,1).故|OP|=.当l⊥OP时,截得的弦长最短,则最短弦长为2=2.由题得,k OP=-1,所以k l=1,故直线l的方程为y=x+1.14.解(1)设圆A的半径为r.∵圆A与直线l1:x+2y+7=0相切,∴r==2.故圆A的方程为(x+1)2+(y-2)2=20.(2)①当直线l的斜率不存在时,可得直线l的方程为x=-2,易得|MN|=2,符合题意;②当直线l的斜率存在时,设直线l的方程为y=k(x+2),即kx-y+2k=0.取MN的中点Q,连接AQ,则AQ⊥MN.∵|MN|=2,∴|AQ|==1.∴=1,解得k=.∴直线l的方程为3x-4y+6=0.综上,直线l的方程为x=-2或3x-4y+6=0.15.C将方程x2+y2-2x-6y+1=0化为(x-1)2+(y-3)2=9,则圆心(1,3),半径为3.∵圆上恰有三点到直线y=kx的距离为2,∴圆心(1,3)到直线y=kx的距离为1,即=1,解得k=.故选C.16.解(方法1)圆C:x2+y2=4的圆心C(0,0),r2=4.直线l:y=ax-3可化为ax-y-3=0.圆心C(0,0)到直线l:ax-y-3=0的距离d=.由直线l与圆C相交可得r>d,则r2>d2,即4>,解得a>或a<-.因此a 的取值范围是-∞,-∪,+∞.(方法2)将y=ax-3代入x2+y2=4得到x2+(ax-3)2=4,整理可得(1+a2)x2-6ax+5=0.因为直线与圆相交,则Δ=(-6a)2-4×(1+a2)×5=36a2-20-20a2=16a2-20>0,即a2>,解得a>或a<-,故a 的取值范围是-∞,-∪,+∞.11。
47. 已知椭圆E :()222210x y a b a b +=>>,其短轴为2.(1)求椭圆E 的方程;(2)设椭圆E 的右焦点为F ,过点()2,0G 作斜率不为0的直线交椭圆E 于M ,N 两点,设直线FM 和FN 的斜率为1k ,2k ,试判断12k k +是否为定值,若是定值,求出该定值;若不是定值,请说明理由.48. 如图,椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭,P 为椭圆上的一动点.(1)求椭圆C 的方程;(2)设圆224:5O x y +=,过点P 作圆O 的两条切线1l ,2l ,两切线的斜率分别为1k ,2k . ①求12k k 的值;①若1l 与椭圆C 交于P ,Q 两点,与圆O 切于点A ,与x 轴正半轴交于点B ,且满足OPA OQB S S =△△,求1l 的方程.49. 已知椭圆E :22221x y a b +=(a >b >0)的左、右焦点分別为12,F F ,离心率为e =左焦点1F 作直线1l 交椭圆E 于A ,B 两点,2ABF 的周长为8. (1)求椭圆E 的方程;(2)若直线2l :y =kx +m (km <0)与圆O :221x y +=相切,且与椭圆E 交于M ,N 两点,22MF NF +是否存在最小值?若存在,求出22MF NF +的最小值和此时直线2l 的方程.50. 已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,动点M 的轨迹为曲线C .(1)求C 的轨迹方程,并说明其形状;(2)过直线3x =上的动点()()3,0P p p ≠分别作C 的两条切线PQ 、PR (Q 、R 为切点),N 为弦QR 的中点,直线l :346x y +=分别与x 轴、y 轴交于点E 、F ,求NEF 的面积S的取值范围.51. 在平面直角坐标系xOy 中,已知直线l :20x y ++=和圆O :221x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.52. 已知以1C 为圆心的圆221:1C x y +=.(1)若圆222:(1)(1)4C x y -+-=与圆1C 交于,M N 两点,求||MN 的值;(2)若直线:l y x m =+和圆1C 交于,P Q 两点,若132PC PQ ⋅=,求m 的值. 53. 已知圆()22:21M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B .(1)当切线P A P 的坐标;(2)若PAM △的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由; (3)求线段AB 长度的最小值.54. 已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当90AOB ∠=︒时,求实数k 的值;(2)若1,k P =是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究:直CD 是否过定点.若存在,请求出定点的坐标;否则,说明理由.55. 在平面直角坐标系xOy中,(A,B ,C 是满足π3ACB ∠=的一个动点. (1)求ABC 垂心H 的轨迹方程;(2)记ABC 垂心H 的轨迹为Γ,若直线l :y kx m =+(0km ≠)与Γ交于D ,E 两点,与椭圆T :2221x y +=交于P ,Q 两点,且||2||DE PQ =,求证:||k > 56. 平面上一动点C的坐标为),sin θθ.(1)求点C 轨迹E 的方程;(2)过点()11,0F -的直线l 与曲线E 相交于不同的两点,M N ,线段MN 的中垂线与直线l 相交于点P ,与直线2x =-相交于点Q .当MN PQ =时,求直线l 的方程.答案及解析47.(1)2212x y +=;(2)是定值,该定值为0.【分析】(1)依题意求得,a b ,进而可得椭圆E 的方程;(2)设直线MN 的方程为()()20y k x k =-≠,与椭圆E 方程联立,利用韦达定理和斜率公式即可求得12k k +的值. 【详解】(1)由题意可知:22b =,1b =,椭圆的离心率c e a ==a =①椭圆E 的标准方程:2212x y +=;(2)设直线MN 的方程为()()20y k x k =-≠.22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得:()2222128820k x k x k +-+-=.设()11,M x y ,()22,N x y , 则2122812k x x k +=+,21228212k x x k -=+,()()()1212121212121212222211111k x k x y y x x k k k x x x x x x x x ⎡⎤--+-+=+=+=-⎢⎥-----++⎢⎥⎣⎦222222228242122208282111212k k k k k k k k k k ⎡⎤-⎢⎥⎛⎫-+=-=-=⎢⎥ ⎪--⎝⎭⎢⎥-+⎢⎥++⎣⎦. ①120k k +=为定值.【点睛】关键点点睛:第(2)问的关键点是:得出()12121212221x x k k k x x x x ⎡⎤+-+=-⎢⎥-++⎢⎥⎣⎦.48.(1)2214x y +=;(2)①14- ;①yy =+【分析】(1)根据已知条件结合222c a b =-列关于,a b 的方程,解方程即可求解;(2)①设()00,P x y ,切线:l 00()y y k x x -=-,利用圆心到切线的距离列方程,整理为关于k 的二次方程,计算两根之积结合点P 在椭圆上即可求12k k ;①由OPA OQB S S =△△可得PA BQ =,可转化为A B P Q x x x x +=+,设1l :y kx m =+,与椭圆联立可得P Q x x +,再求出A x 、B x ,即可求出k 的值,进而可得出m 的值,以及1l 的方程. 【详解】(1)因为22222234c a b e a a -===,所以2a b =,因为点⎛ ⎝⎭在椭圆上,所以221314a b +=即2213144b b +=, 解得:1b =,2a =,所以椭圆方程为:2214x y +=;(2)①设()00,P x y ,切线:l 00()y y k x x -=-即000kx y y kx -+-= 圆心()0,0O到切线的距离d r ==整理可得:2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,所以2020122200441451544455x y k k x x ⎛⎫-- ⎪-⎝⎭===---,①因为OPA OQB S S =△△所以PA BQ =,所以A P Q B x x x x -=-,所以A B P Q x x x x +=+, 设切线为1:l y kx m =+,由2244y kx m x y =+⎧⎨+=⎩可得:()222418440k x kmx m +++-= 所以2841P Q kmx x k -+=+, 令0y =可得B mx k=-,设(),A A A x kx m +, 则1A OA A kx m k x k +==-,所以21A km x k -=+, 所以228411P Q km m kmx x k k k --+==-+++, 整理可得:()()()2222814121k k k k +=++,所以221k =,解得:k =, 因为圆心()0,0O 到1:l y kx m =+距离d ,所以mm =,因为0B mx k=->,所以当k =m =k =时,m =;所以所求1l的方程为y =或y = 【点睛】思路点睛:圆锥曲线中解决定值、定点的方法(1)从特殊入手,求出定值、定点、定线,再证明定值、定点、定线与变量无关; (2)直接计算、推理,并在计算、推理的过程中消去变量是此类问题的特点,设而不求的方法、整体思想和消元思想的运用可以有效的简化运算.49.(1)2214x y +=;(2)最小值为2,0x =或0x +-=.【分析】(1)由椭圆定义结合已知求出a ,半焦距c 即可得解;(2)由直线2l 与圆O 相切得221m k =+,联立直线2l 与椭圆E 的方程消去y ,借助韦达定理表示出22MF NF +,利用函数思想方法即可作答. 【详解】(1)依题意,结合椭圆定义知2ABF 的周长为4a ,则有4a =8,即a =2,又椭圆的离心率为c e a =c =2221b a c =-=, 所以椭圆E 的方程为2214x y +=;(2)因直线2l :y =kx +m (km <0)与圆O :221x y +=1=,即221m k =+,设()()()112212,,,,2,2M x y N x y x x ≤≤,而点M 在椭圆E 上,则221114x y +=,即221114x y =-,又2F ,21|2|MF x =-=12x -,同理222NF x =,于是得)22124MF NF x x +=+, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得:()222148440k x kmx m +++-=,显然Δ0>,则122814km x x k +=-+, 又km <0,且221m k =+,因此得1228||14km x x k +=+令2411t k =+≥,则12x x +=113t =,即t =3时等号成立,于是得22MF NF +存在最小值,且)221242MF NF x x +=+≥,22MF NF +的最小值为2,由2221413m k k ⎧=+⎨+=⎩,且km <0,解得k m ⎧=⎪⎪⎨⎪=⎪⎩或k m ⎧=⎪⎪⎨⎪=⎪⎩. 所以所求直线2l的方程为y x =y x =0x =或0x +=.【点睛】关键点睛:解决直线与椭圆的综合问题时,要注意:(1)观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 50.(1)()2214x y ++=,曲线C 是以1,0为圆心,半径为2的圆;(2)5542⎡⎤⎢⎥⎣⎦,.【分析】(1)设出动点M 坐标,代入距离比关系式,化简方程可得;(2)先求切点弦方程,再根据切点弦过定点及弦中点性质得出N 点轨迹,然后求出动点N 到定直线EF 的距离最值,最后求出面积最值.切点弦方程的求法可用以下两种方法.法一:由两切点即为两圆公共点,利用两圆相交弦方程(两圆方程作差)求出切点弦方程;法二:先分别求过Q 、R 两点的切线方程,再代入点P 坐标,得到Q 、R 两点都适合的同一直线方程,即切点弦方程. 【详解】解:(1)设(),M x y ,由12MO MA =12=. 化简得22230x y x ++-=,即()2214x y ++=. 故曲线C 是以1,0为圆心,半径为2的圆.(2)法一(由两圆相交弦方程求切点弦方程):由题意知,PQ 、PR 与圆相切,Q 、R 为切点,则DQ PQ ⊥,DR PR ⊥,则D 、R 、P 、Q 四点共圆,Q 、R 在以DP 为直径的圆上(如图).设()1,0D -,又()()3,0P p p ≠,则DP 的中点为1,2p ⎛⎫⎪⎝⎭,DP .以线段DP 为直径的圆的方程为()22212p x y ⎛⎫-+-= ⎪⎝⎭⎝⎭, 整理得22230x y x py +---=①(也可用圆的直径式方程()()()()1300x x y y p +-+--=化简得. ) 又Q 、R 在C :22230x y x ++-=①上, 由两圆方程作差即①-①得:40x py +=. 所以,切点弦QR 所在直线的方程为40x py +=. 法二(求Q 、R 均满足的同一直线方程即切点弦方程): 设()1,0D -,()11,Q x y ,()22,R x y .由DQ PQ ⊥,可得Q 处的切线上任一点(,)T x y 满足0QT DQ ⋅=(如图), 即切线PQ 方程为()()()()1111100x x x y y y -++--=.整理得()221111110x x y y x y x ++---=.又22111230x y x ++-=,整理得()111130x x y y x +++-=.同理,可得R 处的切线PR 方程为()222130x x y y x +++-=. 又()3,P p 既在切线PQ 上,又在切线PR 上,所以()()11122231303130x py x x py x ⎧+++-=⎪⎨+++-=⎪⎩,整理得11224040x py x py +=⎧⎨+=⎩. 显然,()11,Q x y ,()22,R x y 的坐标都满足直线40x py +=的方程. 而两点确定一条直线,所以切点弦QR 所在直线的方程为40x py +=. 则QR 恒过坐标原点()0,0O .由()2240,14x py x y +=⎧⎪⎨++=⎪⎩消去x 并整理得()22168480p y py +--=. 设()11,Q x y ,()22,R x y ,则122816py y p +=+.点N 纵坐标1224216N y y py p +==+. 因为0p ≠,显然0N y ≠,所以点N 与点()1,0D -,()0,0O 均不重合.(或者由对称性可知,QR 的中点N 点在x 轴上当且仅当点P 在x 轴上,因为0p ≠,点P 不在x 轴上,则点N 也不在x 轴上,所以点N 与D 、O 均不重合.) 因为N 为弦QR 的中点,且()1,0D -为圆心,由圆的性质,可得DN QR ⊥,即DN ON ⊥(如图).所以点N 在以OD 为直径的圆上,圆心为1,02G ⎛⎫- ⎪⎝⎭,半径12r =.因为直线346x y +=分别与x 轴、y 轴交于点E 、F ,所以()2,0E ,30,2F ⎛⎫⎪⎝⎭,52EF =.又圆心1,02G ⎛⎫- ⎪⎝⎭到直线3460x y +-=的距离32d ==. 设NEF 的边EF 上的高为h ,则点N 到直线346x y +=的距离h 的最小值为31122d r -=-=; 点N 到直线346x y +=的距离h 的最大值为31222d r +=+=(如图).则S 的最小值min 1551224S =⨯⨯=,最大值max 1552222S =⨯⨯=.因此,NEF 的面积S 的取值范围是5542⎡⎤⎢⎥⎣⎦,.【点睛】设00(,)P x y 是圆锥曲线外一点,过点P 作曲线的两条切线,切点为A 、B 两点,则 A 、B 两点所在的直线方程为切点弦方程.常见圆锥曲线的切点弦方程有以下结论: 圆222()()x a y b r -+-=的切点弦方程:200()()()()x a x a y b y b r --+--=, 圆220x y Dx Ey F ++++=的切点弦方程: 0000022x x y yx x y y D E F ++++++= 椭圆22221x y a b+=的切点弦方程:00221x x y y a b +=;双曲线22221x y a b-=的切点弦方程:00221x x y y a b -=;抛物线22y px =的切点弦方程为:00()y y p x x =+.特别地,当00(,)P x y 为圆锥曲线上一点时,可看作两切线重合,两切点A 、B 重合,以上切点弦方程即曲线在P 处的切线方程.51.(1)()1,1P --;(2)1;(3)存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.理由见解析.【分析】(1)依题意可得四边形PAOB 为正方形,设(),2P x x --,利用平面直角坐标系上两点的距离公式得到方程,计算可得;(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小,利用点到线的距离公式求出PO 的最小值,即可得解;(3)设()00,2P x x --,求出以OP 为直径的圆的方程,即可求出公共弦AB 所在直线方程,从而求出动点Q 的轨迹方程,即可得解; 【详解】解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P①P 在直线20x y ++=上,设(),2P x x --,则OP =,解得1x =-,故()1,1P --.(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小. 线段PO 长最小值即点O 到直线l的距离,故min PO ==所以min 1PA =.(3)设()00,2P x x --,则以OP 为直径的圆的方程为()2222000022224x x x x x y +----⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得()220020x x x x y y -+++=,与221x y +=联立,可得AB 所在直线方程为()0021x x x y -+=,联立()002221,1,x x x y x y ⎧-+=⎨+=⎩得()222000002443024x x x x x x x ++----=, ①Q 的坐标为002200002,244244x x x x x x --++++⎛⎫⎪⎝⎭,可得Q 点轨迹为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,圆心11,44⎛⎫-- ⎪⎝⎭,半径R =.其中原点()0,0为极限点(也可以去掉).故存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【点睛】本题考查了直线与圆的位置关系、方程思想、数形结合方法、转化方法,考查运算求解能力和应用意识.52.(1;(2)m = 【分析】(1)由两个圆相交,可将两个圆的方程相减求得直线MN 的方程.利用圆心到直线的距离,结合垂径定理即可求得||MN 的值.(2)设()()1122,,,P x y Q x y ,利用向量的坐标运算表示出1,PC PQ .将直线方程与圆的方程联立,化简后由>0∆求得m 的取值范围,并表示出12x x +,12x x ,进而由直线方程表示出12y y .根据平面向量数量积的坐标运算,代入化简计算即可求得m 的值. 【详解】(1)直线MN 的方程为2222(1)(1)410x y x y -+----+=, 即2 2 10x y ++=;故圆1C 的圆心到2210x y ++=的距离d =故||MN == (2)设()()1122,,,P x y Q x y ,则()()1112121,,,PC x y PQ x x y y =--=--,由22,1,y x m x y =+⎧⎨+=⎩化简可得222210x mx m ++-=, 故()222481840,m m m ∆=--=->解得m < 12x x m +=-,2121,2m x x -=所以()()()212121212y y x m x m x x m x x m =++=+++,又()()2211121211212113,,2PC PQ x y x x y y x x y y x y ⋅=--⋅--=--++=, 又22111x y +=故121212x x y y +=-,故()21212122x x m x x m +++=-, 将12x x m +=-,2121,2m x x -=代入可得222112m m m --+=-,解得m =又因为m <所以2m =± 【点睛】本题考查了圆与圆的位置关系及公共弦长度的求法,直线与圆位置关系的综合应用,由韦达定理求参数的值,平面向量数量积的运算,综合性强,计算量大,属于难题.53.(1)()0,0P 或84,55P ⎛⎫- ⎪⎝⎭;(2)圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭;(3)当25b =时,AB 有最小【分析】(1)设()2,P b b -,由MP b ,得出结果;(2)因为A 、P 、M 三点的圆N 以MP 为直径,所以圆N 的方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭,化简为()()222220x y b x y y -+++-=,由方程恒成立可知2222020x y x y y -+=⎧⎨+-=⎩,即可求得动圆所过的定点; (3)由圆M 和圆N 方程作差可得直线AB 方程,设点()0,2M 到直线AB 的距离d ,则AB =.【详解】(1)由题可知,圆M 的半径1r =,设()2,P b b -, 因为P A 是圆M 的一条切线,所以90MAP ∠=︒,所以2MP ==,解得0b =或45b =, 所以点P 的坐标为()0,0P 或84,55P ⎛⎫- ⎪⎝⎭.(2)设()2,P b b -,因为90MAP ∠=︒, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 其方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()()222220x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩, 解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭.(3)因为圆N 方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()222220x y bx b y b ++-++=①又圆22:430M x y y +-+=①①-①得圆M 方程与圆N 相交弦AB 所在直线方程为 ()22230bx b y b --+-=.点()0,2M 到直线AB的距离d =所以相交弦长AB == 所以当25b =时,AB【点睛】本题考查直线和圆的位置关系,考查定点问题和距离的最值问题,难度较难. 54.(1)k =(2)直线CD 过定点(1,1)- 【分析】(1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得k ; (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,求出两条切线方程,计算出直线CD 的方程,从而得到定点坐标;解法2:由题意可知,O 、P 、C 、D 四点共圆且在以OP为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标. 【详解】(1)2AOB π∠=,∴点O 到l 的距离2d r =,k = (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,则圆在点C 处的切线方程为 1111()()0y y y x x x -+-=,所以221111x x y y x y +=+,即112x x y y +=同理,圆在点D 处的切线方程为222x x y y += 又点00(,)P x y 是两条切线的交点, 10102x x y y ∴+=,20202x x y y +=,所以点()11,C x y ,()22,D x y 的坐标都适合方程002x x y y +=, 上述方程表示一条直线,而过C 、D 两点的直线是唯一的, 所以直线CD 的方程为:002x x y y +=. 设(,2)P t t -,则直线CD 的方程为(2)2tx t y +-=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-.解法2:由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, 设(,2)P t t -,则此圆的方程为:()(2)0x x t y y t -+-+=, 即:22(2)0x tx y t y -+--=, 又C 、D 在圆22:2O x y +=上,两圆方程相减得():220CD l tx t y +--=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-. 【点睛】本题考查了直线与圆的相交问题,由弦长求直线斜率,只需结合弦长公式计算圆心到直线的距离,然后求得结果,在求直线恒过定点坐标时,一定要先表示出直线方程,然后在求解. 55.(1)22(1)4x y ++=(2y ≠-);(2)证明见解析. 【分析】(1)由题可求出顶点C 的轨迹方程,再利用相关点法可求垂心H 的轨迹方程;(2)利用弦长公式可求||DE ,再利用韦达定理法求||PQ ,由||2||DE PQ =得出2221m k ≥+,然后结合判别式大于零即可证. 【详解】设ABC 的外心为1O ,半径为R ,则有22sin ABR ACB==∠,所以1πcos 13OO R ==即1(0,1)O ,设(,)C x y ,()00,H x y ,有1O C R =,即有22(1)4x y +-=(0y ≠), 由CH AB ⊥,则有0x x =,由AH BC ⊥,则有(00(0AH BC x x y y ⋅=+=,所以有(220(3(1)12x x x y y y yy y---=-===-,则有()220014x y ++=(02y ≠-),所以ABC 垂心H 的轨迹方程为22(1)4x y ++=(2y ≠-); (2)记点(0,1)-到直线l 的距离为d ,则有d =所以||DE==,设()11,P x y,()22,Q x y,联立2221y kx mx y=+⎧⎨+=⎩,有()2222210k x kmx m+++-=,所以()224220k m∆=+->,||PQ==由||2||DE PQ=,可得()()()()()2222222222222418141(1)8412222k m k km mk k kk k++++-=-≤-+++++,所以()22222248(1)212m mk kk++≤+++,即有()()()22222224181(1)22k k mmk k+++≤+++,所以()()()22222222418122(1)22k k mm mk k+++--≥-++,即22222222222221(1)101222k k m k mm mk k k k⎛⎫-=-⇒-≥⇒≥+⎪+++⎝⎭又0∆>,可得2212km<+,所以222112kk+<+,解得22k>,故||k>56.(1)2212xy+=;(2)10x y±-=.【分析】(1)利用22sin cos1θθ+=求得点C的轨迹E的方程.(2)设直线l的方程为1x my=-,联立直线l的方程和曲线E的方程,化简写出根与系数关系,求得MN、PQ,由1PQMN=求得m的值,从而求得直线l的方程.【详解】 (1)设(),C x y ,则,sin x y θθ⎧=⎪⎨=⎪⎩,即cos sin yθθ⎧=⎪⎨⎪=⎩, 所以2212x y +=,所以E 的方程为2212x y +=.(2)由题意知,直线l 的斜率不为0,设直线:1l x my =-,()()()1122,,,,,p p M x y N x y P x y .联立2221,1x y x my ⎧+=⎨=-⎩,消去x ,得()22+2210m y my --=,此时()281m ∆=+0>,且12222m y y m +=+,12212y y m =-+又由弦长公式得MN =整理得2212m MN m ++. 又122+=22p y y m y m =+,所以2212p p x my m -=-=+,所以222222p m PQ x m ++=+,所以1PQMN =, 所以21m =,即1m =±.综上,当1m =±,即直线l 的斜率为±1时,MN PQ =, 此时直线l 为10x y ±-=. 【点睛】求解直线和圆锥曲线相交所得弦长,往往采用设而不求,整体代入的方法来求解.。
高中数学 平面解析几何——圆锥曲线与方程一、单选题1.若双曲线x 2a 2−y 2b2=1(a >0,b >0)的一条渐近线方程y =√3x ,则该双曲线的离心率为( )A .√3B .2C .12D .2√332.已知双曲线C 1:x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若双曲线C 1与曲线C 2:x 2+y 2−b 2=0在第二象限的交点为M ,且|MF 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||MF 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=13,则双曲线C 1的离心率为( ) A .√32B .3C .√3D .323.抛物线 C:y 2=2px(p >0) 的焦点为 F ,点 A(6,y 0) 是 C 上一点, |AF|=2p ,则 p =( ) A .4B .3C .2D .14.经过点 M(2√3,2√2) 且与双曲线 y 24−x 23=1 有共同渐近线的双曲线方程为( )A .x 26−y 28=1B .y 26−x 28=1C .x 28−y 26=1D .y 28−x 26=15.过双曲线 E :x 2a 2−y 2b2=1(a >0,b >0) 的右焦点且垂直于 x 轴的直线与双曲线 E 交于A ,B 两点,与双曲线 E 的渐近线交于C ,D 两点,若 |AB|=√32|CD| ,则双曲线 E 的渐近线方程为( ) A .y =±√2xB .y =±√3xC .y =±2xD .y =±2√3x6.若双曲线 x 2a 2−y 2b2=1 的一条渐近线经过点 (3,4) ,则此双曲线的离心率为( )A .√73B .54C .43D .537.双曲线x 2a 2−y 2b2=1的离心率为√3,则它的渐近线方程是( )A .y =±√2xB .y =±√22xC .y =±2xD .y =±12x8.已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,射线FM 与y 轴交于点A(0,2),与抛物线C 的准线交于点N ,FM ⃗⃗⃗⃗⃗⃗ =√55MN ⃗⃗⃗⃗⃗⃗⃗ ,则p 的值等于( )A .18B .2C .14D .49.椭圆x 29+y 24−k =1的离心率为45,则k 的值为( )A.-21B.21C.−925或21D.925或2110.曲线x 210−m+y26−m=1(m<6)与曲线x25−m+y29−m=1(5<m<9)的()A.焦距相等B.离心率相等C.焦点相同D.准线相同11.已知双曲线Γ过点M(3,4)且其渐近线方程为y=±2√33x,ΔABC的顶点A,B恰为Γ的两焦点,顶点C在Γ上且|AC|>|BC|,则sin∠BAC−sin∠ABCsin∠ACB=()A.−2√77B.2√77C.−2D.212.如图,某绿色蔬菜种植基地在A处,要把此处生产的蔬菜沿道路AA1或AA2运送到形状为四边形区域A1A2A3A4的农贸市场中去,现要求在农贸市场中确定一条界线,使位于界线一侧的点沿道路AA1运送蔬菜较近,而另一侧的点沿道路AA2运送蔬菜较近,则该界线所在曲线为()A.圆B.椭圆C.双曲线D.抛物线13.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB为7米,请计算通过隧道的车辆限制高度为()A.4.25米B.4.5米C.3.9米D.4.05米14.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,以OF2为直径的圆M与双曲线C相交于A,B两点,其中O为坐标原点,若AF1与圆M相切,则双曲线C的离心率为 A .√2+3√62B .√2+√62C .3√2+√62D .3√2+2√6215.已知椭圆 y 2a 2 + x 2b2 =1(a>b>0)与直线 y a −x b =1 交于A ,B 两点,焦点F(0,-c),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( ) A .√5−12B .√3−12C .√3+14D .√5+1416.设双曲线 C : x 2a 2−y 2b2=1(a >0,b >0) 的左、右焦点分别为 F 1 、 F 2 ,点 P 在 C 上,且满足 |PF 1|=3a .若满足条件的点 P 只在 C 的左支上,则 C 的离心率的取值范围是( ) A .(1,2]B .(2,+∞)C .(2,4]D .(4,+∞)17.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点M ,N 在C 上(M 位于第一象限),且点M ,N 关于原点O 对称,若|MN|=|F 1F 2|,2√2|MF 2|=|NF 2|,则C 的离心率为( ) A .√24B .12C .6√2−37D .3√2−37二、填空题18.双曲线C :x 2a 2−y 2b2=1(a >0,b >0)上一点P (点P 在第一象限),过双曲线C 中心O 且与坐标轴不平行的直线l 交双曲线C 左右两支于A ,B 两点(点A ,B 异于点P ),设直线PA ,PB 的斜率分别为k 1、k 2,且k 1k 2=14,则双曲线C 的离心率为 .19.过点(2√3,√3)且渐近线与双曲线C :y 2−x 22=1的渐近线相同的双曲线方程为 .20.已知 F 为抛物线 C :y 2=4x 的焦点, P 为 C 上的一点,若 |PF|=3 ,则点 P 的坐标为 21.已知点 (1,2) 在抛物线 y 2=2px 上,则该抛物线的焦点坐标为 . 22.已知抛物线 y 2=2ax 的准线方程为 x =−2 ,则 a = . 23.抛物线x 2=−2y 的焦点到准线的距离为 .24.在平面直角坐标系xOy 中,已知抛物线y 2=8x 上一点P 到点A (4,0)的距离等于它到准线的距离,则PA= .25.椭圆 x 2a 2+y 2b2=1(a >b >0) 上的任意一点 P (短轴端点除外)与短轴上、下两个端点 B 1,B 2的连线交 x 轴于点 M 和 N ,则 |OM|+|ON| 的最小值是 .26.已知抛物线y 2=2px 的焦点F 与双曲线x 27﹣Y 29=1的右焦点重合,抛物线的准线与x 轴的焦点为K ,点A 在抛物线上,且|AK|=√2|AF|,则△AFK 的面积为27.如图从双曲线 x 2a 2−y 2b2=1 (其中 b >a >0 )的左焦点F 引圆 x 2+y 2=a 2 的切线,切点为T ,延长 FT ,交双曲线右支于P ,若M 为线段 FP 的中点,O 为原点,则 |MO|−|MT| 的值为(用 a 、b 表示) .28.设F 为抛物线 C:y 2=2px(p >0) 的焦点,过F 作倾斜角为 60° 的直线交C 于A ,B 两点,若 |AF|−|BF|=4 ,则 |AB|= .29.已知椭圆E : x 2a 2+y 2b2 =1(a >b >0)的焦距为2c (c >0),左焦点为F ,点M 的坐标为(﹣2c ,0).若椭圆E 上存在点P ,使得PM= √2 PF ,则椭圆E 离心率的取值范围是 .30.已知双曲线x 2a 2−y 2b2=1(a >0,b >0)的两条渐近线均与圆C :(x −3)2+y 2=4相切,右焦点和圆心重合,则该双曲线的标准方程为 .31.在平面直角坐标系 xOy 中,已知抛物线 C : y 2=4x 的焦点为 F .过点 M(−1,0) 的直线 l 与抛物线 C 交于 A , B 两点,若 FA ⊥FB ,则直线 l 的斜率为 .32.过双曲线x 2- y 215=1的右支上一点P ,分别向圆C 1:(x+4)2+y 2=4和圆C 2:(x-4)2+y 2=1作切线,切点分别为M ,N ,则|PM|2-|PN|2的最小值为 .33.在平面直角坐标系 xOy 中,已知 A(1,0) , B(1,√3) ,动点 P 满足 OP⃗⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗⃗ ,且 |x|+|y|=1 ,则动点 P 形成的轨迹长度为 .34.已知F 是抛物线 C :y 2=2px(p >0) 的焦点,抛物线C 上的点 A ,B 满足 AF⃗⃗⃗⃗⃗ =4FB ⃗⃗⃗⃗⃗ ,若 A ,B 在准线上的射影分别为 M ,N ,且 △MFN 的面积为5,则 |AB|=三、解答题35.某海域有 A 、B 两个岛屿,B 岛在A 岛正东40海里处,经多年观察研究发现,某种鱼群洄游的路线像一个椭圆,其焦点恰好是 A 、B 两岛.曾有渔船在距A 岛正西20海里发现过鱼群.某日,研究人员在 A 、B 两岛同时用声呐探测仪发出不同频率的探测信号(传播速度相同), A 、B两岛收到鱼群反射信号的时间比为 5:3 .你能否确定鱼群此时分别与 A 、B 两岛的距离? 36.已知直线l 的参数方程为 {x =2+ty =√3t (t 为参数), P(2,0) ,曲线C 的极坐标方程为 ρ2cos2θ=1 .(1)求直线l 的普通方程及曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A ,B 两点,设A ,B 中点为Q ,求弦长 |AB| 以及 |PQ| .37.已知 F 1 , F 2 分别是椭圆 E :x 2a 2+y 2b2=1(a >b >0) 的左,右焦点, |F 1F 2|=6 ,当 P在 E 上且 PF 1 垂直 x 轴时, |PF 2|=7|PF 1| .(1)求 E 的标准方程;(2)A 为 E 的左顶点, B 为 E 的上顶点, M 是 E 上第四象限内一点, AM 与 y 轴交于点 C , BM 与 x 轴交于点 D . 求证:四边形 ABDC 的面积是定值.38.已知双曲线C :y 2a 2−x 2b2=1(a >0,b >0)的离心率为√174,抛物线D :y 2=2px (p >0)的焦点为F ,准线为l ,l 交双曲线C 的两条渐近线于M 、N 两点,ΔMNF 的面积为8. (1)求双曲线C 的渐近线方程; (2)求抛物线D 的方程.39.已知B ,C 是两个定点,|BC|=8,且△ABC 的周长等于18,求这个三角形的顶点A 的轨迹方程.40.已知函数 y =2x 2 ,函数图象上有两动点 A(x 1,y 1) 、 B(x 2,y 2) .(1)用 x 1 表示在点 A 处的切线方程;(2)若动直线 AB 在 y 轴上的截距恒等于 1 ,函数在 A 、 B 两点处的切线交于点 P ,求证:点 P 的纵坐标为定值.41.已知双曲线 x 2−y 23=1 ,抛物线 y 2=2px(p >0) 的焦点与双曲线的一个焦点相同,点 P(x 0,y 0) 为抛物线上一点. (1)求双曲线的焦点坐标;(2)若点 P 到抛物线的焦点的距离是5,求 x 0 的值.42.已知圆C 的方程为:x 2+(y +1)2=r 2(r >0)(1)已知过点M(12,−52)的直线l 交圆C 于A ,B 两点,若r =1,|AB|=√3,求直线l 的方程;(2)如图,过点N(−1,1)作两条直线分别交抛物线y =x 2于点P ,Q ,并且都与动圆C 相切,求证:直线PQ 经过定点,并求出定点坐标.43.已知椭圆 C : x 2a 2+y 2b2=1(a >b >0) 的左、右焦点分别为 F 1 , F 2 ,且 |F 1F 2|=2 ,点M(√3,√32) 在椭圆 C 上.(1)求椭圆 C 的标准方程.(2)P 为椭圆 C 上一点,射线 PF 1 , PF 2 分别交椭圆 C 于点 A , B ,试问 |PF 1||AF 1|+|PF 2||BF 2| 是否为定值?若是,求出该定值;若不是,请说明理由. 44.已知双曲线C : x 2a 2−y 2b2 =1(a ,b>0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),其中c>0,M(c ,3)在C 上,且C 的离心率为2. (1)求C 的标准方程;(2)若O 为坐标原点,△F1MF2的角平分线l 与曲线D : x 2c 2+y 2b2 =1的交点为P ,Q ,试判断OP 与OQ 是否垂直,并说明理由.45.已知F 1(﹣1,0),F 2(1,0)分别是椭圆C : x 2a2+y 23 =1(a >0)的左、右焦点. (△)求椭圆C 的方程;(△)若A ,B 分别在直线x=﹣2和x=2上,且AF 1△BF 1. (△)当△ABF 1为等腰三角形时,求△ABF 1的面积; (△)求点F 1,F 2到直线AB 距离之和的最小值.46.已知椭圆 C:x 2a 2+y 2b2=1(a >b >0) 的离心率为 √33 ,且经过点 (32,√22) .(1)求椭圆 C 的方程;(2)经过点M(0,2)的直线l与椭圆C交于不同的两点A,B,O为坐标原点,若△OAB的面积为4√617,求直线l的方程.47.已知抛物线E:y2=2px的焦点F恰好是椭圆C:x2+2y2=2的右焦点.(1)求实数p的值及抛物线E的准线方程;(2)过点F任作两条互相垂直的直线分别交抛物线E于A、B和M、N点,求两条弦的弦长之和|AB|+|MN|的最小值.48.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A、B,焦距为2,点P为椭圆上异于A、B的点,且直线PA和PB的斜率之积为−3 4 .(1)求C的方程;(2)设直线AP与y轴的交点为Q,过坐标原点O作OM//AP交椭圆于点M,试探究|AP|⋅|AQ||OM|2是否为定值,若是,求出该定值;若不是,请说明理由.49.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个顶点分别为点A(−2,0),B(2,0),离心率为√32.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.证明:△BDE与△BDN的面积之比为定值.50.已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F,上顶点为B,离心率为2√55,且|BF|=√5.(1)求椭圆的方程;(2)直线l与椭圆有唯一的公共点M,与y轴的正半轴交于点N,过N与BF垂直的直线交x轴于点P.若MP//BF,求直线l的方程.答案解析部分1.【答案】B【知识点】双曲线的简单性质【解析】【解答】因为双曲线x 2a 2−y 2b2=1(a >0,b >0)的一条渐近线方程y =√3x ,所以b a=√3,所以该双曲线的离心率为e =c a =√1+(b a )2=2。
2021届专题十数学考试范围:解析几何〔直线与圆、椭圆、双曲线和抛物线〕一、选择题〔本大题一一共10小题;每一小题5分,一共50分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的〕 1.直线07tan =+y x π的倾斜角是〔 〕 A .7π-B .7π C .75π D .76π 2.直线01:1=+-y x l 关于直线2:=x l 对称的直线2l 方程为 〔 〕 A .012=--y xB .072=-+y xC .042=--y xD .05=-+y x3.“2-=a 〞是直线()021:1=-++y x a l 与直线()0122:2=+++y a ax l 互相垂直的 〔 〕A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.直线0=+++b a by ax 与圆222=+y x 的位置关系为 〔 〕 A .相交B .相切C .相离D .相交或者相切5.点P 在圆074422=+--+y x y x 上,点Q 在直线上kx y =上,假设PQ 的最小值为122-,那么k = 〔 〕 A .1B .1-C .0D .26.假设椭圆122=+my x 的离心率⎪⎪⎭⎫⎝⎛∈22,33e ,那么m 的取值范围是〔 〕 A .⎪⎭⎫ ⎝⎛32,21B .()2,1C .()2,132,21 ⎪⎭⎫ ⎝⎛D .⎪⎭⎫⎝⎛2,217.中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为03=-y x ,那么该双曲线的离心率为 〔 〕 A .332 B .3 C .2或者332 D .332或者3 8.M 是抛物线x y 42=上一点,且在x 轴上方,F 是抛物线的焦点,以x 轴的正半轴为始边,FM 为终边构成的最小的角为60°,那么=FM〔 〕 A .2B .3C .4D .69.设抛物线x y 82=的准线经过中心在原点,焦点在坐标轴上且离心率为21的椭圆的一个顶点,那么此椭圆的方程为 〔 〕A .1161222=+y x 或者1121622=+y xB .1644822=+y x 或者1486422=+y xC .1121622=+y x 或者1431622=+x y D .13422=+y x 或者1431622=+x y10.定点()0,21-F 、()0,22F ,动点N 1=〔O 为坐标原点〕,NM M F 21=,()R MF MP ∈=λλ2,01=⋅PN M F ,那么点P 的轨迹是〔 〕 A .椭圆B .双曲线C .抛物线D .圆二、填空题〔本大题一一共5小题;每一小题5分,一共25分.将答案填在题中的横线上〕 11.以点()2,1-为圆心且与直线1-=x y 相切的圆的HY 方程是 . 12.圆064422=++-+y x y x 上到直线05=--y x 的间隔 等于22的点有个.13.假设点P 在直线03:1=++my x l 上,过点P 的直线2l 与曲线()165:22=+-y x C 只有一个公一共点M ,且PM 的最小值为4,那么=m .14.在平面直角坐标系xOy 中,椭圆12222=+b y a x (a >b >0)的离心率为22,以O 为圆心,a 为半径作圆M ,再过⎪⎪⎭⎫⎝⎛0,2c a P 作圆M 的两条切线PA 、PB ,那么APB ∠= .15.以双曲线的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角的范围是⎪⎭⎫⎝⎛2,3ππ那么双曲线的离心率的范围是 .三、解答题〔本大题一一共6小题;一共75分.解容许写出文字说明、证明过程或者演算步骤〕16.〔此题满分是12分〕圆O 的方程为1622=+y x . 〔1〕求过点()8,4-M 的圆O 的切线方程;〔2〕过点()0,3N 作直线与圆O 交于A 、B 两点,求OAB △的最大面积以及此时直线AB 的斜率.17.〔此题满分是12分〕将抛物线y x 222-=向上平移2个单位长度后,抛物线过椭圆12222=+by ax (a >b >0)的上顶点和左右焦点.〔1〕求椭圆方程;〔2〕假设点()0,m P 满足如下条件:过点P 且倾斜角为π65的直线l 与椭圆相交于C 、D 两点,使右焦点F 在以CD 线段为直径的圆外,试求m 的取值范围.18.〔此题满分是12分〕双曲线,12222=-by ax (a >0,b >0)左右两焦点为1F 、2F ,P 是右支上一点,212F F PF ⊥,1PF OH ⊥于H ,1OF OH λ=,⎥⎦⎤⎢⎣⎡∈21,91λ.〔1〕当31=λ时,求双曲线的渐近线方程; 〔2〕求双曲线的离心率e 的取值范围;〔3〕当e 取最大值时,过1F ,2F ,P 的y 轴的线段长为8,求该圆的方程.19.〔此题满分是13分〕在平面直角坐标系xOy中,过定点()0,pC作直线m与抛物线2=(p>0)相交于A、B两点.y2px〔1〕设()0,pNA⋅的最小值;N-,求NB〔2〕是否存在垂直于x轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?假设存在,求出l的方程;假设不存在,请说明理由.20.〔此题满分是13分〕椭圆C 的中心在原点,焦点在x 轴上,离心率等于21,它的一个顶点恰好是抛物线y x 382=的焦点. 〔1〕求椭圆C 的方程;〔2〕()3,2P 、()3,2-Q 是椭圆上两点,A 、B 是椭圆位于直线PQ 两侧的两动点,①假设直线AB 的斜率为21,求四边形APBQ 面积的最大值;②当A 、B 运动时,满足BPQ APQ ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.21.〔此题满分是13分〕在平面直角坐标系中,向量()2,-=y x a ,()()R k y kx b ∈+=2,,假b a b a =.〔1〕求动点()y x M ,的轨迹T 的方程,并说明该方程表示的曲线的形状; 〔2〕当34=k 时,()1,01-F 、()1,02F ,点P 是轨迹T 在第一象限的一点,121=PF PF ,假设点Q 是轨迹T 上不同于点P 的另一点,问是否存在以PQ 为直径的圆G 过点2F ,假设存在,求出圆G 的方程,假设不存在,请说明理由.2021届同心圆梦专题卷数学专题十答案与解析1.【命题立意】此题考察直线的一般方程形式、斜率和倾斜角的关系以及正切函数的诱导公式.【思路点拨】抓住直线方程y=kx+b 中斜率为k ,α为倾斜角,其中[)πα,0∈,当2πα≠时αtan =k .【答案】D 【解析】7tan πx y -=,斜率76tan 7tan 7tan ππππ=⎪⎭⎫ ⎝⎛-=-=k .2.【命题立意】此题考察直线的对称和直线方程的求解以及直线上点确实定.【思路点拨】求出直线1l 与x 轴、与l 的交点坐标,再确定对称点的坐标,最后由两点式得到2l 的直线方程.【答案】D 【解析】画出图形,容易求得直线1l 与x 轴的交点()0,1-A ,它关于直线l 的对称点为()0,5B ,又1l 与l 的交点()3,2P ,从而对称直线2l 经过B 、P 两点,于是由两点式求得2l 的方程为05=-+y x .3.【命题立意】此题考察两条直线的位置关系和充要条件:0212121=+⇔⊥B B A A l l .【思路点拨】判断直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的位置关系时,抓住两点,一是1l ∥2l 时,212121C C B B A A ≠=,为了防止讨论系数为零的情况,转化为积式1221B A B A =且1221C A C A ≠;二是21l l ⊥,即斜率的乘积为1-,假如一条直线的斜率为零,那么另一条直线的斜率不存在,也就是02121=+B B A A .充分必要条件的断定,关键是看哪个推出哪个. 【答案】A 【解析】1023221-=⇔=++⇔⊥a a a l l 或者2-=a ,应选答案A .4.【命题立意】此题考察直线与圆的位置关系和点到直线的间隔 公式以及根本不等式. 【思路点拨】直线与圆的位置关系有三种,由圆心到直线的间隔 d 与半径r 的大小关系决定,当d >r 时,相离;当d =r 时相切;当d <r 时相交. 【答案】D 【解析】圆心()0,0到直线0=+++b a by ax 的间隔 22ba b a d ++=,半径2=r .由于()221222222≤++=++=b a ab ba b a d,所以r d ≤,从而直线与圆相交或者相切.5.【命题立意】此题考察直线与圆的位置关系和点到直线的间隔 .【思路点拨】圆上的点到直线上的点,这两个动点之间的间隔 的最小值,可以转化为直线上的点到圆心的间隔 的最小值来解决,圆上的点到直线的间隔 的最大值等于圆心到直线的间隔 加上半径,最小值等于圆心到直线的间隔 减去半径;当直线与圆相交时,圆上的点到直线的间隔 的最大值等于圆心到直线的间隔 加上半径,最小值等于0. 【答案】B 【解析】由题意可知,直线与圆相离,074422=+--+y x y x 即()()12222=-+-y x ,圆心()2,2到直线kx y =的间隔 1222+-=k k d ,∴12211222-=-+-=-k k r d ,解得1-=k .6.【命题立意】考察椭圆的HY 方程和椭圆中的根本量及其关系以及分类讨论的思想. 【思路点拨】可建立m 关于e 的函数,从而可根据e 的范围求得m 的范围. 【答案】C 【解析】化椭圆的方程为HY方程1122=+my x ,当m 1<1,即m >1时,椭圆焦点在x 轴上,此时12=a ,mb 12=,mc 112-=,me 112-=∴,211e m -=∴,又⎪⎪⎭⎫⎝⎛∈22,33e ,∴23<m <2,又m >1,∴1<m <2.当m1>1,即m <1时,椭圆焦点在y 轴上,此时ma 12=,12=b ,112-=m c ,∴m ac e -==1222,即21e m -=,又⎪⎪⎭⎫⎝⎛∈22,33e ,∴21<m <32.综上,m 的范围范围是()2,132,21 ⎪⎭⎫⎝⎛.选择C . 7.【命题立意】考察双曲线的HY 方程,离心率的概念.【思路点拨】根据渐近线方程可以得到双曲线系方程,再分两种情况讨论焦点位置,从而求得离心率.【答案】C 【解析】由于一条渐近线方程为03=-y x ,所以可设双曲线方程为λ=-223y x .当焦点在x 轴上时,方程为1322=-λλy x 〔λ>0〕,此时32λ=a ,λ=2b ,于是34222λ=+=b a c ,所以离心率2==ace ;当焦点在y 轴上时,方程为1322=---λλxy 〔λ<0〕,此时λ-=2a ,32λ-=b ,于是34222λ-=+=b a c ,所以离心率332==a c e .应选择C .8.【命题立意】考察抛物线的定义和HY 方程以及直角三角形的性质.【思路点拨】画出图形,利用抛物线的定义找出点M 的横坐标与|FM |的关系即可求得. 【答案】C 【解析】画出图形,知()0,1F ,设FM=a 2,由点M 向x 轴作垂线,垂足为N ,那么FN=a ,于是点M 的横坐标a x +=10.利用抛物线的定义,那么M 向准线作垂线,有FM=10+x ,即112++=a a ,所以2=a ,从而FM=4.9.【命题立意】考察椭圆与抛物线的HY 方程,根本量的关系以及分类讨论问题. 【思路点拨】由抛物线的HY 方程求得准线方程,从而求得椭圆一个顶点的坐标,这个值是a 还是b ,就必须分两种情况讨论.【答案】D 【解析】由抛物线x y 82=,得到准线方程为2-=x ,又21=a c ,即c a 2=.当椭圆的焦点在x 轴上时,2=a ,1=c ,3222=-=c a b ,此时椭圆的HY 方程为13422=+y x ;当椭圆的焦点在y 轴上时,2=b ,332=c ,334=a ,此时椭圆的HY 方程为1431622=+x y .应选择D .10.【命题立意】考察对向量含义的理解,线段垂直平分线的性质、三角形中位线性质和双曲线定义.【思路点拨】画出图形,将向量问题转化为实数中线段关系问题,利用线段垂直平分线的性质和三角形中位线的性质,得到线段的差是常数,符合双曲线的定义.【答案】B 【解析】1说明点N 在圆122=+y x 上,NM M F 21=说明N 是线段M F 1的中点,2MF MP λ=〔x ∈R 〕说明P 在2MF 上,01=⋅PN M F 说明PN 是线段M F 1的垂直平分线,于是有PM PF =1,221MF ON=,从而有ONMF PF PM PF PF 22221==-=-=2<21F F =4,所以点P 的轨迹是以1F 、2F 为焦点的双曲线的右支.从而选择B . 11.【命题立意】考察圆的方程,直线与圆相切问题.【思路点拨】圆心,故只需求得其半径即可,而半径为圆心〔-1,2〕到直线的间隔 ,根据点到直线的间隔 可求其半径,从而可求得圆的HY 方程. 【答案】()()82122=-++y x 【解析】圆的半径()221112122=-+---=r ,所以圆的方程为()()()2222221=-++y x ,即()()82122=-++y x .12.【命题立意】考察圆的HY 方程,点到直线的间隔 .【思路点拨】先化圆的方程为HY 方程,求出圆心到直线的间隔 ,再来与半径比拟. 【答案】3【解析】圆的方程为()()22222=++-y x ,圆心()2,2-到直线05=--y x 的间隔 222522=-+=d ,圆的半径2=r ,所以圆上到直线的间隔 等于22的点有3个.13.【命题立意】考察圆心到直线的间隔 、圆的切线长定理和直线与圆相切问题. 【思路点拨】画出图形,PM 是切线,切线长最小,即|PC |最小,也就是C 到1l 的间隔 .【答案】1±【解析】画出图形,由题意l 2与圆C 只一个交点,说明l 2是圆C 的切线,由于162222-=-=PC CMPC PM ,所以要|PM|最小,只需|PC |最小,即点C 到l 1的间隔22181305mm+=+++,所以|PM|的最小值为4161822=-⎪⎪⎭⎫⎝⎛+m ,解得1±=m . 14.【命题立意】考察椭圆的HY 方程,椭圆离心率的概念和圆的切线问题. 【思路点拨】画出图形,由椭圆的离心率为22得到a c =22,再利用圆的切线的性质得到直角三角形,在直角三角形中求解角度. 【答案】2π【解析】如图,连结OA ,那么OA ⊥PA ,22sin 2===∠a c ca a APO ,所以4π=∠APO ,从而2π=∠APB .15.【命题立意】考察双曲线中由a 、b 、c 构成的直角三角形的几何意义及离心率与a 、b 、c 的关系.【思路点拨】可根据四边形的特征,以“有一个内角小于60°〞为桥梁确定离心率的范围. 【答案】⎪⎪⎭⎫⎝⎛2,26【解析】设双曲线的方程为12222=-b y a x =1〔a >0,b >0〕,如下图,由于在双曲线c >b ,所以只能是211B F B ∠<90°,故由题意可知60°<211B F B ∠<90°,∴在11B OF Rt ∆中,30°<11B OF ∠<45°,∴33<c b <22,∴31<222c a c-<21,即31<1-21e<21,∴23<e 2<2,∴26<e <2.16.【命题立意】考察圆的HY 方程,直线与圆的位置关系,以及弦长问题. 【思路点拨】〔1〕过圆外一点的圆的切线方程,一般设斜率,利用圆心到直线的间隔 等于半径来求出斜率,但一定要注意斜率存在与否;〔2〕将弦长AB看成底边,那么三角形的高就是圆心到直线的间隔 .【解析】〔1〕圆心为()0,0O ,半径4=r ,当切线的斜率存在时,设过点()8,4-M 的切线方程为()48+=-x k y ,即084=++-k y kx 〔1分〕.那么41|84|2=++k k ,解得43-=k ,〔3分〕,于是切线方程为02043=-+y x 〔5分〕.当斜率不存在时,4-=x 也符合题意.故过点()11,5-M 的圆O 的切线方程为02043=-+y x 或者4-=x .〔6分〕 〔2〕当直线AB 的斜率不存在时,73=∆ABC S ,〔7分〕,当直线AB 的斜率存在时,设直线AB 的方程为()3-=x k y ,即03=--k y kx ,圆心()0,0O 到直线AB 的间隔 132+=k k d ,〔9分〕线段AB 的长度2162d AB -=,所以()()821616162122222=-+≤-=-==∆d d d d d d d AB S ABC ,〔11分〕当且仅当82=d 时取等号,此时81922=+k k ,解得22±=k ,所以OAB △的最大面积为8,此时直线AB 的斜率为22±.〔12分〕17.【命题立意】此题考察椭圆方程的求法,直线和圆锥曲线的位置关系以及存在性问题. 【思路点拨】〔1〕可根据抛物线平移后与坐标轴的交点求得b 、c 的值,从而可得a 的值,故可求椭圆方程;〔2〕可利用向量法解决. 【解析】〔1〕抛物线y x 222-=的图象向上平移2个单位长度后其解析式为()2222--=y x ,其与x 、y 轴的交点坐标分别为()0,2±、()2,0,∴2=b ,2=c ,〔2分〕∴62=a ,故椭圆的方程为12622=+y x .〔4分〕〔2〕由题意可得直线l 的方程为()m x y --=33,代入椭圆方程消去y 得,062222=-+-m mx x ,〔6分〕又()68422--=m m △>0,∴32-<m <32.〔7分〕设C 、D 分别为()11,y x ,()22,y x ,那么m x x =+21,26221-=m x x ,∴()()()33313333221212121m x x m x x m x m x y y ++-=⎥⎥⎦⎤⎢⎢⎣⎡--⋅⎥⎥⎦⎤⎢⎢⎣⎡--=,∵()11,2y x FC -=,()22,2y x FD -=,∴()()()()33243363422221212121-=++++-=+--=⋅m m mx x m x x y y x x FD FC ,〔10分〕∵点F 在圆的外部,∴FD FC ⋅>0,即()332-m m >0,解得m <0或者m >3,又∵32-<m <32,∴32-<m<0或者3<m <32.〔12分〕18.【命题立意】考察双曲线的定义和HY 方程,渐近线和离心率计算公式.【思路点拨】〔1〕求渐近线方程的目的就是求ab ,可根据条件建立a 、b 的数量关系来求得;〔2〕可建立e 关于λ的函数,从而可根据λ的范围求得e 的范围;〔3〕可根据离心率确定a 、b 的数量关系,再结合图形确定圆的圆心与半径.【解析】由于()0,2c F ,所以⎪⎪⎭⎫⎝⎛±a b c P 2,,于是ab PF 22=,a ab a PF PF 22221+=+=,〔1分〕由相似三角形知,112PF OF PF OH =,即121PF PF OF OH =,即ab a a b 222+=λ,〔2分〕∴2222b b a =+λλ,()λλ-=1222b a ,λλ-=1222a b .〔1〕当31=λ时,122=ab ,∴b a =.〔3分〕所以双曲线的渐近线方程为x y ±=.〔4分〕〔2〕()[]12111211121121122222---=--=---+=-+=+==λλλλλλab ac e ,在⎥⎦⎤⎢⎣⎡21,91上为单调递增函数.〔5分〕∴当21=λ时,2e 获得最大值3〔6分〕;当91=λ时,2e 获得最小值45.〔7分〕∴3452≤≤e ,∴325≤≤e .〔8分〕〔3〕当3=e 时,3=ac,∴a c 3=,∴222a b =.〔9分〕∵212F F PF ⊥,∴1PF 是圆的直径,圆心是1PF 的中点,∴在y 轴上截得的弦长就是直径,∴81=PF .〔10分〕又a aaa ab a PF 4222221=+=+=,∴84=a ,2=a ,32=c ,22=b .〔11分〕∴4222===a ab PF ,圆心()2,0C ,半径为4,故圆的方程为()16222=-+y x .〔12分〕19.【命题立意】考察抛物线的HY 方程,直线与抛物线的位置关系.【思路点拨】设直线方程,与抛物线方程联立,利用韦达定理来解决;存在性问题一般是假设存在,利用垂径定理推导求解来解决.【解析】〔1〕依题意,可设()11,y x A 、()22,y x B ,直线AB 的方程为p my x +=, 由0222222=--⇒⎪⎩⎪⎨⎧=+=p pmy y pxy pmy x ,〔2分〕得⎪⎩⎪⎨⎧-=⋅=+2212122py y pmy y ,〔3分〕∴NB NA ⋅=()()2211,,y p x y p x ++()()2121y y p x p x +++=()()212122y y p my p my +++=()()221212421p y y pm y y m ++++=22222p m p +=〔6分〕当0=m 时,NB NA ⋅获得最小值22p .〔7分〕〔2〕假设满足条件的直线l 存在,其方程为a x =,AC 的中点为O ',l 与以AC 为直径的圆相交于P 、Q ,PQ 的中点为H ,那么PQ H O ⊥',O '的坐标为⎪⎭⎫⎝⎛+2,211y p x .()2212121212121p x y p x AC P O +=+-==' 〔9分〕,()()()a p a x p a p x a p x HO P O PH -+⎪⎭⎫⎝⎛-=---+='-'=∴1212212222124141,2PQ =()22PH =()⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛-a p a x p a 1214〔11分〕,令021=-p a 得p a 21=.此时p PQ =为定值.故满足条件的直线l 存在,其方程为p x 21=.〔13分〕20.【命题立意】考察椭圆与抛物线的HY 方程,直线与椭圆的位置关系.【思路点拨】〔1〕利用抛物线的HY 方程,求出焦点坐标,从而得到椭圆中的b ,再由离心率建立方程,可求得椭圆的HY 方程;〔2〕抓住直线PQ ⊥x 轴,BPQ APQ ∠=∠即直线PA 、PB 的斜率互为相反数,联络方程利用韦达定理来解决. 【解析】〔1〕设C 方程为12222=+b y a x 〔a >b >0〕,那么32=b .由21=ac,222b c a +=,得a =4∴椭圆C 的方程为1121622=+y x.〔4分〕〔2〕①设()11,y x A ,()22,y x B ,直线AB 的方程为t x y +=21,代入1121622=+y x ,得01222=-++t tx x ,由∆>0,解得4-<t <4.〔6分〕由韦达定理得t x x -=+21,12221-=t x x .四边形APBQ 的面积2213483621t x x S -=-⨯⨯=,∴当0=t 时312max=S .〔8分〕②当BPQ APQ ∠=∠,那么PA 、PB 的斜率之和为0,设直线PA 的斜率为k ,那么PB 的斜率为k -,PA 的直线方程为()23-=-x k y ,由()⎪⎩⎪⎨⎧=+-=-)2(11216)1(2322y x x k y .将〔1〕代入〔2〕整理得()()()04823423843222=--+-++k kx k xk ,有()21433282k k k x +-=+.〔10分〕同理PB 的直线方程为)2(3--=-x k y ,可得()()22243328433282k k k k k k x ++=+---=+,∴2221431216kk x x +-=+,2214348k k x x +-=-.〔12分〕从而AB k =2121x x y y --=()()21213232x x x k x k ---++-=()21214x x k x x k --+=21,所以AB 的斜率为定值21.〔13分〕21.【命题立意】考察圆锥曲线的HY 方程,椭圆与双曲线的定义,向量垂直问题. 【思路点拨】〔1〕利用向量的数量积的坐标运算来求出轨迹方程,但一定要注意对参数的讨论;〔2〕利用椭圆或者双曲线的定义确定点P 的位置,以PQ 为直径的圆G 过点2F ,即022=⋅QF PF ,利用向量垂直的坐标运算来解决.【解析】〔1〕∵b a ⊥,∴()()02,2,=+⋅-=⋅y kx y x b a ,得0422=-+y kx ,即422=+y kx .〔1分〕 当0=k 时,方程表示两条与x 轴平行的直线;〔2分〕当1=k 时,方程表示以原点为圆心,以2为半径的圆;〔3分〕当0<k <1时,方程表示焦点在x 轴上的椭圆;〔4分〕当k >1时,方程表示焦点在y 轴上的椭圆;〔5分〕当k <0时,方程表示焦点在y 轴上的双曲线.〔6分〕 〔2〕由〔1〕知,轨迹T 是椭圆13422=+x y ,那么1F 、2F 为椭圆的两焦点.解法一:由椭圆定义得421=+PF PF ,联立121=-PF PF 解得251=PF,232=PF ,又221=F F ,有2212221F F PF PF +=,∴212F F PF ⊥,∴P 的纵坐标为1,把1=y 代入13422=+x y 得23=x 或者23-=x 〔舍去〕,∴⎪⎭⎫⎝⎛1,23P .〔9分〕设存在满足条件的圆,那么22QF PF ⊥,设()t s Q ,,那么⎪⎭⎫ ⎝⎛-=0,232PF ,()t s QF --=1,2,∴022=⋅QF PF ,即()01023=-⨯+t s ,∴0=s .又13422=+s t ,∴2±=t ,∴()2,0Q 或者()2,0-Q .〔12分〕所以圆G 的方程:1613234322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x 或者1645214322=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-y x .〔13分〕励志赠言经典语录精选句;挥动**,放飞梦想。
高中解析几何典型题全文共四篇示例,供读者参考第一篇示例:一、直线和平面的关系题目题目1:设直线L经过平面α和β两个平面的交点A和B,问直线L在平面α和平面β之间的位置关系是怎样的?解析:直线L在平面α和平面β之间的位置关系有三种情况,分别是直线L既不垂直于平面α,也不垂直于平面β;直线L既垂直于平面α,也垂直于平面β;直线L既不垂直于平面α,但垂直于平面β。
具体位置可根据直线和平面的垂直关系来确定。
解析:点P在平面α和平面β之间的位置关系根据两个平面的相交线和点P所在位置的具体情况来确定。
如果直线L和点P的位置不同,点P在两个平面之间;如果直线L和点P的位置相同,点P在两个平面外部;如果直线L和点P的位置重合,点P在两个平面上。
题目3:已知平面α和平面β相交于直线m,直线n与直线m相交于点A,平面α和平面β的交线分别为l1和l2,求证:∠l1An=∠l2An。
解析:根据已知条件可得到∠l1An=∠mAn,∠l2An=∠mAn,即∠l1An=∠l2An。
解析:根据已知条件可得到∠A和∠B垂直于直线m,因此∠A和∠B所成的角度为90度。
通过以上的几个典型题目及其解析,我们不难看出解析几何题目的解题思路主要是根据已知条件,运用几何知识和性质来推导出结论。
在解析几何的学习过程中,学生应该注重培养逻辑思维能力和数学运算能力,多进行几何图形的分析和推理,提高解题的能力和速度。
在解析几何的学习过程中,还需要注意以下几点:1、熟练掌握基本几何知识和性质,包括直线、角、三角形、四边形等几何图形的性质和计算方法。
2、善于画图分析,对于解析几何题目一定要画出清晰准确的图形,以便更直观地理解题意和计算。
3、多练习典型题目,通过多做题目来积累经验,查漏补缺,加深对解析几何知识的理解。
4、注意总结归纳,将解析几何的各种题目和性质进行分类和总结,形成自己的知识体系。
高中解析几何是一个非常重要的学科,学生在学习过程中要认真对待,多加练习,提高理解能力和解题能力,从而取得更好的学习成绩。
高三数学习题集:解析几何与立体几何综合练
习
解析几何与立体几何是高中数学中的重要内容之一,对于高三学生来说,掌握这两个领域的知识和技巧至关重要。
为了帮助同学们更好地复习与训练,以下是一些解析几何与立体几何综合练习题。
一、解析几何部分
1. 已知点A(2,3)、B(5,7),求直线AB的斜率和方程。
2. 设直线L1过点A(1,2),斜率为1,求L1与x轴、y轴的交点坐标。
3. 已知直线L2的方程为y=2x-3,求L2与y轴的交点坐标。
4. 设四边形ABCD的顶点分别为A(1,2)、B(4,5)、C(6,1)、D(3,-2),求四边形ABCD的周长和面积。
二、立体几何部分
1. 已知圆柱体的高为8cm,底面直径为6cm,求圆柱体的表面积和体积。
2. 设正方体的边长为3cm,求正方体的表面积和体积。
3. 设棱长为5cm的正六面体A,另有一条边长为4cm的直线段BC平行于A的一条棱,求BC与正六面体A的交点坐标。
4. 已知圆锥的高为12cm,底面半径为4cm,求圆锥的表面积和体积。
以上是一些解析几何与立体几何的综合练习题,希望同学们能够认真思考并灵活运用所学知识来解答这些问题。
通过不断练习,相信你们对解析几何与立体几何的理解和掌握会更上一层楼,为应对高考数学提供有力的支持。
加油!。
高中数学解析几何深度练习题及答案1. 平面几何题目一:已知平面上三点A(1, -2),B(3, 4),C(7, 1),求证:三角形ABC为等腰三角形。
解答:首先计算AB、AC、BC的长度,分别利用两点之间的距离公式:AB = √[(3-1)^2 + (4-(-2))^2] = √[4 + 36] = √40AC = √[(7-1)^2 + (1-(-2))^2] = √[36 + 9] = √45BC = √[(7-3)^2 + (1-4)^2] = √[16 + 9] = √25由于AB的平方等于BC的平方,即AB^2 = BC^2,可以得出AB = BC。
因此,三角形ABC为等腰三角形。
题目二:已知平面上直线L1过点A(2, -1),斜率为k,与直线L2:3x + ky + 5 = 0 互相垂直,求k的值。
解答:首先计算直线L2的斜率:L2: 3x + ky + 5 = 0化简得:ky = -3x - 5因此,L2的斜率k2为 -3/k。
由于L1与L2互相垂直,根据垂直直线的特性可知斜率k1与k2之积为 -1。
即 k * (-3/k) = -1。
解上述方程可以得出:k^2 = 3,因此k的两个解为k = √3 和 k = -√3。
题目三:已知直线L1:4x + 3y - 2 = 0 与直线L2垂直,并且直线L2通过点A(5,-1),求直线L2的方程式。
解答:由于L1与L2垂直,它们的斜率之积为 -1。
L1的斜率为 -4/3,所以L2的斜率为 3/4。
通过点斜式可以得到L2的方程式:y - (-1) = (3/4)(x - 5)化简得到:y = (3/4)x + 2因此,直线L2的方程式为:y = (3/4)x + 2。
2. 空间几何题目一:已知直线L1:x = 3 - 2t,y = 5 + 3t,z = -1 + 4t,求直线L1的参数方程。
解答:直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中(a, b, c)为直线的方向向量。
高中数学解析几何大题专项练习1、已知椭圆G:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(x,y)到椭圆上的点最远距离为52.1)求此时椭圆G的方程;2)设斜率为k(k≠0)的直线m与椭圆G相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于直线对称?若能,求出k的取值范围;若不能,请说明理由。
2、已知双曲线x-y=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x+y=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1)、P2(x2,y2)。
Ⅰ)求k的取值范围,并求x2-x1的最小值;Ⅱ)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么,k1×k2是定值吗?证明你的结论。
3、已知抛物线C:y=ax^2的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点,直线l与抛物线C相交于A、B两点,点A关于x轴的对称点为D。
1)求抛物线C的方程。
2)证明:点F在直线BD上;3)设FA×FB=9,求△BDK的面积。
4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为1/2,中点T在直线OP上,且A、O、B三点不共线。
I)求椭圆的方程及直线AB的斜率;Ⅱ)求△PAB面积的最大值。
5、设椭圆(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的焦点分别为F1(-1,0)、F2(1,0),直线l:x=a(b^2/a)交x轴于点A,且AF1=2AF2.Ⅰ)试求椭圆的方程;Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E(如图所示),若四边形DMENE的面积为27,求DE 的直线方程。
6、已知抛物线P:x^2=2py(p>0)。
Ⅰ)若抛物线上点M(m,2)到焦点F的距离为3.ⅰ)求抛物线P的方程;ⅱ)设抛物线P的准线与y轴的交点为E,过E作抛物线P的切线,求此切线方程;Ⅱ)设过焦点F的动直线l交抛物线于A、B两点,连接AO,BO并延长分别交抛物线的准线于C、D。
一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.若椭圆x2+y2a =1(a>0)的离心率为√ 22,则a的值为( )A. 2B. 12C. 2或√ 22D. 2或12【答案】D【解析】【分析】本题考查椭圆的性质的应用及分类讨论的思想,属于基础题.考虑a>1和0<a<1两种情况,根据离心率的公式计算得到答案.【解答】解:当a>1时,离心率为√ a−1√ a =√ 22,解得a=2;当0<a<1时,离心率为√ 1−a=√ 22,解得a=12.综上所述:a=2或a=12.故选:D2.把一个圆心角为120°的扇形卷成一个圆锥的侧面,则此圆锥底面圆的半径与这个圆锥的高之比是( )A. 1∶4B. √ 2∶2C. √ 2∶√ 3D. √ 2∶4【答案】D【解析】【分析】本题考查圆锥的计算,理解圆锥的展开图中扇形的弧长等于圆锥的底面周长是关键.设母线为l,半径为r,利用圆锥的展开图中扇形的弧长等于圆锥的底面周长得到半径与母线的关系,再根据勾股地理得到高,从而可以得出结果.【解答】解:设圆锥的母线为l,底面半径为r,高为ℎ则扇形的弧长为120180π×l=23πl,由圆锥的展开图中扇形的弧长等于圆锥的底面周长,得2πr=23πl,则r=13l,再由勾股定理得ℎ=√ l2−r2=2√ 23l,故r ℎ=13l 2√ 23l =√ 24,故选D .3.已知原点到直线l 的距离为1,圆(x −2)2+(y −√ 5)2=4与直线l 相切,则满足条件的直线l 有 ( ) A. 1条 B. 2条C. 3条D. 4条【答案】C 【解析】【分析】本题主要考查点到直线的距离,圆与圆位置关系,先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定公切线的直线条数. 【解答】解:∵(x −2)2+(y −√ 5 )2=4, ∴圆心坐标(2,√ 5),半径为2, ∵以坐标原点为圆心,以1为半径, ∴圆方程x 2+y 2=1, ∴两圆圆心距√ 5+22=3, ∴两圆相外切,∴两圆有三条公切线,(两条外公切线,一条内公切线). 故选C .4.已知PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A. 9 B. −9C. −3D. 3【答案】B 【解析】【分析】由共面向量定理得PC ⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ ,从而(7,6,λ)=x(2,1,−3)+y(−1,2,3),由此能求出λ的值. 本题考查实数值的求法,考查共面向量定理等基础知识,考查运算求解能力,是基础题. 【解答】解:∵PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ), P ,A ,B ,C 四点共面,∴存在一对实数x ,y ,PC⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ , ∴(7,6,λ)=x(2,1,−3)+y(−1,2,3),∴{7=2x−y6=x+2yλ=−3x+3y,解得λ=−9.故选:B.5.已知点A为圆(x+3)2+(y−2)2=1上的动点,点B的坐标为(1,1),P为x轴上一动点,则|AP|+|BP|的最小值是( )A. 3B. 4C. 5D.6【答案】B【解析】【分析】本题考查到圆上点的距离的最值及点关于线的对称点的求法,属于拔高题.根据三角形三边关系以及两点间距离公式求解即可.【解答】解:设圆心M(−3,2),半径为1,B关于x轴的对称点B1(1,−1),连接MB1交x轴于N点,则N即是P,因为这时|NB|=|NB1|,|NB|+|MN|=|MB1|,当P在x轴的其它位置F时,|FB|=|FB1|,借助图形可得|FB|+|FM|>|MB1|(三角形的两边和大于第三边),所以|AP|+|BP|的最小值是为|MB1|−1=√ 42+32−1=5−1=4,此时A为线段MB1与圆的交点.故选B.6.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点,若AB的中点坐标为(1,−1),则E的方程为( )A. x245+y236=1 B. x236+y227=1 C. x227+y218=1 D. x218+y29=1【答案】D【解析】【分析】本题考查求椭圆的方程,考查直线与椭圆的位置关系,点差法的运用,考查学生的计算能力,属于中档题,设A(x1,y1),B(x2,y2),代入椭圆的方程,两式相减,根据线段AB的中点坐标为(1,−1),进而可得a,b的关系,根据右焦点为F(3,0),求出a,b的值,即可得出椭圆的方程.【解答】解:设A(x 1,y 1),B(x 2,y 2),代入椭圆方程得{x 12a 2+y 12b 2=1x 22a 2+y 22b2=1, 相减得x 12−x 22a 2+y 12−y 22b2=0, ∴x 1+x 2a 2+y 1−y 2x 1−x 2⋅y 1+y 2b2=0,∵x 1+x 2=2,y 1+y 2=−2,k AB =y 1−y2x 1−x 2=−1−01−3=12,∴2a 2+12×−2b2=0,化为a 2=2b 2,又c =3=√ a 2−b 2,解得a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.故选D .7.已知圆C:x 2+y 2=1,直线l:x +y +2=0,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B ,则直线AB 过定点 ( ) A. (−12,−12)B. (−1,−1)C. (−12,12)D. (12,−12)【答案】A 【解析】【分析】本题考查直线与圆的位置关系,涉及圆方程的综合应用,属于中档题.根据题意,设P 的坐标为(t,−2−t),由圆的切线性质可得PA ⊥AC ,PB ⊥BC ,则有点A 、B 在以PC 为直径的圆上,求出该圆的方程,与圆C 的方程联立可得直线AB 的方程,将其变形分析可得答案. 【解答】解:根据题意,P 为直线l :x +y +2=0上的动点,设P 的坐标为(t,−2−t), 过点P 作圆C 的两条切线,切点分别为A ,B ,则PA ⊥AC ,PB ⊥BC , 则点A 、B 在以PC 为直径的圆上,又由C(0,0),P(t,−2−t),则以PC 为直径的圆的方程为x(x −t)+y(y +2+t)=0, 变形可得:x 2+y 2−tx +(t +2)y =0,则有{x 2+y 2=1x 2+y 2−tx +(t +2)y =0,联立可得:1−tx +(t +2)y =0,变形可得:1+2y −t(x −y)=0, 即直线AB 的方程为1+2y −t(x −y)=0,则有{1+2y =0x −y =0,解可得{x =−12y =−12,故直线AB 过定点(−12,−12), 故选:A .8.已知F 1,F 2是椭圆与x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过左焦点F 1的直线与椭圆交于A ,B 两点,且满足|AF 1|=2|BF 1|,|AB|=|BF 2|,则该椭圆的离心率是( ) A. 12B. √ 33C. √ 32D. √ 53【答案】B 【解析】【分析】本题考查椭圆的简单性质的应用,考查数形结合以及转化思想的应用,属于中档题. 利用已知条件,画出图形,通过三角形的边长关系,结合余弦定理,求解椭圆的离心率即可. 【解答】解:作出图形,如下:由题意可得:|F 1B|+|BF 2|=2a ,|AB|=|BF 2|,可得|AF 1|=a ,|AF 2|=a ,|AB|=|BF 2|=32a ,|F 1F 2|=2c , 在△ABF 2中,由余弦定理得cos∠BAF 2=94a 2+a 2−94a 22×32a×a=13,在△AF 1F 2中,由余弦定理得cos∠BAF 2=a 2+a 2−4c 22×a×a =1−2(c a)2,所以13=1−2(ca )2,即e =c a =√ 33. 故选:B .二、多选题(本大题共4小题,共20.0分。
⾼中数学解析⼏何练习题解析⼏何练习题⼀选择题1.椭圆181622=+y x 的离⼼率为() A.31 B. 21 C. 33 D. 22 2.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为()A.12B.1C.2D.4 3.设抛物线的顶点在原点,准线⽅程为2x =-,则抛物线的⽅程是( ) A 28y x =- B 28y x = C 24y x =- D 24y x =4.双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r=( ) A 3 B 2 C 3 D65.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
若FB FA 2=,则k= A.31 B 32 C 32 D 322 6中⼼在原点,焦点在x 轴上的双曲线的⼀条渐近线经过点(4,2),则它的离⼼率为()7过点)0,1(且与直线022=--y x 平⾏的直线⽅程是()A 012=--y xB 012=+-y xC 022=-+y xD 012=-+y x8若圆⼼在x O 位于y 轴左侧,且与直线x+2y=0相切,则圆O 的⽅程是()A 22(5x y +=C 22(5)5x y -+=D 22(5)5x y ++=9若直线01-+-y x 与圆2)(22=+-y a x 有公共点,则实数a 取值范围是()A [-3 ,-1 ] B[ -1 , 3 ] C [ -3 ,1 ] D (- ∞ ,-3 ] U [1 ,+ ∞ )10若⼀个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离⼼率是A 45B 35C 25D 1511.若点O 和点F 分别为椭圆3422y x +的中⼼和左焦点,点P 为椭圆上点的任意⼀点,则?的最⼤值为A.2B.3C.6D.812已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ? 的最⼩值为()A 4-B 3-+C 4-+D 3-+13已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线⽅程为()A 1x =B 1x =-C 2x =14设圆C 与圆x 2+(y-3)2=1外切,与直线y =0相切,则C 的圆⼼轨迹为A .抛物线B .双曲线C .椭圆D .圆15已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB的中点到y 轴的距离为() A 34 B 1 C 54 D 7416已知椭圆22122:1x y C a b +=(a >b >0)与双曲线222:14y C x -=有公共的焦点C 2的⼀条渐近线与以C 1的长轴为直径的圆相交于,A B 两点.若C 1恰好将线段AB 三等分,则()A 2a =132B 2a =13C 2b =12D 2b =2 17.在平⾯直⾓坐标系xoy 中,直线0543=-+y x 与圆422=+y x 相交于A 、B 两点,则弦AB 的长等于A. B. D.118.椭圆)0(,12222>>=+b a by a x 的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
解析几何练习题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12- C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( )A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .2B .32C .12D .211.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( ) A .50x y --=B .50x y -+=C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值范围是( )A. 304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,,C. ⎡⎢⎣⎦ D. 203⎡⎤-⎢⎥⎣⎦, 二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是 。
高三数学单元测试—解析几何注意事项:1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟。
2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上。
考试结束,试题和答题卡一并收回。
3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。
第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。
1.已知椭圆的离心率为21,焦点是(-3,0),(3,0),则椭圆方程为 ( )A .1273622=+y x B .1273622=-y x C .1362722=+y x D .1362722=-y x 2.当a 为任意实数时,直线024)32(=+-++a y x a 恒过定点P ,则过点P 的抛物线的标 准方程是( )A .y x 322=或x y 212-= B .y x 322-=或x y 212=C .x y 322=或y x 212-=D .x y 322-=或y x 212=3.设双曲线x 2 –y 2=1的两条渐近线与直线围成的三角形区域(包含边界)为E,P(x,y) 为该区域内的一个动点,则目标函数y x z 23-=的取值范围为( )A .[22,0] B .[223,22] C .[225,22] D . [225,0] 4.短轴长为2,离心率e=3的双曲线两焦点为F 1,F 2,过F 1作直线交双曲线于A 、B 两点, 且|AB|=8,则△ABF 2的周长为 ( ) A .3 B .6 C .12 D .245.已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ ABF 2是正三角形,则这个椭圆的离心率是 ( )A .3B .3C .2D .26.如果AC <0,且BC <0,那么直线Ax+By+C=0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知抛物线mx 2=2(0)y nx n = <(0<m )与椭圆n y x 229+=1有一个相同的焦点,则动点),(n m 的轨 迹是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分D .直线的一部分 8.如图,在四棱锥P-ABCD 中,侧面PAD 为正三角形,底面为正方 形,侧面PAD 与底面ABCD 垂直,M 为底面内的一个动点,且满 足MP=MC ,则动点M 的轨迹为 ( ) A .椭圆 B .抛物线 C .双曲线 D .直线9.若直线mx- ny = 4与⊙O: x 2+y 2= 4没有交点,则过点P(m,n)的直线与椭圆22194x y +=的 交点个数是( )A .至多为1B .2C .1D .010.若双曲线22221(0,0)x y a b a b -=>>的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的渐近线方程是 ( )A .20x y ±=B .20x y ±=C .30x ±=D 30x y ±=11.过点P(x,y)的直线分别与x 轴和y 轴的正半轴交于A,B 两点,点Q 与点P 关于y 轴对称,O为坐标原点,若2BP PA =且OQ AB ⋅=1,则点P 的轨迹方程是 ( ) A .22331(0,0)2x y x y +=>> B .22331(0,0)2x y x y -=>>C .22331(0,0)2x y x y -=>> D .22331(0,0)2x y x y +=>> 12.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 ( ) A .4a B .2()a c - C .2()a c + D .以上答案均有可能第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。
解析几何复习题(圆、椭圆)姓名: 班级:1. 已知一个圆与y 轴相切,在直线y x =截得的弦长为1l :30x y -=上,求此圆的方程。
2. 求圆c :22(1)(2)5x y ++-=关于点(3,4)对称的圆的方程。
3. 若点00(,)M x y 在圆222x y r +=的内部,则直线200:l x x y y r +=与圆的位置关系怎样。
4. 点M 为22:(1)(2)4c x y -+-=的点,求M 到直线:210l x y -+=的最值。
5. 已知集合22{(,)|4,}M x y x y x o =+=≥,{(,)|}N x y y x b ==+且M N ⋂≠∅,求b 的取值范围。
6. 求经过点P (2,3)与圆224x y +=相切的切线的方程。
7. 已知221:9945140o x y x +-+=,222:993610o x y x +--=的交点为A 、B ,求AB 垂直平分线的方程。
8. 若(,)p x y 是圆22(3)(3)1x y -+-=上的动点,求y x,23x y +,22x y +的最值。
9. 椭圆2244x y +=上一点P 到其左焦点的距离为72,求P 到右准线的距离。
10.已知椭圆22:14x c y +=,求椭圆C 关于直线:30l x y --=成轴对称的椭圆'c 的方程。
11.已知一直线与椭圆224936x y +=相交于A 、B 两点,弦AB 的中点为M (1,1),求AB 的方程。
12.求椭圆221164x y +=上的点P 到直线:20l x y +=的距离的最大值及此时P 点的坐标。
13.椭圆2214924x y +=上有一点M ,与两焦点12F F 、满足12MF MF ⊥,求12MF F S △。
14.椭圆221259x y +=上一点M 到焦点1F 的距离为2,N 是1MF 的中点,O 是原点,求||ON 。
15.以椭圆的焦点弦为直径的圆与相应的准线的位置关系如何?16.若椭圆22149x y m +=+的一条准线为92y =-,求m 的值。
高二数学解析几何练习题及答案解析几何是高中数学的重要内容之一,是数学中的一个分支,它主要研究几何图形的性质及其相互之间的关系。
对于高二学生来说,解析几何练习题的掌握与理解是非常关键的。
下面将介绍一些高二数学解析几何的典型练习题及其答案,希望能够帮助到广大学生。
练习题一:已知点A(3,4),B(7,8),C(5,2),D(x,y)为AB的中点,求点D的坐标。
解答:若D为AB的中点,则有以下关系:x = (x1 + x2)/2y = (y1 + y2)/2带入坐标值可得:x = (3 + 7)/2 = 5y = (4 + 8)/2 = 6因此,点D的坐标为(5,6)。
练习题二:已知直线L过点A(2,3),B(5,7),求直线L的斜率和方程。
解答:直线的斜率可以通过两点间的坐标差来计算,即:斜率 k = (y2 - y1)/(x2 - x1)带入坐标值可得:k = (7 - 3)/(5 - 2) = 4/3直线经过点A(2,3),可以得到直线的方程为:y - y1 = k(x - x1)y - 3 = (4/3)(x - 2)3y - 9 = 4x - 84x - 3y = 1因此,直线L的斜率为4/3,方程为4x - 3y = 1。
练习题三:已知点A(3,4),B(7,8),C(5,2),判断三角形ABC是否为等腰三角形。
解答:要判断三角形ABC是否为等腰三角形,需要比较两边的长度是否相等。
我们可以利用两点间的距离公式来计算各边的长度。
已知点A(3,4),B(7,8),C(5,2),则有:AB的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(7 - 3)^2 + (8 - 4)^2] = √32AC的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(5 - 3)^2 + (2 - 4)^2] = √8BC的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(5 - 7)^2 + (2 - 8)^2] = √36因为√32≠√8≠√36,所以三角形ABC不是等腰三角形。
专题09平面解析几何真题汇编1.设A,B为椭圆的长轴顶点,E,F为的两个焦点,|ABl=4,,P为上一点,满足,则△PEF的面积为.【答案】1【解析】由题意知该椭圆可设为.由余弦定理,.所以.2.在平面直角坐标系xOy中,椭圆的左、右焦点分别是,椭圆C的弦ST与UV分别平行于x轴与y轴,且相交于点P.已知线段PU,PS,PV,PT的长分别为1,2,3,6,则的面积为【答案】【解析】由对称性,不妨设在第一象限,则由条件知.即P(2,1).进而由得U(2,2)),S(4,1),代入椭圆C的方程知,解得a2=20,b2=5.从而.3.在平面直角坐标系中,椭圆C的方程为,F、A分别为椭圆C的上焦点、右顶点.若P为椭圆C上位于第一象限内的动点,则四边形面积的最大值为___________。
【答案】【解析】易知,,设则其中,当时,四边形OAPF面积的最大值为.故答案为:4.在平面直角坐标系中,点集,在点集K中随机取出三个点,则这三点中存在两点之间距离为的概率为___________。
【答案】【解析】易知,点集K中有9个点,故在点集K中随机取出三个点的种数为。
将点集K中的点按图标记为其中有8对点之间的距离为。
由对称性,考虑取两点的情形.则剩下的一个点有7种取法,这样有个三点组(不计每组中三点的次序)。
对每个,点集中恰有两点与距离为,因而,恰有这8个三点组被计算了两次。
故满足条件的三点组个数为从而所求概率为.故答案为:5.已知双曲线C:,左、右焦点分别为F1、F2.过点F2作一直线与双曲线C的右半支交于点P、Q,使得.则的内切圆半径为________.【答案】【解析】如图所示.由双曲线的性质知:.由.从而,的内切圆半径为:.6.设椭圆的两个焦点为,过点的直线与椭圆交于点P、Q.若,且,则椭圆的短轴与长轴的比值为__________.【答案】【解析】不妨设.设椭圆的长轴、短轴的长度分别为,焦距为.则,且由椭圆的定义知.故.如图所示,设H为线段的中点.则,且.由勾股定理知:7.抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.【答案】1【解析】根据抛物线的定义可知,,故,在三角形中,根据余弦定理有,由于,所以,即,故.点睛:本题主要考查直线与抛物线的位置关系,考查基本不等式求最值的方法,考查化归与转化的数学思想方法.抛物线的定义是:动点到定点的距离等于到定直线的距离,这是在有关抛物线的小题中常考考知识点.本题中利用抛物线的定义,进行转化后,利用余弦定理和基本不等式来求解最值.8.直线与抛物线交于两点,为抛物线上的一点,.则点的坐标为______.【答案】【解析】设.由.则①又,则②因为,所以,.故.将方程组①、②代入上式并整理得.显然,.否则,.于是,点在直线上,即点重合.所以,.故所求点.故答案为:9.双曲线的右半支与直线围成的区域内部(不含边界)整点(横纵坐标均为整数的点)的个数是________. 【答案】9800 【解析】由对称性知,只需先考虑轴上方的情况. 设与双曲线右半支交于点,与直线交于点.则线段内部的整点的个数为.从而,在轴上方区域内部整点的个数为. 又轴上有98个整点,则所求整点的个数为.10.已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】[]36,【解析】设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得342d ≤. 解得36a ≤≤. 11.椭圆上任意两点,若,则乘积的最小值为 .【答案】【解析】 设,.由在椭圆上,有①②得.于是当时,达到最小值.12.在平面直角坐标系xOy中,圆与抛物线:y2=4x恰有一个公共点,且圆与x轴相切于的焦点F.求圆的半径.【答案】【解析】设圆的半径为R,圆心为(1,R)(-1,R),则圆的方程可写作.不妨设圆与抛物线相切于点,则过该切点的切线方程:以圆为对象,得以抛物线为对象,得.于是可得①②又切点在抛物线y2=4x上,③由①得,由②得.解得:.故圆半径为.13.如图,在锐角△ABC中,M是BC边的中点.点P在△A BC内,使得AP平分∠BAC.直线MP与△ABP,△ACP的外接圆分别相交于不同于点P的两点D,E.证明:若DE=MP,则BC=2BP.【答案】证明见解析【解析】如图:只要证明两小黄全等△DBP,△EMC。
2.6.2 圆与圆的位置关系A级必备知识基础练1.(2022甘肃庆阳宁县期末)已知圆C1:x2+y2=1和C2:x2+y2-5x+4=0,则两圆的位置关系是( )A.内切B.相交C.外切D.相离2.若圆C1:(x+1)2+y2=2与圆C2:x2+y2-4x+6y+m=0内切,则实数m=( )A.-8B.-19C.-5D.63.圆心在直线x-y-4=0上,且经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点的圆的方程为( )A.x2+y2-x+7y-32=0B.x2+y2-x+7y-16=0C.x2+y2-4x+4y+9=0D.x2+y2-4x+4y-8=04.(2022四川广安高二期末)设圆C1:(x-1)2+(y-1)2=9和圆C2:(x+2)2+(y+1)2=4交于A,B两点,则线段AB的垂直平分线所在直线的方程为( )A.3x-2y-1=0B.2x-3y+1=0C.2x+3y-1=0D.3x+2y+4=05.若圆C:x2+(y-4)2=18与圆D:(x-1)2+(y-1)2=R2的公共弦长为6,则圆D的半径为( )A.5B.2C.2D.26.(多选题)已知圆C:x2-2ax+y2+a2-1=0与圆D:x2+y2=4有且仅有两条公共切线,则实数a的取值可以是( )A.-3B.3C.2D.-27.已知圆(x-a)2+y2=4与圆x2+y2=25没有公共点,则正数a的取值范围为 .B级关键能力提升练8.(2022安徽宣城高二期末)已知圆A:x2+y2-2x-4y-4=0,圆B:x2+y2+2x+2y-2=0,则两圆的公切线的条数是( )A.1条B.2条C.3条D.4条9.(2022广西北海高二期末)已知半径为2的圆M与圆x2+y2=5外切于点P(1,2),则点M的坐标为( )A.(-6,3)B.(3,6)C.(-3,-6)D.(6,3)10.若直线l与圆C1:(x+1)2+y2=1,圆C2:(x-1)2+y2=4都相切,切点分别为A,B,则|AB|=( )A.1B.C. D.211.(2022江苏常州三中等六校高二联考)已知圆O1:x2+y2-2x-3=0与圆O2:x2+y2-4x+2y+3=0相交于点A,B,则四边形AO1BO2的面积是( )A.1B.2C.3D.412.(多选题)(2022山东泰安宁阳高二期末)点P在圆C1:x2+y2=1上,点Q在圆C2:x2+y2-6x+8y+24=0上,则( )A.|PQ|的最小值为0B.|PQ|的最大值为7C.两个圆心所在的直线斜率为-D.两个圆相交弦所在直线的方程为6x-8y-25=013.(多选题)已知圆O:x2+y2=4和圆M:x2+y2+4x-2y+4=0相交于A,B两点,则( )A.直线AB的方程为y=2x+2B.两圆有两条公切线C.线段AB的长为D.圆O上点E,圆M上点F,则|EF|的最大值为+314.(2022河北张家口高二期中)若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20(m>0)相交于A,B两点,且两圆在点A处的切线互相垂直,则AB的直线方程为 .15.(2022吉林长春二十九中等校期末)已知圆C1:x2+y2+2x=0,圆C2:x2+y2-2x-2y-2=0,点C1,C2分别为两圆的圆心.(1)求圆C1和圆C2的公共弦长;(2)过点C1的直线l交圆C2于A,B两点,且AB=,求直线l的方程.C级学科素养创新练16.在平面直角坐标系中,已知点A(2,0),B(0,2),圆C:(x-a)2+y2=1,若圆C上存在点M,使得|MA| 2+|MB|2=12,则实数a的取值范围为( )A.[1,1+2]B.[1-2,1+2]C.[1,1+2]D.[1-,1+]17.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别为圆C1,C2上的点,P为x轴上的动点,求|PM|+|PN|的最小值.参考答案2.6.2 圆与圆的位置关系1.C 根据题意,圆C1:x2+y2=1,其圆心为C1(0,0),半径为r=1,C2:x2+y2-5x+4=0,整理得+y2=,其圆心为C2,半径为R=,两圆的圆心距为|C1C2|=.又R+r=,故两圆外切.故选C.2.B 由题意得C1(-1,0),C2(2,-3),r1=,r2=,则|C1C2|==3.根据两圆内切得|C1C2|==3,解得m=-19.故选B.3.A 设所求圆的方程为(x2+y2+6x-4)+λ(x2+y2+6y-28)=0,变形可得(1+λ)x2+(1+λ)y2+6x+6λy-4-28λ=0,其圆心的坐标为.又由圆心在直线x-y-4=0上,则有-4=0,解得λ=-7.则圆的方程为(-6)x2+(-6)y2+6x-42y+192=0,即x2+y2-x+7y-32=0.故选A.4.B 由题得,圆心C1的坐标为(1,1),圆心C2的坐标为(-2,-1),两圆相交于A,B两点,则线段AB的垂直平分线所在直线就是直线C1C2.因为C1(1,1),C2(-2,-1),所以其斜率k=.则直线C1C2的方程为y-1=(x-1),即2x-3y+1=0.故选B.5.D 由圆C:x2+(y-4)2=18与圆D:(x-1)2+(y-1)2=R2,可得两圆公共弦所在直线的方程为2x-6y=4-R2.又由圆C的方程为x2+(y-4)2=18,其圆心的坐标为(0,4),半径r=3,两圆的公共弦长为6,则点C(0,4)在直线2x-6y=4-R2上,则有2×0-6×4=4-R2,解得R2=28,则圆D的半径为2.故选D.6.CD 根据题意,圆C:x2-2ax+y2+a2-1=0,即(x-a)2+y2=1,其圆心为(a,0),半径为R=1,圆D:x2+y2=4,其圆心的坐标为D(0,0),半径为r=2.若两个圆有且仅有两条公共切线,则两圆相交,则有2-1<|a|<2+1,即1<|a|<3,解得-3<a<-1或1<a<3,结合选项可知符合条件的是2,-2,故选CD.7.(0,3)∪(7,+∞) 根据题意,圆(x-a)2+y2=4的圆心的坐标为(a,0),半径为R=2,圆x2+y2=25圆心的坐标为(0,0),半径r=5,则两圆的圆心距d=|a|=a.若两个圆没有公共点,则有a>R+r=7或a<R-r=3,即正数a的取值范围为(0,3)∪(7,+∞).8.B 根据题意,圆A:x2+y2-2x-4y-4=0,即(x-1)2+(y-2)2=9,其圆心A(1,2),半径R=3,圆B:x2+y2+2x+2y-2=0,即(x+1)2+(y+1)2=4,其圆心B(-1,-1),半径r=2,则圆心距|AB|=.因为3-2<<3+2,则两圆相交,故两圆有2条公切线.故选B.9.B 设圆M的圆心坐标为M(a,b).因为圆x2+y2=5的圆心为O(0,0),半径r=.由圆M与圆x2+y2=5外切于点P(1,2),得M,P,O三点共线,且|OM|=3,即解得(不合题意,舍去)所以点M的坐标为(3,6).故选B.10.C 如图所示,设直线l交x轴于点M.由于直线l与圆C1:(x+1)2+y2=1,圆C2:(x-1)2+y2=4都相切,切点分别为A,B,则AC1⊥l,BC2⊥l,∴AC1∥BC2.∵|BC2|=2=2|AC1|,由中位线定理得C1为线段MC2的中点,则A为线段BM的中点,∴|MC1|=|C1C2|=2.由勾股定理可得|AB|=|MA|=.故选C.11.B 由题得,O1(1,0),O2(2,-1),所以|O1O2|=,圆O1的半径为2.圆O1:x2+y2-2x-3=0与圆O2:x2+y2-4x+2y+3=0相交于点A,B,直线AB的方程为2x-2y-6=0,整理得x-y-3=0.点O1到直线AB的距离为,则|AB|=2=2.因为O1O2⊥AB,所以四边形AO1BO2的面积为|AB||O1O2|=×2=2.故选B.12.BC 根据题意,圆C1:x2+y2=1,其圆心的坐标为C1(0,0),半径R=1.圆C2:x2+y2-6x+8y+24=0,即(x-3)2+(y+4)2=1,其圆心的坐标为C2(3,-4),半径r=1,则两圆的圆心距为|C1C2|==5,即圆C1与圆C2外离,则|PO|的最小值为|C1C2|-R-r=3,最大值为|C1C2| +R+r=7,故A错误,B正确;圆心C1(0,0),圆心C2(3,-4),则两个圆心所在的直线斜率k==-,故C正确;两圆圆心距|C1C2|=5,有|C1C2|>R+r=2,两圆外离,不存在公共弦,D错误.故选BC.13.BD 圆O:x2+y2=4和圆M:x2+y2+4x-2y+4=0作差得4x-2y+4=-4,整理得y=2x+4,即直线AB的方程为y=2x+4,故A错误;因为两圆相交于A,B两点,则两圆有两条公切线,故B正确;圆O:x2+y2=4的圆心O(0,0),半径为2,则圆心O到直线AB的距离d=,故AB=2,故C错误;圆M:x2+y2+4x-2y+4=0的圆心为M(-2,1),半径为1,|OM|=,则|EF|的最大值为|MO|+1+2=+3,故D正确.故选BD.14.x=-1 根据题意,圆O1:x2+y2=5,其圆心O1(0,0),半径r=,圆O2:(x+m)2+y2=20,其圆心O2(-m,0),半径R=2.若两圆在交点A处的切线互相垂直,则O1A⊥O2A,则有|O1O2|2=R2+r2,即m2=5+20=25,则m=5.故圆O2的方程为(x+5)2+y2=20,即x2+y2+10x+5=0.联立得方程组①-②,得-10x-10=0,整理得x+1=0,即x=-1,故公共弦AB所在的直线方程为x=-1.15.解(1)由题知,圆C1:x2+y2+2x=0,圆C2:x2+y2-2x-2y-2=0,两式相减可得公共弦所在的直线为2x+y+1=0.圆C1的圆心为(-1,0),半径为1,则圆心到直线的距离d=,故圆C1和圆C2的公共弦长=2.(2)圆C2的圆心为(1,1),半径为2,圆心到直线l的距离为.设直线l的方程为y=k(x+1),即kx-y+k=0,则,解得k=1或.故直线l的方程为y=x+1或y=(x+1).16.B 设M(x,y),∵|MA|2+|MB|2=12,∴(x-2)2+y2+x2+(y-2)2=12,∴(x-1)2+(y-1)2=4.∵圆C上存在点M,满足|MA|2+|MB|2=12,∴两圆相交或相切.∴1≤≤3,∴1-2≤a≤1+2.故选B.17.解由圆C1:(x-2)2+(y-3)2=1知圆C1的圆心坐标为(2,3),半径为1,由圆C2:(x-3)2+(y-4)2=9,知圆C2的圆心坐标为(3,4),半径为3.如图所示,设点C1关于x轴的对称点为C3,则C3(2,-3),且|PM| +|PN|≥|PC1|-1+|PC2|-3=|PC3|-1+|PC2|-3≥|C2C3|-4.而|C2C3|==5,所以|PM|+|PN|≥5-4,即|PM|+|PN|的最小值为5-4.。
高中数学平面解析几何练习题(含解析)一、单选题1.若曲线C :2224100x y ax ay a ++--=表示圆,则实数a 的取值范围为( ) A .()2,0- B .()(),20,-∞-⋃+∞ C .[]2,0-D .(][),20,-∞-+∞2.过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x =B .24y x =-C .212=-x yD .212x y =3.过 ()()1320A B --,,,两点的直线的倾斜角是( )A .45︒B .60︒C .120D .1354.已知()3,3,3A ,()6,6,6B ,O 为原点,则OA 与BO 的夹角是( ) A .0B .πC .π2D .2π35.已知抛物线2:4C y x =与圆22:(1)4E x y -+=交于A ,B 两点,则||AB =( )A .2B .C .4D .6.已知抛物线2x my =焦点的坐标为(0,1)F ,P 为抛物线上的任意一点,(2,2)B ,则||||PB PF +的最小值为( )A .3B .4C .5D .1127.动点P ,Q 分别在抛物线24x y =和圆228130+-+=x y y 上,则||PQ 的最小值为( )A .B C D 8.直线2360x y +-=关于点(1,1)对称的直线方程为( ) A .3220x y -+= B .2370x y ++= C .32120x y --=D .2340x y +-=9.已知椭圆2222:1()0x c bb y a a +>>=的上顶点为A ,左、右焦点分别为12,F F ,连接2AF 并延长交椭圆C 于另一点B ,若12:7:3F B F B =,则椭圆C 的离心率为( )A .14B .13C .12D 10.“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题11.直线2310x y -+=与5100x y +-=的夹角为________.12.已知圆:C 2220x y x ++=,若直线y kx =被圆C 截得的弦长为1,则k =_______. 13.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________. 14.写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程___________.三、解答题15.已知△ABC 底边两端点(0,6)B 、(0,6)C -,若这个三角形另外两边所在直线的斜率之积为49-,求点A 的轨迹方程.16.已知1F 、2F 是椭圆()2222:10x yC a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F △的面积为9,求实数b 的值.17.已知圆C :22120x y Dx Ey +++-=关于直线x +2y -4=0对称,且圆心在y 轴上,求圆C 的标准方程.18.已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ λ⋅+⋅为定值?若存在,求出λ的值;若不存在,说明理由.参考答案:1.B【分析】根据圆的一般式变形为标准式,进而可得参数范围. 【详解】由2224100x y ax ay a ++--=, 得()()2222510x a y a a a ++-=+, 由该曲线表示圆, 可知25100a a +>, 解得0a >或2a <-, 故选:B. 2.C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C 3.D【分析】根据两点坐标求出直线的斜率,结合直线倾斜角的范围即可得出结果. 【详解】由已知直线的斜率为 ()03tan 1018021k αα--===-≤<--,,所以倾斜角135α=. 故选:D. 4.B【分析】求出OA 和BO ,利用向量关系即可求出.【详解】因为()3,3,3A ,()6,6,6B ,则()3,3,3OA =,()6,6,6BO =---, 则3cos ,1OA BO OA BO OA BO⨯⋅<>===-⋅,所以OA 与BO 的夹角是π. 故选:B. 5.C【分析】先联立抛物线与圆求出A ,B 横坐标,再代入抛物线求出纵坐标即可求解.【详解】由对称性易得A ,B 横坐标相等且大于0,联立()222414y xx y ⎧=⎪⎨-+=⎪⎩得2230x x +-=,解得123,1x x =-=,则1A B x x ==,将1x =代入24y x =可得2y =±,则||4AB =. 故选:C. 6.A【分析】先根据焦点坐标求出m ,结合抛物线的定义可求答案. 【详解】因为抛物线2x my =焦点的坐标为()0,1,所以14m=,解得4m =. 记抛物线的准线为l ,作PN l ⊥于N ,作BAl 于A ,则由抛物线的定义得||||||||||3PB PF PB PN BA +=+=,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A. 7.B【分析】设2001,4P x x ⎛⎫⎪⎝⎭,根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设2001,4P x x ⎛⎫⎪⎝⎭,圆化简为22(4)3x y +-=,即圆心为(0,4)所以点P 到圆心的距离d = 令20t x =,则0t ≥, 令21()1616f t t t =-+,0t ≥,为开口向上,对称轴为8t =的抛物线, 所以()f t 的最小值为()812f =,所以min d所以||PQ的最小值为min d =故选:B 8.D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,以(2,2)x y --代换原直线方程中的(,)x y 得()()223260x y -+--=,即2340x y +-=.故选:D. 9.C【分析】根据椭圆的定义求得12,F B F B ,在1ABF 中,利用余弦定理求得22cos F AF ∠,在12AF F △中,再次利用余弦定理即可得解.【详解】解:由题意可得122F B F B a +=, 因为12:7:3F B F B =, 所以1273,55F B a F B a ==, 因为A 为椭圆的上顶点,所以12AF AF a ==,则85AB a =,在1ABF 中,22222211221644912525cos 82225a a a AF AB BF F AF AF ABa a +-+-∠===⨯⨯,在12AF F △中,122212121222cos F F AF AF A F A F A F F =+∠-, 即222224c a a a a =+-=,所以12c a =,即椭圆C 的离心率为12. 故选:C.10.A【分析】根据给定直线方程求出12l l ⊥的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】依题意,12(4)(2)0l l m m m m ⊥⇔-++=,解得0m =或1m =,所以“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的充分不必要条件. 故选:A 11.4π##45︒ 【分析】根据直线方程可得各直线斜率,进而可得倾斜角之间的关系,从而得夹角. 【详解】直线2310x y -+=的斜率123k ,即倾斜角α满足2tan 3α=, 直线5100x y +-=的斜率215k =-,即倾斜角β满足1tan 5β=-,所以()12tan tan 53tan 1121tan tan 153βαβαβα----===-+⎛⎫+-⨯ ⎪⎝⎭, 所以34βαπ-=,又两直线夹角的范围为0,2π⎡⎤⎢⎥⎣⎦,所以两直线夹角为4π,故答案为:4π. 12.【分析】将圆C 一般方程化为标准方程,先求圆心到直线的距离,再由圆的弦长公式即可解出k 的值.【详解】解:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1;圆心()1,0-到直线y kx =,由弦长为1可得1=,解得k =故答案为:13.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心) 设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒===22(2)(3)13x y -+-=; (2)若圆过A B D 、、三点, 设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过 A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程 为25y x =-+,联立得47,33x y r ==⇒,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =, 线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=. 故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.14.1y =或247250x y ++=或4350x y --=【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123,,l l l , 易得切线1l 的方程为1y =,因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=,可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上, 在1l 上任取一点()0,1,设其关于OC 的对称点为()00,x y , 则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=, 综上,切线方程为1y =或247250x y ++=或4350x y --=. 故答案为:1y =或247250x y ++=或4350x y --=.15.()22108136x y x +=≠【分析】设(,)A x y ,利用斜率的两点式列方程并整理可得轨迹方程,注意0x ≠. 【详解】设(,)A x y 且0x ≠,则22663649AB ACy y y k k x x x -+-=⋅==-, 整理得:A 的轨迹方程()22108136x y x +=≠. 16.3b =【分析】由题意以及椭圆的几何性质列方程即可求解. 【详解】因为12PF PF ⊥,所以1290F PF ∠=︒, 所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=, ()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅, 1212192F PF S PF PF =⋅=△, 所以2244490c a =-⨯=,所以2449b =⨯.所以3b =; 综上,b =3.17.22(2)16x y +-=. 【分析】由题设知圆心(,)22D EC --,且在已知直线和y 轴上,列方程求参数D 、E ,写出一般方程,进而可得其标准方程. 【详解】由题意知:圆心(,)22D EC --在直线x +2y -4=0上,即-2D -E -4=0. 又圆心C 在y 轴上,所以-2D=0. 由以上两式得:D =0, E =-4,则224120x y y +--=, 故圆C 的标准方程为22(2)16x y +-=.18.(1)2211222x y ⎛⎫+-= ⎪⎝⎭ (2)存在,1λ=【分析】(1)①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,利用点差法求解; ②当直线l 不存在斜率时,易知()0,0M ,验证即可;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,与椭圆方程联立,结合韦达定理,利用数量积运算求解; ②当直线l 不存在斜率时,直线l 的方程为:0x =,易得(P、(0,Q ,验证即可.【详解】(1)解:①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,则应用点差法:22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式联立作差得:12121212()()()()042x x x x y y y y -+-++=, ∴()()()()121200121212121212002122PQ PQ PQ OM y y y y y y y y y y k k k k x x x x x x x x x x -+-+=⋅=⋅=⋅=⋅=--+-+, 又∵001PQ MA y k k x -==, ∴0000112y y x x -⋅=-,化简得22000220x y y +-=(00x ≠), ②当直线l 不存在斜率时,()0,0M ,综上,无论直线是否有斜率,M 的轨迹方程为2211222x y ⎛⎫+-= ⎪⎝⎭;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,联立221142y kx x y =+⎧⎪⎨+=⎪⎩并化简得:22(21)420k x kx ++-=,∴0∆>恒成立,∴122421k x x k +=-+,122221x x k ⋅=-+,又AP ()11,x k x =⋅,AQ ()22,x k x =⋅,OP ()11,1x k x =⋅+,OQ ()22,1x k x =⋅+,∴AP AQ OP OQ λ⋅+⋅()()()22121212111k x x k x x k x x λ=+⋅⋅++⋅⋅+++,()()()222222211222141212121k k k k k k λλλ-+++++=-+=-+++, 若使AP AQ OP OQ λ⋅+⋅为定值, 只需()222121λλ++=,即1λ=,其定值为3-, ②当直线l 不存在斜率时,直线l 的方程为:0x =,则有(P、(0,Q , 又AP ()1=,AQ ()0,1=,OP (=,OQ (0,=, ∴2λλ⋅+⋅=--AP AQ OP OQ ,当1λ=时,AP AQ OP OQ λ⋅+⋅也为定值3-, 综上,无论直线是否有斜率,一定存在一个常数1λ=, 使AP AQ OP OQ λ⋅+⋅为定值3-.。
高三数学解析几何与向量练习题及答案解析几何与向量是高中数学中的重要内容。
通过解析几何与向量的学习,我们可以更加深入地理解几何图形的性质和运动规律,同时也可以应用向量的知识解决实际问题。
为了帮助高三学生巩固解析几何与向量的知识,以下是一些练习题及其答案供大家参考。
练习题1:已知平面α:2x - 3y + z - 4 = 0,点A(1, -2, 3)和点B(4, 1, 2)。
求点A关于平面α的对称点A'的坐标。
解析:首先,我们知道一个点关于平面的对称点,其坐标的x、y、z均不变,只是取相反数。
所以对于点A(x, y, z),其关于平面α的对称点A'的坐标为A'(-x, -y, -z)。
所以,点A关于平面α的对称点A'的坐标为A'(-1, 2, -3)。
练习题2:已知直线l过点A(1, -2, 3)和点B(4, 1, 2),平面α经过点C(3, 5, 6)且垂直于直线l。
求平面α的方程。
解析:首先,我们知道平面α垂直于直线l,所以平面α的法向量与直线l 的方向向量垂直。
直线l的方向向量可以通过点A和点B的坐标差求得:l的方向向量d = (4-1, 1-(-2), 2-3) = (3, 3, -1)。
由于平面α过点C(3, 5, 6),所以平面α上任意一点P(x, y, z)到点C(3, 5, 6)的向量PC与平面α的法向量垂直,即它们的点积为0。
根据点积的定义,可以得到平面α的方程为:(3, 3, -1)·(x-3, y-5, z-6) = 0。
化简得:3(x-3) + 3(y-5) - 1(z-6) = 0。
展开得:3x - 9 + 3y - 15 - z + 6 = 0。
合并同类项得:3x + 3y - z - 18 = 0。
所以,平面α的方程为:3x + 3y - z - 18 = 0。
练习题3:已知向量a = 2i + 3j + k,向量b = i + 2j - 2k,向量c = -3i + j + 4k。
【高中数学竞赛真题·强基计划真题考前适应性训练】专题07解析几何真题专项训练(全国竞赛+强基计划专用〉一、单选题1. (2020·北京高三强基计划〉从圆~切J羔间的线段称为切J羔弦,贝0椭困C内不与任何切点弦相交的区域丽积为(〉-zA B.!!.3c.主4 D.前三个答案都2不对2. (2022·北京·高三校考强基计划〉内接于椭圆王→L=1的菱形周长的最大值和最小4 9值之利是(〉A. 4..{JjB.14.J]3c孚♂D上述三个选项都不对3. (2020湖北武汉·高三统考强基计划〉己知直线11:y=-..!.x,乌:y=..!.x ,动点户在椭2圆ι4= l(a > b > 0)上,作PM Ill,交12于点M,作PN I I以忏点N若。
--IPMl2 +IPN l2为定值,则(〉A.ab=2B.ab=3C.a=2bD.a=3b4. (2020北京·高三强基计划〉设直线y=3x+m与椭圆三+丘=I交于A,B两点,0为25 16坐标原点,贝I],.OAB面积的最大值为(〉A.88.JO c.12 D.前三个答案都不对s. (2022·贵州·高二统考竞赛〉如圈,c,,c2是离心率都为e的椭圆,点A,B是分别是C2的右顶点和上顶点,过A,B两点分别作c,�]切线,,' 12 .若直线l,,儿的斜率分别芳、J k, , k2,则lk儿|的值为(〉A .e 2 B.e 2 -1C.I-e2D.-i e 6. (2020湖北武汉·高三统考强基计划〉过椭圆!....+L =I 的中心作两条互相垂直的弦4 9A C 和B D ,顺次连接A ,B,C,D 得-四边形,则该四边形的丽积可能为(A. 10B. 12c. 14D. 167.(2019贵州高三校联考竞赛〉设椭圆C:牛牛!(a>b>O)的左、右焦点分别为。
解析几何练习题一选择题 1.椭圆181622=+y x 的离心率为( ) A.31 B. 2
1 C. 33 D. 2
2 2.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )
A.
12
B.1
C.2
D.4 3.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是( ) A 28y x =- B 28y x = C 24y x =- D 24y x =
4.双曲线13
62
2=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r=( ) A 3 B 2 C 3 D6
5.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
若
FB FA 2=,则k=
A.31 B 32 C 3
2 D 322 6中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的 离心率为( )
A 6
B 5
C 62
D 52
7过点)0,1(且与直线022=--y x 平行的直线方程是( )
A 012=--y x
B 012=+-y x
C 022=-+y x
D 012=-+y x
8若圆心在x 5O 位于y 轴左侧,且与直线x+2y=0相切,则圆O 的方程是( )
A 22(5)5x y +=
B 22(5)5x y ++=
C 22(5)5x y -+=
D 22
(5)5x y ++=
9若直线01-+-y x 与圆2)(22=+-y a x 有公共点,则实数a 取值范围是( )
A [-3 ,-1 ] B[ -1 , 3 ] C [ -3 ,1 ] D (- ∞ ,-3 ] U [1 ,+ ∞ )
10若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是
A 45
B 35
C 25
D 15
11.若点O 和点F 分别为椭圆3
42
2y x +的中心和左焦点,点P 为椭圆上点的任意一点,则FP OP ⋅的最大值为
A.2
B.3
C.6
D.8
12已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB • 的最小值为( )
A 4-
B 3-+
C 4-+
D 3-+13已知抛物线2
2(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )
A 1x =
B 1x =-
C 2x =
D 2x =-
14设圆C 与圆x 2+(y-3)2=1外切,与直线y =0相切,则C 的圆心轨迹为
A .抛物线
B .双曲线
C .椭圆
D .圆
15已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB
的中点到y 轴的距离为( ) A 34 B 1 C 54 D 74
16已知椭圆22122:1x y C a b +=(a >b >0)与双曲线2
22:14
y C x -=有公共的焦点C 2的一条渐近线与以C 1的长轴为直径的圆相交于,A B 两点.若C 1恰好将线段AB 三等分,则( )
A 2a =132
B 2a =13
C 2b =12
D 2b =2 17.在平面直角坐标系xoy 中,直线0543=-+y x 与圆422=+y x 相交于A 、B 两点,则
弦AB 的长等于
A. B. D.1
18.椭圆)0(,122
22>>=+b a b
y a x 的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
若B F F F AF 1211,,|成等比数列,则此椭圆的离心率为( )
A. B. C. D.
19若直线与曲线=3 ,有公共点,则b 的取值范围是
A B C D
20设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-,那么=( )
A4 B 8 C D 16
21设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条近线垂直,那么此双曲线的离心率为( )
A B C D
22设O 为坐标原点,F 1,F 2是双曲线-=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1P F 2=60°,=a ,则该双曲线的渐近线方程为
A x ±y =0
B x ± y = 0
C x ± y =0
D x ± y =0
23已知直线过抛物线C 的焦点,且与C 的对称轴垂直,与C 交于A ,B 两点,为C 的准线上一点,则的面积为( )
A. B. C. D.
24设为抛物线上一点,F 为抛物线C 的焦点,以F 为圆心、为半径的圆和抛物线C 的准线相交,则的取值范围是( )
A. B. C. D.
25已知双曲线的左顶点与抛物线的焦点的距离为且双曲线的一条渐近线与抛物线的准线的交点坐标为,则双曲线的焦距为()
A. B. C. D.
26.已知F 1、F 2是椭圆的两个焦点,过点F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若ΔABF 2是正三角形,则椭圆的离心率为( )
A. B. C. D.
27椭圆的两个焦点是F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则│P F 2│等于( )
A. B. C. D.4
28.抛物线y=4 x 上一点M 到焦点的距离为1,则点M 纵坐标为( )
A. B. C. D.0
29.已知F 是抛物线=x 的焦点,A ,B 是该抛物线上的两点,│AF │+│BF │=3,则线段AB 的中点互y 轴的距离为( )
A. B.1 C. D.
二填空题
30.若双曲线的离心率e=2,则m= ;
31已知抛物线,若斜率为的直线经过抛物线C 的焦点,且与圆相切,则 ; 32已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为 ;
渐近线方程为。
33已知双曲线的一条渐近线方程是,它的一个焦点与抛物线的焦点相同。
则双曲线的方程为。
34已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为___________.35圆心在原点上与直线相切的圆的方程为__________.
36.在平面直角坐标系中,已知ΔABC顶点A(-4,0),C(4,0)顶点B在椭圆=1上,则= ;
37.过双曲线的左焦点F1的直线交双曲线的左支于M,N两点,F2为其右焦点,则│M F2│+
│NF2│-│M N│= ;
三解答题
38已知抛物线C的方程C:y 2 =2 p x(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在平行于OA(O为坐标原点)的直线l使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由。
39椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率为.
(1)求椭圆E的方程;(2)求∠F1AF2的角平分线所在直线的方程.
40已知椭圆C的左、右焦点坐标分别是,,离心率是,直线与椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P。
(1)求椭圆C的方程;(2)若圆P与x轴相切,求圆心P的坐标;
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值。
41已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;(2)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-,0). (i)若,求直线l的倾斜角;
(ii)若点Q在线段AB的垂直平分线上,且.求的值.
42设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。
(Ⅰ)求(Ⅱ)若直线的斜率为1,求b的值。
43设椭圆C: 过点(0,4),离心率为
(1)求C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标44在平面直角坐标系xOy中,曲线与坐标轴的交点都在圆C上.
(I)求圆C的方程;
(II)若圆C与直线交于A,B两点,且求的值.
45椭圆的左,右焦点分别为F1,F2,点满足
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆相交于M,N两点,且,求椭圆的方程。
46在平面直角坐标系xoy中,已知椭圆C1:的左焦点为F1(-1,0),且点P(0,1)在C1上。
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程。
47已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率。
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆和上,,求直线的方程。
48已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1, (1)求曲线的C方程:
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个焦点A、B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由。
49设F1,F2分别为椭圆C:=1(a>b>0)的左右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2.。