新人教版九年级数学下册 反比例函数 自测试题
- 格式:doc
- 大小:160.73 KB
- 文档页数:10
2022-2023学年人教版九年级数学下册《26.1反比例函数》自主达标测试题(附答案)一.选择题(共9小题,满分36分)1.下列函数中,y是x的反比例函数的有()个.①;②;③xy=﹣1;④y=3x;⑤;⑥.A.2B.3C.4D.52.若ab<0,正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.3.已知反比例函数,下列结论中不正确的是()A.其图象经过点(2,1)B.其图象分别位于第一、第三象限C.当x>0时,y随x的增大而减小D.当x>1时,y>24.已知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<1B.1<y<2C.2<y<6D.y>65.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C 为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3B.﹣3C.6D.﹣66.如图,点A(m,1),B(2,n)在双曲线y=(k≠0)上,连接OA,OB.若S△ABO =8,则k的值是()A.﹣12B.﹣8C.﹣6D.﹣47.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC 的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6B.10C.2D.28.一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.x<﹣2或x>1B.x<﹣2或0<x<1C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>29.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=经过另一条直角边AC的中点D,S△AOC=3,则k=()A.2B.4C.6D.3二.填空题(共7小题,满分28分)10.已知y=(a﹣1)是反比例函数,则a=.11.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为.12.在平面直角坐标系xOy中,若反比例函数y=的图象位第二、四象限,则k的取值范围是.13.已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.14.已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值.15.如图,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为.16.如图,直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是.三.解答题(共6小题,满分56分)17.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.18.在平面直角坐标系中,反比例函数y=(x>0,k>0)的图象经过点A(m,n),B(2,1),且n>1,过点B作y轴的垂线,垂足为C,若△ABC的面积为2,求点A的坐标.19.如图,在△ABC中,AC=BC=5,AB=8,AB⊥x轴,垂足为A,反比例函数y=(x >0)的图象经过点C,交AB于点D.(1)若OA=AB,求k的值;(2)若BC=BD,连接OC,求△OAC的面积.20.如图,A、B两点在反比例函数y=(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1(1)若k=2,则AO的长为,△BOD的面积为;(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.21.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.22.如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为.参考答案一.选择题(共9小题,满分36分)1.解:①,符合反比例函数的定义,是反比例函数;②,符合反比例函数的定义,是反比例函数;③xy=﹣1,符合反比例函数的定义,是反比例函数;④y=3x,不符合反比例函数的定义,不是反比例函数;⑤,不符合反比例函数的定义,不是反比例函数;⑥,不符合反比例函数的定义,不是反比例函数.故选:B.2.解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.3.解:A、把x=2代入得y=1,则图象经过点(2,1),所以A选项的说法正确,不合题意;B、由于k=2>0,则函数图象过一、三象限,所以B选项的说法正确,不合题意;C、∵k=2>0,∴在每个象限内,y随x的增大而减小,所以C选项的说法正确,不合题意;D、∵x=1时,y=2,且当x>0时y随x的增大而减小∴当x>1时,0<y<2,所以D选项的说法错误,符合题意,故选:D.4.解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=3时,y=2,∴当1<x<3时,2<y<6.故选:C.5.解:连接OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣6.故选:D.6.解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,故选:C.7.解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24或﹣24(舍去),∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.8.解:由图象可知,当y1>y2,x的取值范围为x<﹣2或0<x<1.故选:B.9.解:∵直角边AC的中点是D,S△AOC=3,∴S△CDO=S△AOC=,∵反比例函数y=经过另一条直角边AC的中点D,CD⊥x轴,∴k=2S△CDO=3,故选:D.二.填空题(共7小题,满分28分)10.解:根据题意,a2﹣2=﹣1,a=±1,又a≠1,所以a=﹣1.故答案为:﹣1.11.解:读图可知:三个反比例函数y=的图象在第二象限;故k1<0;y=,y=在第一象限;且y=的图象距原点较远,故有:k1<k2<k3;综合可得:k1<k2<k3.故填k1<k2<k3.12.解:∵反比例函数y=的图象位第二、四象限,∴k﹣2022<0,解得k<2022,故答案为:k<2022.13.解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(﹣1,﹣3).故答案为:(﹣1,﹣3).14.解:当x=﹣1时,y=﹣=1,当x=2时,y=﹣,由图象得:当﹣1<x<0时,y>1,当x≥2时,﹣≤y<0,故答案为:y>1或﹣≤y<0.15.解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2.∵点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点.∴3a2=k.=r∴a2=×(2)2=4.∴k=3×4=12,则反比例函数的解析式是:y=.故答案是:y=.16.解:由k1x<+b,得,k1x﹣b<,所以,不等式的解集可由双曲线不动,直线向下平移2b个单位得到,直线向下平移2b个单位的图象如图所示,交点A′的横坐标为﹣1,交点B′的横坐标为﹣5,当﹣5<x<﹣1或x>0时,双曲线图象在直线图象上方,所以,不等式k1x<+b的解集是﹣5<x<﹣1或x>0.故答案为:﹣5<x<﹣1或x>0.三.解答题(共6小题,满分56分)17.解:(1)∵y1与(x﹣1)成正比例,y2与(x+1)成反比例,∴y1=k1(x﹣1),y2=,∵y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k2=﹣2,k1=1,∴y=x﹣1﹣;(2)当x=﹣,y=x﹣1﹣=﹣﹣1﹣=﹣.18.解:∵B(2,1),∴BC=2,∵△ABC的面积为2,∴×2×(n﹣1)=2,解得:n=3,∵B(2,1),∴k=2,反比例函数解析式为:y=,∴n=3时,m=,∴点A的坐标为(,3).19.解:(1)过点C作CE⊥AB于点E,CF⊥OA于F,则CF=AE∵AB=8,AC=BC,CE⊥AB∴BE=AE=CF=4∵AC=BC=5∴CE=3∵OA=AB=8∴OF=5∴点C(5,4)∵点C在y=图象上∴k=20(2)∵BC=BD=5,AB=8∴AD=3设A点坐标为(m,0),则C,D两点坐标分别为(m﹣3,4),(m,3)∵C,D在y=图象上∴4(m﹣3)=3m∴m=12∴A(12,0),C(9,4),D(12,3)∴S△AOC=×12×4=2420.解:(1)∵AC=1,k=2,∴点A(1,2),∴OC=2,OA==.∵点B在反比例函数y=(x>0)的图象上,∴S△BOD=|k|=1.故答案为:;1.(2)∵A,B两点在函数y=(x>0)的图象上,∴A(1,k),B(k,1),∴AO=,AB=.∵AO=AB,∴=,解得:k=2+或k=2﹣.∵k>1,∴k=2+.21.解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x﹣,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).22.解:(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=得8=,解得k=16,∴反比例函数的解析式为y=;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2,故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=S△AOB=×30=24,∴2S△AOP=24,∴2××y A=24,即2×OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).。
(完整)新人教版九年级下学期数学《反比例函数》单元测试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)新人教版九年级下学期数学《反比例函数》单元测试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)新人教版九年级下学期数学《反比例函数》单元测试题的全部内容。
反比例函数检测题一、选择题(每小题3分,共30分)1、下列函数中 y是x的反比例函数的是()A21xy=B xy=8 C52+=xyD53+=xy2、反比例函数y=xn5+图象经过点(2,3),则n的值是().A、-2B、-1C、0D、13、函数与在同一平面直角坐标系中的图像可能是( )。
4、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线上,则()A、x1>x2>x3B、x1〉x3>x2C、x3>x2〉x1D、x3>x1〉x25、如图4,A、C是函数y=的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D,记RtΔAOB的面积为S1,Rt△COD的面积为S2,则()A、S1>S2;B、S1<S2;C、S1 =S2;D、S1和S2的大小关系不能确定(图4)6、在反比例函数1kyx-=的图象的每一条曲线上,y x都随的增大而增大,则k的值可以是()A.1- B.0 C.1 D.27、如图2,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为()A、1B、C、2D、8、已知反比例函数y=xm21-的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2,ABCyxOD则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21 D 、m >219、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 10、若反比例函数 的图象经过点(a ,-a ),则a 的值为( )A 、2;B 、±2;C 、-2;D 、±4 二、填空题(每小题4分,共40分)11、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 .12、函数22)2(--=ax a y 是反比例函数,则a 的值是13、正比例函数5y x =-的图象与反比例函数(0)ky k x=≠的图象相交于点A (1,a ), 则k = . 14、反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若时,,则的取值范围是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 .x 轴、17、如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向y 轴作垂线段,若1S =阴影,则12S S += .18、点P 在反比例函数1y x =(x 〉 0)的图象上,且横坐标为2。
九年级下册数学《第二十六章反比例函数》章节测试卷测试时间:120分钟试卷满分:120分一.选择题(共10小题,共30分)1.(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①y=−1x;①y=3x;①xy=﹣1;①y=3x;①y=2x−1;①y=1x−1.A.2B.3C.4D.52.(2022秋•沈河区校级期中)关于反比例函数y=−4x下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣43.(2022•鹿城区校级开学)如图,A为反比例函数y=kx(k>0)图象上一点,AB①x轴于点B,若S①AOB=3,则k的值为()A.1.5B.3C.√3D.64.(2022秋•晋州市期中)在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是()A .B .C .D .5.(2022•鼓楼区校级模拟)在平面直角坐标系中,若一个反比例函数的图象经过A (m ,6),B (5,n )两点,则m ,n 一定满足的关系式是( ) A .m ﹣n =1B .m n=56C .m n=65D .mn =306.(2022秋•石阡县期中)若P 1(x 1,y 1),P 2(x 2,y 2)是反比例函数y =−6x的图象上的两点,且x 1<x 2<0,则( ) A .0<y 2<y 1B .0<y 1<y 2C .y 1<0<y 2D .y 2<0<y 17.(2022秋•虹口区校级期中)下列函数中,y 的值随x 值的增大而增大的函数是( ) A .y =2xB .y =﹣2x +1C .y =x ﹣2D .y =﹣x ﹣28.(2022春•丰城市校级期末)如图已知反比例函数C 1:y =k x(k <0)的图象如图所示,将该曲线绕点O 顺时针旋转45°得到曲线C 2,点N 是曲线C 2上一点,点M 在直线y =﹣x 上,连接MN 、ON ,若MN =ON ,①MON 的面积为2√3,则k 的值为( )A.﹣2B.﹣4C.−2√3D.−4√39.(2022秋•平桂区期中)如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>310.(2022秋•覃塘区期中)如图,已知点A(﹣1,6)在双曲线y=kx(x<0)上,动点P在y轴正半轴上,将点A绕点P逆时针旋转90°,点A的对应点为B,若点B恰好落在双曲线上,则点P的坐标为()A.(0,3)B.(3,0)或(4,0)C.(0,2)或(0,6)D.(0,3)或(0,4)二.填空题(共8小题,共24分)11.(2022秋•蜀山区校级月考)若函数y=(m−1)x m2−2是反比例函数,则m的值是.12.(2022秋•澧县期中)若反比例函数y=kx的图象经过点(﹣2,32),则此函数的解析式为.13.(2022秋•固镇县校级期中)如图,点P(x,y)在双曲线y=kx的图象上,P A①x轴,垂足为A,若S①AOP=4,则该反比例函数的表达式为.14.(2022秋•淄川区月考)在反比例y=k−1x的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4是一个完全平方式,则该反比例函数的解析式为.15.(2022秋•冷水滩区校级月考)已知y关于x的函数表达式是y=a−1x,且x=2时,y=3,则a的值为.16.(2022秋•滁州期中)如图,双曲线y=kx(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=.17.(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=kx(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.18.(2022春•锡山区期末)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 2+S 3=20,则S 1的值为 .三.解答题(共66分)19.(6分)(2022秋•德江县期中)已知反比例函数y =kx (k ≠0)的图象经过点A (2,6). (1)求这个函数的表达式;(2)点B (10,65),C (﹣3,﹣5)是否在这个函数的图象上?20.(7分)(2022秋•青浦区校级期中)已知:y =y 1﹣y 2,并且y 1与x 成正比例,y 2与(x ﹣2)成反比例,且当x =﹣2时,y =﹣7,当x =3时,y =13,求: (1)求y 与x 之间的函数解析式; (2)求当x =√2时的函数值.21.(7分)(2022•游仙区校级二模)如图,菱形ABOC在平面直角坐标系中,边OB在x轴的负半轴上,点C在反比例函数y=kx(k≠0)的图象上.若AB=2,①A=60°,求反比例函数的解析式.22.(9分)(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?23.(9分)(2022秋•中原区月考)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=m x的图象的两个交点.(1)求反比例函数和一次函数的函数关系式;(2)求①AOB的面积;(3)求出反比例函数大于一次函数的解集.24.(8分)(2022秋•如皋市期中)如图,矩形ABCD的两边AD,AB的长分别为3,8.边BC落在x轴上,E是AB的中点,连接DE,反比例函数y=mx的图象经过点E,与CD交于点F.(1)若B(3,0),求F点坐标;(2)若DF=DE,求反比例函数的解析式.25.(8分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD①x轴于点D,交y=1x的图象于点C,联结AC,若①ABC是等腰三角形,求k的值.26.(12分)(2022秋•青浦区校级期中)如图,A为反比例函数y=kx(k<0)的图象上一点,AP①y轴,垂足为P.(1)联结AO,当S①APO=2时,求反比例函数的解析式;(2)联结AO,若A(﹣1,2),y轴上是否存在点M,使得S①APM=S①APO,若存在,求出M的坐标:若不存在,说明理由,(3)点B在直线AP上,且PB=3P A,过点B作直线BC①y轴,交反比例函数的图象于点C,若①P AC的面积为4,求k的值.九年级下册数学《第二十六章反比例函数》章节测试卷解析版测试时间:120分钟试卷满分:120分三.选择题(共10小题,共30分)1.(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①y=−1x;①y=3x;①xy=﹣1;①y=3x;①y=2x−1;①y=1x−1.A.2B.3C.4D.5【分析】根据反比例函数的定义(形如y=kx(k为常数,k≠0)的函数称为反比例函数)逐一判断即可得答案.【解答】解:①y=−1x,符合反比例函数的定义,是反比例函数;①y=3x,符合反比例函数的定义,是反比例函数;①xy=﹣1,符合反比例函数的定义,是反比例函数;①y=3x,不符合反比例函数的定义,不是反比例函数;①y=2x−1,不符合反比例函数的定义,不是反比例函数;①y=1x−1,不符合反比例函数的定义,不是反比例函数.故选:B.【点评】本题考查了反比例函数的定义,形如y=kx(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.2.(2022秋•沈河区校级期中)关于反比例函数y=−4x下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣4【分析】根据反比例函数的性质对各选项进行逐一分析即可.【解答】解:A、①(﹣2)×(﹣2)=4≠﹣4,①图象不经过点(﹣2,﹣2),故本选项不符合题意;B 、①﹣4<0,①图象分别在第二、四象限,故本选项不符合题意; C 、①﹣4<0,①在每个象限内,y 随x 的增大而增大,故本选项符合题意; D 、当0<y ≤1时,x ≤﹣4,故本选项不符合题意. 故选:C .【点评】本题考查的是反比例函数的性质,熟知反比例函数y =kx(k ≠0)的图象是双曲线;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大是解题的关键.3.(2022•鹿城区校级开学)如图,A 为反比例函数y =kx (k >0)图象上一点,AB ①x 轴于点B ,若S ①AOB =3,则k 的值为( )A .1.5B .3C .√3D .6【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k |.【解答】解:由于点A 是反比例函数y =k x图象上一点,则S ①AOB =12|k |=3; 又由于k >0,则k =6. 故选:D .【点评】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得三角形面积为12|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.4.(2022秋•晋州市期中)在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是()A.B.C.D.【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、①由反比例函数的图象在一、三象限可知,k>0,①﹣k<0,①一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不符合题意;B、①由反比例函数的图象在二、四象限可知,k<0,①﹣k>0,①一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项符合题意;C、①由反比例函数的图象在二、四象限可知,k<0,①﹣k>0,①一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项不符合题意;D、①由反比例函数的图象在一、三象限可知,k>0,①﹣k<0,①一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不符合题意;故选:B.【点评】本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.5.(2022•鼓楼区校级模拟)在平面直角坐标系中,若一个反比例函数的图象经过A(m,6),B(5,n)两点,则m,n一定满足的关系式是()A .m ﹣n =1B .m n=56C .m n=65D .mn =30【分析】设该函数解析式为y =k x,由题意可得6m =5n =k ,可求得此题结果. 【解答】解:设该函数解析式为y =kx ,由题意可得: 6m =5n =k , 即6m =5n , 解得m n=56,故选:B .【点评】此题考查了运用待定系数法求反比例函数解析式解决相关问题的能力,关键是能灵活运用该方法进行变式求解.6.(2022秋•石阡县期中)若P 1(x 1,y 1),P 2(x 2,y 2)是反比例函数y =−6x的图象上的两点,且x 1<x 2<0,则( ) A .0<y 2<y 1B .0<y 1<y 2C .y 1<0<y 2D .y 2<0<y 1【分析】根据反比例函数的性质和增减性,结合横坐标的大小和正负,即可得到答案. 【解答】解:①反比例函数y =−6x ,k <0, ①x <0时,y >0,y 随着x 的增大而增大, 又①x 1<x 2<0, ①0<y 1<y 2. 故选:B .【点评】本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的性质和增减性是解题的关键.7.(2022秋•虹口区校级期中)下列函数中,y 的值随x 值的增大而增大的函数是( ) A .y =2xB .y =﹣2x +1C .y =x ﹣2D .y =﹣x ﹣2【分析】根据一次函数和反比例函数的性质分别进行判断即可.【解答】解:A、y=2x是反比例函数,k=2>0,在每个象限内,y随x的增大而减小,所以A选项不合题意;B、y=﹣2x+1是一次函数,k=﹣2<0,y随x的增大而减小,所以B选项不合题意;C、y=x﹣2是一次函数,k=1>0,y随x的增大而增大,所以C选项符合题意;D、y=﹣x﹣2是一次函数,k=﹣1<0,y随x的增大而减小,所以D选项不合题意.故选:C.【点评】本题考查了反比例函数的性质,一次函数的性质,熟练掌握反比例函数与一次函数的性质是解题的关键.8.(2022春•丰城市校级期末)如图已知反比例函数C1:y=kx(k<0)的图象如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是曲线C2上一点,点M在直线y=﹣x上,连接MN、ON,若MN=ON,①MON的面积为2√3,则k的值为()A.﹣2B.﹣4C.−2√3D.−4√3【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:①将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,①旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P①x轴于点P,连接ON',M'N',①MN=ON,①M'N'=ON',M'P=OP,①S①MON=2S①PN'O=2×12|k|=|k|=2√3,①k<0,①k=﹣2√3.故选:C.【点评】本题考查了反比例函数比例系数k的几何意义、旋转的性质,体现了直观想象、逻辑推理的核心素养.9.(2022秋•平桂区期中)如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>3【分析】由正、反比例的对称性结合点A的横坐标即可得出点B的横坐标,根据函数图象的上下位置关系结合交点的横坐标,即可得出不等式y1<y2的解集.【解答】解:①正比例函数与反比例函数的图象均关于原点对称,点A的横坐标为3,①点B的横坐标为﹣3.观察函数图象,发现:当0<x<3或x<﹣3时,正比例函数图象在反比例函数图象的下方,①当y1<y2时,x的取值范围是x<﹣3或0<x<3.故选:B.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是找出点B的横坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数的对称性找出两函数交点的横坐标,再根据函数图象的上下位置关系结合交点的横坐标解决不等式是关键.10.(2022秋•覃塘区期中)如图,已知点A(﹣1,6)在双曲线y=kx(x<0)上,动点P在y轴正半轴上,将点A绕点P逆时针旋转90°,点A的对应点为B,若点B恰好落在双曲线上,则点P的坐标为()A.(0,3)B.(3,0)或(4,0)C.(0,2)或(0,6)D.(0,3)或(0,4)【分析】先把A(﹣1,6)代入反比例函数y=kx(x<0)求出k的值,分别过A、B两点作x轴的垂线AC,BD,由旋转的性质证明①APC①①PBD,再设P(0,m),即可得出B 的坐标,由双曲线上的点横坐标与纵坐标的积即相等,列方程求m的值,确定P点坐标.【解答】解:分别过A 、B 两点作AC ①y 轴,BD ①y 轴,垂足为C 、D ,①A (﹣1,6)是双曲线y =k x(x <0)上一点, ①k =﹣6,①反比例函数的解析式为y =−6x , ①①APB =90°, ①①APC +①BPD =90°, 又①APC +①P AC =90°, ①①P AC =①BPD , 在①APC 和①PBD 中, {∠PAC =∠BPD∠ACP =∠PDB =90°AP =PB, ①①APC ①①PBD (AAS ), ①CP =BD ,AC =PD =1, 设P (0,m ), ①OP =m , ①PC =6﹣m , ①B (m ﹣6,m ﹣1), ①点B 在双曲线上,①m ﹣1=−6m−6,解得m =3或m =4, ①P (0,3)或(0,4). 故选:D .【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 四.填空题(共8小题,共24分)11.(2022秋•蜀山区校级月考)若函数y =(m −1)x m2−2是反比例函数,则m 的值是 .【分析】形如y =kx(k 为常数,k ≠0)的函数称为反比例函数,由此即可判断. 【解答】解:因为函数y =(m ﹣1)x m 2−2是自变量为x 的反比例函数,所以m 2﹣2=﹣1,m ﹣1≠0, 所以m =﹣1. 故答案为:﹣1.【点评】本题考查反比例函数的定义,解题的关键是记住反比例函数的定义,属于中考基础题.12.(2022秋•澧县期中)若反比例函数y =kx 的图象经过点(﹣2,32),则此函数的解析式为 .【分析】把(﹣2,32)代入y =kx 中求出k 即可得到反比例函数解析式,【解答】解:把(﹣2,32)代入y =kx 中,得32=k−2,解得k =﹣3,所以反比例函数解析式为y =−3x . 故答案为:y =−3x .【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知待定系数法是解题的关键.13.(2022秋•固镇县校级期中)如图,点P (x ,y )在双曲线y =kx的图象上,P A ①x 轴,垂足为A ,若S ①AOP =4,则该反比例函数的表达式为 .【分析】根据反比例函数的几何意义解答即可.【解答】解:①点P (x ,y )在双曲线y =kx 的图象上,P A ①x 轴, ①xy =k ,OA =﹣x ,P A =y . ①S ①AOP =4, ①12AO •P A =4.①﹣x •y =8. ①xy =﹣8, ①k =xy =﹣8.①该反比例函数的解析式为xy 8﹣=.故答案为:xy 8﹣=.【点评】本题主要考查了反比例函数的几何意义,反比例函数图象上点的坐标的特征,待定系数法,利用点的坐标表示出相应线段的长度是解题的关键.14.(2022秋•淄川区月考)在反比例y =k−1x 的图象的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =k−1x 的图象的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:①整式x2﹣kx+4是一个完全平方式,①k=±4,①反比例函数y=k−1x的图象的每一支上,y都随x的增大而减小,①k﹣1>0,解得k>1,①k=4,①反比例函数的解析式为y=3 x.故答案为:y=3 x.【点评】本题考查反比例函数的图象与性质、完全平方式,熟练掌握反比例函数的图象与性质、完全平方式是解答本题的关键.15.(2022秋•冷水滩区校级月考)已知y关于x的函数表达式是y=a−1x,且x=2时,y=3,则a的值为.【分析】将x=2,y=3代入y=a−1x即可求出a的值.【解答】解:将x=2,y=3代入y=a−1x得,3=a−12,解得a=7,故答案为:7.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的图象上点的坐标特征是解题的关键.16.(2022秋•滁州期中)如图,双曲线y=kx(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=.【分析】直接利用已知点坐标得出AB=4,则AD=BC=4,F点纵坐标为4,进而利用反比例函数图象上点的坐标特点得出答案.【解答】解:①A(4,0),B(8,0),四边形ABCD是正方形,①AB=4,则AD=BC=4,F点纵坐标为4,①BE=3CE,①BE=3,EC=1,①E(8,3),故k=8×3=24,则设F点横坐标为m,故4m=24,解得:m=6,故FC=8﹣6=2.故答案为:2.【点评】此题主要考查了反比例函数图象上点的坐标特点,正确得出E点坐标是解题关键.17.(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=kx(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.【分析】延长AC交x轴于E,则AE①OC,根据菱形的性质以及勾股定理得出AB=OC=OB=5,即可得出A点坐标,进而求出k的值即可.【解答】解:延长AC交x轴于E,如图所示:则AE①x轴,①C的坐标为(4,3),①OE=4,CE=3,①OC=√42+32=5,①四边形OBAC是菱形,①AB=OB=OC=AC=5,①AE=5+3=8,①点A的坐标为(4,8),把A(4,8)代入函数y=kx(x>0)得:k=4×8=32;故答案为:32.【点评】此题主要考查了菱形的性质、勾股定理和反比例函数图象上点的坐标性质;得出A点坐标是解题关键.18.(2022春•锡山区期末)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S2+S3=20,则S1的值为.【分析】根据CD =DE =OE 以及反比例函数系数k 的几何意义得到S 1=13k ,S 四边形OGQD =k ,列方程即可得到结论.【解答】解:①CD =DE =OE ,①S 1=13k ,S 四边形OGQD =k ,①S 2=13(k −13k ×2)=k 6,S 3=k −13k −16k =12k ,①16k +12k =20, ①k =30,①S 1=13k =10,故答案为:10.【点评】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.三.解答题(共66分)19.(6分)(2022秋•德江县期中)已知反比例函数y =k x (k ≠0)的图象经过点A (2,6).(1)求这个函数的表达式;(2)点B (10,65),C (﹣3,﹣5)是否在这个函数的图象上?【分析】(1)首先设这个反比例函数的解析式为y =k x(k ≠0),再把点A (2,6)的坐标代入函数关系式,即可算出k 的值,进而可得函数关系式;(2)只要把点B (10,65),C (﹣3,﹣5)分别代入(1)中求出的函数关系式,满足关系式,就是函数图象上的点,反之则不在.【解答】解:(1)设这个反比例函数的解析式为y =k x(k ≠0),依题意得:6=k 2,①k =12,故这个反比例函数解析式为y =12x ;(2)由(1)求得:y =12x ,当x =10时,y =65,当x =﹣3时,y =﹣4,①点B (10,65)在这个函数图象上,C (﹣3,﹣5)不在这个函数的图象上. 【点评】此题主要考查了利用待定系数法求反比例函数解析式,正确求出函数解析式是解题关键.20.(7分)(2022秋•青浦区校级期中)已知:y =y 1﹣y 2,并且y 1与x 成正比例,y 2与(x ﹣2)成反比例,且当x =﹣2时,y =﹣7,当x =3时,y =13,求:(1)求y 与x 之间的函数解析式;(2)求当x =√2时的函数值.【分析】(1)设y 1=kx ,y 2=m x−2,则y =kx −m x−2,然后利用待定系数法即可求得;(2)把x =√2代入(1)求得函数解析式求解.【解答】解:(1)设y 1=kx ,y 2=m x−2,则y =kx −m x−2, 根据题意得:{−2k +m 4=−73k −m =13, 解得:{k =3m =−4, 则函数解析式是:y =3x +4x−2;(2)当x =√2时,y =3√2+√2−2=√2−4. 【点评】本题考查了待定系数法求函数的解析式,注意在本题中的正比例系数和反比例系数是两个不同的值,用不同的字母区分.21.(7分)(2022•游仙区校级二模)如图,菱形ABOC 在平面直角坐标系中,边OB 在x 轴的负半轴上,点C 在反比例函数y =k x(k ≠0)的图象上.若AB =2,①A =60°,求反比例函数的解析式.【分析】连接BC ,过C 作CD ①OB 于D ,根据菱形的性质得出OC =AB =2,①COB =①A =60°,根据直角三角形的性质求出OD 和CD ,得出点C 的坐标,再代入反比例函数的解析式y =kx 即可.【解答】解:连接BC ,过C 作CD ①OB 于D ,则①CDO =90°,①四边形ABOC 是菱形,AB =2,①A =60°,①OC =AB =2,①COB =①A =60°,①①DCO =30°,①OD=12OC=1,①CD=√OC2−OD2=√22−12=√3,①点C的坐标是(﹣1,√3),①点C在反比例函数y=kx(k≠0)的图象上,①k=(﹣1)×√3=−√3,∴反比例函数的解析式是y=−√3 x,【点评】本题考查了菱形的性质,反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,直角三角形的性质等知识点,能求出点C的坐标是解此题的关键.,22.(9分)(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?【分析】(1)设函数解析式为P=kv,把点(0.8,120)的坐标代入函数解析式求出k值,即可求出函数关系式;(2)将P=48代入(1)中的函数式中,可求气球的体积V.(3)依题意V =0.6,即 96P =0.6,求解即可.【解答】解:(1)设P 与V 的函数关系式为P =k v ,则 k =0.8×120,解得k =96,①函数关系式为P =96v .(2)将P =48代入P =96v 中, 得96v =48,解得V =2,①当气球内的气压为48kPa 时,气球的体积为2立方米.(3)当V =0.6m 3时,气球将爆炸,①V =0.6,即96P =0.6,解得 P =160kpa故为了安全起见,气体的压强不大于160kPa .【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.23.(9分)(2022秋•中原区月考)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx +b 的图象和反比例函数y =m x 的 图象的两个交点.(1)求反比例函数和一次函数的函数关系式;(2)求①AOB 的面积;(3)求出反比例函数大于一次函数的解集.【分析】(1)先把B 点坐标代入反比例函数的解析式中求得反比例解析式,再求A 点坐标,最后用待定系数法求出一次函数的解析式;(2)求出AB 与x 轴的交点C 的坐标,再由OC 求三角形面积;(3)根据函数图象便可求解.【解答】解:(1)把B (2,﹣4)代入y =m x 中,得﹣4=m 2, 解得m =﹣8,①反比例函数的解析式为:y =−8x ,把A (﹣4,n )代入y =−8x 中,得n =−8−4=2,①A (﹣4,2),把A (﹣4,2),B (2,﹣4)代入y =kx +b 中,得{−4k +b =22k +b =−4, 解得{k =−1b =−2, ①一次函数的解析式为:y =﹣x ﹣2;(2)在y =﹣x ﹣2中,令y =0,则﹣x ﹣2=0,解得x =﹣2,①C (﹣2,0),①OC =2,①S ①AOB =S ①AOC +S ①BOC =12×2×(2+4)=6; (3)由函数图象可知,反比例函数大于一次函数的解集为﹣4<x <0或x >2.【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求函数解析式,利用函数图象求不等式的解集,求三角形的面积,此题难度适中,注意掌握数形结合思想的应用.24.(8分)(2022秋•如皋市期中)如图,矩形ABCD 的两边AD ,AB 的长分别为3,8.边BC 落在x 轴上,E 是AB 的中点,连接DE ,反比例函数y =m x 的图象经过点E ,与CD 交于点F .(1)若B (3,0),求F 点坐标;(2)若DF =DE ,求反比例函数的解析式.【分析】(1)先求得点E 的坐标为(3,4),然后利用待定系数法求得m ,进一步即可求得点F 的坐标.(2)在Rt①ADE 中,利用勾股定理可求出AE 的长,由DF =DE ,BC =3可得出点E 的坐标为(m 3−3,4),再利用反比例函数图象上点的坐标特征,可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出反比例函数的表达式.【解答】解:(1)①反比例函数y =m x 的图象经过点E ,E 是AB 的中点,AB =8, ①BE =4,①B (3,0),①E (3,4),①反比例函数y =m x的图象经过点E , ①m =3×4=12,①y =12x ,①BC =AD =3,①OC =6, 把x =6代入y =12x 得y =2,①点F 的坐标为(6,2);(2)在Rt①ADE 中,AD =3,AE =4,①A =90°,①DE =5.①DF =DE ,①DF =5,①CF =8﹣5=3,①点E 的坐标为(m 3−3,4).①反比例函数y =m x 的图象经过点F ,①4×(m 3−3)=m ,解得:m =36,①反比例函数的表达式为y =36x .【点评】本题考查了矩形的性质、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、勾股定理,解题的关键是利用含m 的代数式表示出点E ,F 的坐标.25.(8分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ①x 轴于点D ,交y =1x 的图象于点C ,联结AC ,若①ABC 是等腰三角形,求k 的值.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,①AC=BC,即可解题.【解答】解:①点B是y=kx和y=9x的交点,则kx=9x,①点B坐标为(√k,3√k),同理可求出点A的坐标为(√k,√k),①BD①x轴,①点C(√k ,√k3),①BA=√4k+4k,AC=√4k+4k9,BC=83√k,①BA2≠AC2,①BA≠AC,若①ABC是等腰三角形,①AB=BC,则√4k+4k=83√k,解得k=3√7 7;①AC=BC,则√4k+4k9=83√k,解得k=√15 5;故k 的值为3√77或√155. 【点评】本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k 表示点A 、B 、C 坐标是解题的关键.26.(12分)(2022秋•青浦区校级期中)如图,A 为反比例函数y =k x (k <0)的图象上一点,AP ①y 轴,垂足为P .(1)联结AO ,当S ①APO =2时,求反比例函数的解析式;(2)联结AO ,若A (﹣1,2),y 轴上是否存在点M ,使得S ①APM =S ①APO ,若存在,求出M 的坐标:若不存在,说明理由,(3)点B 在直线AP 上,且PB =3P A ,过点B 作直线BC ①y 轴,交反比例函数的图象于点C ,若①P AC 的面积为4,求k 的值.【分析】(1)根据反比例函数系数k 的几何意义即可求解;(2)求得S ①APM =S ①APO =1,即可求得PM =2从而求得点M (0,4);(3)当B 点在P 点右侧,如图,设A (t ,k t ),则可表示出B (﹣3t ,k t ),C (﹣3t ,−k 3t),利用三角形面积公式得到12×(﹣t )×(k t+k 3t )=4;当B 点在P 点左侧,设A (t ,k t ),则可表示出B (3t ,k t ),C (3t ,k 3t ),利用三角形面积公式得到12×(﹣t )×(k t −k 3t )=4,然后分别解关于k 的方程即可.【解答】解:(1)①S ①APO =2,AP ①y 轴,①S ①APO =12|k |=2,①反比例函数的解析式为y =−4x ;(2)存在,理由如下:①A (﹣1,2),①AP =1,OP =2,①S ①APO =12×1×2=1, ①S ①APM =S ①APO =1,①12PM •AP =1, ①PM =2,①M (0,4);(3)当B 点在P 点右侧,如图,设A (t ,k t ), ①PB =3P A ,①B (﹣3t ,k t ), ①BC ①y 轴,①C (﹣3t ,−k 3t), ①①P AC 的面积为4,①12×(﹣t )×(k t +k 3t )=4,解得k =﹣6;当B 点在P 点左侧,设A (t ,k t ),①B (3t ,k t ), ①BC ①y 轴,①C (3t ,k 3t ), ①①P AC 的面积为4,①12×(﹣t )×(k t −k 3t )=4,解得k =﹣12;综上所述,k 的值为﹣6或﹣12.【点评】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.也考查了反比例函数图象上点的坐标特征.。
专项训练四 反比例函数一、选择题1.(哈尔滨中考 )点 (2,- 4)在反比例函数 y = kx 的图象上,则下列各点在此函数图象上的是( )A . (2, 4)B . (- 1,- 8)C . (-2,- 4)D . (4,- 2)2.对于双曲线y = 1-m ,当 x > 0 时, y 随 x 的增大而减小,则 m 的取值范围为 ()x A . m > 0B . m >1C .m < 0D . m <1k3.(新疆中考 )已知 A(x 1,y 1),B(x 2,y 2 )是反比例函数 y = x (k ≠ 0)图象上的两个点,当 x 1< x 2 <0时, y 1> y 2,那么一次函数 y = kx - k 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限4. (聊城中考 )二次函数 y = ax 2+ bx +c(a , b ,c 为常数且 a ≠ 0)的图象如图所示,则一次函数y= ax +b 与反比例函数 y =cx 的图象可能是 ()5.在同一直角坐标系中,若正比例函数1k 2的图象没有公共点,y = k x 的图象与反比例函数y = x则 ()A . k 1+ k 2<0B .k 1+k 2>0C . k 1k 2<0D . k 1k 2>06.已知点 P(a ,b)是反比例函数1图象上异于点(- 1,- 1)的一个动点,则1 +1的值y = x1+ a 1+ b为 ( )31A . 2B . 1C.21D. 2的图象相交于 A 、 B 两点, BC ⊥ x 轴于点 C ,则7.如图,正比例函数 y = x 与反比例函数 y = x△ ABC 的面积为 ( )35 A . 1B .2C.2D.2k8. (昆明中考 )如图,直线 y =- x + 3 与 y 轴交于点 A ,与反比例函数 y = x (k ≠ 0)的图象交于点C ,过点 C 作 CB ⊥ x 轴于点 B , AO = 3BO ,则反比例函数的解析式为 ( )4 4 22 A . y = x B . y =- x C . y = x D . y =- x二、填空题9. (上海中考)已知反比例函数ky = x(k ≠ 0),如果在 个函数 象所在的每一个象限内,y 的随着x 的 增大而减小,那么k 的取 范 是________ .k10. (淮安中考)若点A(- 2,3)、 B(m ,- 6)都在反比例函数y = x(k ≠ 0)的 象上,m 的 是________.k11. ( 坊中考 )已知反比例函数y = x (k ≠ 0)的 象 点 (3,- 1), 当 1< y < 3 ,自 量 x的取 范 是 __________.12.某 合 路中, 源的 定 , 流I(A) 与 阻 R( Ω)成反比例.如 表示的是路中 流 I 与 阻 R 之 函数关系的 象,当 阻R 6Ω , 流 I ________A.第 12 第 13 第 1413. ( 口中考 )如 ,四 形 ABCD 正方形,点 A 、B 在 y 上,点 C 的坐 (- 3,1),反比例函数 y = k的 象 点 D , k 的 ________.x414.★ ( 水中考 )如 ,一次函数 y =- x + b 与反比例函数y = x (x > 0)的 象交于 A , B 两点, 与 x 、 y 分 交于 C ,D 两点, 接 OA ,OB , A 作 AE ⊥x 于点 E ,交 OB 于点 F , 点 A 的横坐 m.(1)b = ________(用含 m 的代数式表示 );(2)若 S △ OAF + S 四边形 EFBC =4 , m 的 是 ________.三、解答k15. (西宁中考 )如 ,一次函数y = x +m 的 象与反比例函数y =x 的 象交于 A , B 两点,且与 x 交于点 C ,点 A 的坐 (2, 1).(1)求 m 及 k 的 ;0< x + m ≤ k的解集.(2)求点 C 的坐 ,并 合 象写出不等式x16.某数学 外活 小 在做气体 , 得 p(Pa)与体 V(cm 3)之 有下列 数据:p(Pa)⋯ 1 2 3 4 5 ⋯ V(cm 3)⋯6321.51.2⋯根据表中提供的信息,回答下列:(1)猜想 p 与 V 之 的关系,并求出函数关系式; (2)当气体的体 是12cm 3 , 是多少?k 17. ( 阳中考 )如 ,在平面直角坐 系中,菱形 OBCD 的 OB 在 x 上,反比例函数y = x(x > 0)的 象 菱形 角 的交点 A ,且与 BC 交于点 F ,点 A 的坐 (4, 2).(1)求反比例函数的表达式;(2)求点 F 的坐 .k + 118.★如 ,已知直 y = x + k 和双曲 y = x (k 正整数 )交于 A , B 两点.(1)当 k =1 ,求 A , B 两点的坐 ;(2)当 k =2 ,求△ AOB 的面 ;2 ,△ OAB 的面 S ⋯依此 推,当k =n(3)当 k =1 ,△ OAB 的面 S ,当 k =12,△ OAB 的面S n ,若 S 1+ S 2+⋯+ S n =1332,求 n 的 .参考答案1. D 2.D3.B4.C5.C1图象上异于点 (-1,- 1)的一个动点,∴ ab = 1,6. B 解析:∵点 P(a , b)是反比例函数 y = x∴ 1+ 1= 1+ b + 1+ a = 2+a + b =2+ a + b = 1.1+ a 1+ b ( 1+ a )( 1+ b ) ( 1+ a )( 1+ b ) 1+ a +b + ab 2+ a +b7. A 解析:∵正比例函数1的图象相交于A 、B 两点,∴点 A 与点 By = x 与反比例函数 y = x关于原点对称,∴ S △ AOC = S △ BOC .∵ BC ⊥ x 轴,∴ S △ ABC = 2S △ BOC = 2× 1× |1|=1.2 8. B 解析:∵直线 y =- x +3 与 y 轴交于点 A ,∴点 A 的坐标为 (0, 3),即 OA = 3.∵AO = 3BO ,∴ OB = 1,∴点 C 的横坐标为- 1.∵点 C 在直线 y =- x + 3 上,∴点 C 的坐标为 (- 1, 4), ∴反比例函数的解析式为y =- 4.x9. k > 0 10.1 11.- 3<x <- 1 12.1 13.614. (1)m + 4 (2)2 解析: (1) ∵点 A 在反比例函数 4m y = (x > 0)的图象上,且点 A 的横坐标4 4 x为 m ,∴点 A 的纵坐标为 m ,即点 A 的坐标为 m , m .令一次函数 y =- x + b 中 x = m ,则 y =- m + b ,∴- m + b = 4,即 b = m + 4.mm(2)作 AM ⊥OD 于 M ,BN ⊥ OC 于 N.∵反比例函数4,一次函数 y =- x + b 都是关于直线 yy = x= x 对称,∴ AD = BC ,OD = OC ,DM = AM = BN = CN.记△ AOF 的面积为 S ,则△ OEF 的面积为 2- S ,四边形 EFBC 的面积为 4- S ,△ OBC 和△ OAD 的面积都是 6- 2S ,△ ADM 的面积为 6-2S- 2= 4- 2S = 2(2-S),∴ S △ADM = 2S △ OEF ,∴ DM = 2EF ,∴ EF =1BN ,∴ OE = 1ON ,∴点 B 的横坐2 2 2标为 2m.点 B 的坐标为 2m , ,代入直线 y =- x +m + 4 ,得 2=- 2m + m + 4,整理得 m 2= 2.∵ mm mm m > 0,∴ m = 2.15.解: (1) ∵点 A(2,1) 在一次函数 y = x +m 的图象上,∴ 2+m = 1,∴ m =- 1.∵点 A(2, 1) 在反比例函数 y =kx 的图象上,∴ k2= 1,∴ k = 2;(2)∵一次函数解析式为 y =x - 1,令 y = 0,得 x = 1,∴点 C 的坐标是 (1,0).由图象可知不等式组 0< x + m ≤ kx 的解集为 1< x ≤ 2.616.解: (1) p 与 V 成反比例, p =V ;(2)当 V = 12cm 3 时, p = 0.5Pa.k17.解: (1) ∵反比例函数 y = x 的图象经过点 A ,点 A 的坐标为 (4,2),∴ k = 2× 4= 8,∴反比8例函数的解析式为y = ;(2)过点 A 作 AM ⊥ x 轴于点 M ,过点 C 作 CN ⊥ x 轴于点 N ,由题意可知CN = 2AM = 4,ON =2OM = 8,∴点 C 的坐标为 (8 ,4).设 OB =x ,则 BC = x ,BN = 8- x.在 Rt △ CNB 中, x 2- (8- x)2= 42,解得 x =5,∴点 B 的坐标为 (5,0).设直线 BC 的函数表达式为 y = ax + b ,∴ 5a + b = 0, 解4 4 20 8a + b = 4, a = 3, y = 4 x - 20.根据题意得方程组 y = 3x - 3 , 得 ∴直线 BC 的解析式为 解此方程组得20, 3 3 8,b =- 3 y = x x = 6, x =- 1, 44 或∵点 F 在第一象限,∴点 F 的坐标为 F 6, 3 .y = 3y =- 8.18.解:(1) 当 k = 1 ,直 y = x + k 和双曲 y =k +1化 y = x + 1 和 y =2,解方程 y = x +1,2xxy = xx =- 2, x = 1,得∴A 点的坐 (1, 2), B 点的坐 (- 2,- 1) ;y =- 1, y =2,,直 y = x + k 和双曲 y =k + 1化 y = x +2 和 y =3,解方程y = x + 2,(2)当 k =23得xxy = xx =- 3, x = 1,∴ A 点的坐 (1 ,3), B 点的坐 (- 3,- 1).又∵直 AB( y = x + 2)与 yy =- 1, y = 3,11的交点 (0, 2),∴ S △ AOB = 2× 2× 1+ 2× 2× 3= 4;(3)当 k =1 , S 1= 1× 1× (1+2) =3,当 k = 2 , S 2=1× 2× (1+ 3)= 4,⋯当 k = n , S n =12 2 22n(1+ n + 1)=1n 2+ n.∵ S 1+ S 2+⋯+ S n = 133,∴ 1× (12+ 22+ 32+⋯+ n 2)+(1+ 2+ 3+⋯+ n)= 133,2 2 22 整理得 1× n ( n +1)( 2n + 1) + n (n + 1)=133,解得 n = 6.2 6 22。
专题集训一 反比例函数(满分120分,时间120分钟)题号一二三总分得分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知反比例函数 y =kx 的图象经过点 P(-3,2),则这个函数的图象位于( )A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限2.函数 y=2x+1与函数. y =kx 的图象相交于点(2,m),则下列各点不在函数 y =k x的图象上的是( )A.(-2,-5)B.(52,4) C.(-1,10) D.(5,2)3.某乡共有耕地S 公顷,该乡人均耕地面积y 与总人口x 之间的函数图象大致为( )4.点(-1,4)在反比例函数 y =kx的图象上,则下列各点在此函数图象上的是( )A.(4,--1)B.(−14,1)C.(-4,--1)D.(14,2)5.若点((--2,y ₁),(-1,y ₂),(3,y ₃)在双曲线 y =kx(k <0)上,则y ₁,y ₂,y ₃的大小关系是( )A.y₁<y₂<y₃B.y₃<y₂<y₁C.y₂<y₁<y₃D.y₃<y₁<y₂6.在反比例函数 y =1−k x的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可以是( )A. -1B.0C.1D.27.如图,A ,B 是反比例函数 y =2x的图象上的两点.AC ,BD 都垂直于x 轴,垂足分别为C ,D,AB 的延长线交x 轴于点 E.若C,D 的坐标分别为(1,0),(4,0),则△BDE 的面积与△ACE 的面积的比值是( )A. 12B. 14C. 18D.1168.当a≠0时,函数y=ax+1与函数 y =ax 在同一坐标系中的图象可能是( )9.如图,在x 轴的上方,∠AOB 为直角,且绕原点O 按顺时针方向旋转.若∠AOB 的两边分别与函数 y = −1x,y =2x的图象交于B ,A 两点,则∠OAB 大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.如图,直线 y=kx(k>0)与双曲线 y =2x 交于A ,B 两点,若A ,B 两点的坐标分别为A(x ₁,y ₁),B(x ₂,y ₂),则. x₁y₂+x₂y₁的值为( )A. -8B.4C. -4D.0二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11.已知点 P(a,b)在反比例函数y=2x的图象上,则ab=.12.已知反比例函数y=k−1x(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是 .13.如图,点A,B 是双曲线y=3x上的点,分别经过A,B两点向x轴、y轴作垂线段.若S圆锥侧=1,则S₁+S₂=14.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 p(kPa)是气体体积V(m³)的反比例函数,其函数图象如图所示.当气球内的气压大于140 kPa时,气球将爆炸,为了安全起见,气球体积的取值范围为 .15.设点(a--1,y₁),(a+1,y₂)在反比例函数y=kx(k⟩0)的图象上,若y₁<y₂,则 a的取值范围是16.如图,直线x=2 与反比例函数.y=2x和y=−1x的图象分别交于A,B两点,若点 P 是y轴上任意一点,则△PAB的面积是 .17.已知反比例函数y=6x在第一象限内的图象如图所示,点 A 在其图象上,点 B为x轴正半轴上一点,连接AO,AB,且AO=AB,则.SAOB=.18.如图,在平面直角坐标系中,四边形 ODEF 和四边形ABCD 都是正方形,点 F在x 轴的正半轴上,点C在边DE 上,反比例函数y=kx(k≠0,x⟩0)的图象过点 B,E,若AB=2,,则k的值为.三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(6 分)在某一电路中,保持电压U(V)不变,电流I(A)与电阻R(Ω)成反比例,当电阻R=5Ω时,电流.I=2A(1)求I 与R 之间的函数关系式;(2)当电流 I=0.5 A时,求电阻R的值.20.(8分)如图,点 A(1,a)在反比例函数 y =3x(x⟩0)的图象上,AB 垂直于x 轴,垂足为点 B ,将 △ABO 沿x 轴向右平移2个单位长度,得到 △DEF,点 D 落在反比例函数 y =kx (x⟩0)的图象上.(1)求点 A 的坐标;(2)求k 的值.21.(10分)如图,一次函数y=kx+b 的图象与反比例函数 y =mx 的图象在第一象限交于点A(4,2),与y 轴的负半轴交于点B,且OB =6.(1)求函数 y =mx 和 y =kx +b 的表达式;(2)已知直线AB 与x 轴相交于点C.在第一象限内,求反比例函数 y =mx 的图象上一点P,使得S△POC=9.22.(10分)某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.55~0.75元,经测算,若电价调至x 元,则本年度新增用电量 y(亿度)与 (x−0.4)(元)成反比例,又当 x =0.65时, y =0.8.(1)求y 与x 之间的函数关系式;(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]23.(12分)如图,一次函数. y =kx +2的图象与反比例函数 y =mx 的图象交于点 P ,点 P 在第一象限. PA ⊥x 轴于点A , PB ⊥y 轴于点 B.一次函数的图象分别交x 轴、y 轴于点C,D,且 S PBD =4,OC OA=12.(1)求点 D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当. x >0)时,一次函数的值大于反比例函数的值的x 的取值范围.24.(12分)如图,一次函数. y =−2x +1与反比例函数 y =kx的图象有两个交点A (−1,m )和B,过点 A 作 AE ⊥x 轴,垂足为 E;过点B 作 BD ⊥y 轴,垂足为D ,且点 D 的坐标为 (0,−2),连接DE.(1)求k 的值;(2)求四边形AEDB 的面积.专题集训一反比例函数1. D 2. C 3. B 4. A 5. D 6. D 7. D 8. C 9. D 10. C11.2 12. k<1 13.4 14. V≥24 3515.-1<a<1 16. 3217.6 18.6+2 519.解:(1)由题意可得I=UR,将R=5,I=2代入得U=10,所以I=10R.(2)当电流 I=0.5 A时,R=20Ω.20.解:(1)∵点A(1,a)在y=3x的图象上,∴a=31=3.∴点A的坐标为(1,3).(2)∵△ABO向右平移2个单位长度得到△DEF,∴点D的坐标为(3,3).∵点D在y=kx(x⟩0)的图象上,∴3=k3,⋯k=9.21.解:(1)∵点A(4,2)在反比例函数y=mx的图象上,∴m=4×2=8,∴反比例函数的表达式为y=8 x .∵点B在y轴的负半轴上,且OB=6,∴点B的坐标为(0,-6),把点A(4,2)和点B(0,-6)代入 y=kx+b中,得{4k+b=2,b=−6,解得{k=2,b=−6.∴一次函数的表达式为y=2x--6. (2)设点P的坐标为(n,8n)(n⟩0).在直线y=2x-6上,当y=0时,x=3,∴点C的坐标为(3,0),即OC=3,∴SFx =12OC⋅yP=12×3×8n=9,解得n=4 3 ,∴点P的坐标为(43,6),故当S△POC=9时,在第一象限内,反比例函数y=8x的图象上点P的坐标为(43,6).22.解:(1)设y=kx−0.4,由x=0.65,y=0.8,得k=0.8×(0.65-0.4)=0.2,故y与x之间的函数关系式是y=0.2x−0.4,即y=15x−2.(2)设电价调至x元时,本年度电力部门的收益将比上年度增加20%.因为上年度的收益为1×(0.8−0.3)=0.5(亿元),所以本年度的收益为0.5×(1+20%)=0.6(亿元),故15x−2⋅(x−0.3)+1×(x−0.3)=0.6,整理,得10x²−11x+3=0,即(5x-3)(2x-1)=0,解得x₁=0.6,x₂=0.5.又0.55≤x≤0.75,故x=0.6.答:电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.23.解:(1)在y=kx+2中,令x=0得y=2,∴点D的坐标为(0,2).(2)∵AP∥OD,∴Rt△PAC∽Rt△DOC.∵OCOA=12,∴ODΛP=OCΛC=13.∴AP=6.又∵BD=6-2=4,∴由S△PBD=4可得BP=2.∴P(2,6).把P(2,6)分别代入y=kx+2与y=mx可得一次函数表达式为y=2x+2,反比例函数表达式为y=12 x .(3)由图可得x>2.24.解:(1)将点 A(-1,m)代入一次函数 y=-2x+1,得-2×(-1)+1=m,∴m=3.∴点A的坐标为(-1,3).将A(-1,3)代入y=k x ,得k=(-1)×3=-3.(2)设直线AB与y轴交于点M,则点M(0,1).∵点D(0,-2),∴MD=3,点B的纵坐标为-2,代入一次函数y=-2x+1中,得点B的横坐标为3 2 ,∴B(32,−2),∴BD=32.∵A(-1,3),AE∥y轴,∴E(-1,0).∴AE=3,OE=1.∴AE∥MD,AE=MD.∴四边形AEDM为平行四边形.∴S四边形AEDB =S△BDM+S平行四边形AEDM=12×32×3+3×1=214.。
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。
2017-2018人教版数学九年级下册 第二十六章 反比例函数 单元测试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 1.若反比例函数y =kx的图象经过点(2,-6),则k 的值为( )A .-12B .12C .-3D .3 2.对于函数y =4x,下列说法错误的是( )A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小3.在反比例函数y =k -3x图象的任一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k >3B .k >0C .k <3D .k <04.位于第一象限的点E 在反比例函数y =kx 的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k 的值为( )A .4B .2C .1D .-25.在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx(k≠0)的图象大致是( )6.某汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.当它所受牵引力为1200牛时,汽车的速度为( )A .180千米/时B .144千米/时C .50千米/时D .40千米/时7.反比例函数y 1=mx (x >0)的图象与一次函数y 2=-x +b 的图象交于A ,B 两点,其中A(1,2).当y 2>y 1时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >28.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D.则四边形ACBD 的面积为( )A .2B .4C .6D .8二、填空题(本大题共6个小题,每小题3分,共18分)9.写出一个图象在第二、四象限的反比例函数解析式:____________________.10.已知反比例函数y =kx 的图象在第二、第四象限内,函数图象上有两点A(2,y 1),B(5,y 2),则y 1与y 2的大小关系为y 1________y 2.11.双曲线y =kx 和一次函数y =ax +b 的图象的两个交点分别为A(-1,-4),B(2,m),则a +2b =___________.12.点A 在函数y =6x (x >0)的图象上,如果AH⊥x 轴于点H ,且AH∶OH=1∶2,那么点A 的坐标为______________.13.如图,在平面直角坐标系中,▱ABCD 的顶点B ,C 在x 轴上,A ,D 两点分别在反比例函数y =-3x (x<0)与y =1x(x>0)的图象上,则▱ABCD 的面积为________.14.如图,反比例函数y =kx (k≠0)的图象经过A ,B 两点,过点A 作AC⊥x 轴,垂足为C ,过点B 作BD⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC =CD ,四边形BDCE 的面积为2,则k 的值为___________.三、解答题(共9个小题,共70分)15.(5分)已知y =y 1+y 2,其中y 1与3x 成反比例,y 2与-x 2成正比例,且当x =1时,y =5;当x =-1时,y =-2.求当x =3时,y 的值.16.(6分)已知点P(2,2)在反比例函数y =kx (k≠0)的图象上.(1)当x =-3时,求y 的值; (2)当1<x <3时,求y 的取值范围.17.(7分)已知A =(a +b )2-4abab (a -b )2(a ,b ≠0且a≠b)(1) 化简A ;(2) 若点P(a ,b)在反比例函数y =-5x 的图象上,求A 的值.18.(7分)如图,点A(m ,m +1),B(m +3,m -1)是反比例函数y =kx(x >0)与一次函数y =ax +b 的交点.(1) 求反比例函数与一次函数的解析式;(2) 根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x 的取值范围.19.(8分)超超家利用银行贷款购买了某山庄的一套100万元的住房,在交了首期付款后,每年需向银行付款y 万元.预计x 年后结清余款,y 与x 之间的函数关系如图,试根据图象所提供的信息回答下列问题:(1) 确定y 与x 之间的函数表达式,并说明超超家交了多少万元首付款; (2) 超超家若计划用10年时间结清余款,每年应向银行交付多少万元? (3) 若打算每年付款不超过2万元,超超家至少要多少年才能结清余款?20.(8分)如图是反比例函数y =kx的图象,当-4≤x≤-1时,-4≤y≤-1.(1) 求该反比例函数的表达式;(2) 若点M ,N 分别在该反比例函数的两支图象上,请指出什么情况下线段MN 最短(不需要证明),并注出线段MN 长度的取值范围.21.(8分)如图是函数y =3x 与函数y =6x 在第一象限内的图象,点P 是y =6x 的图象上一动点,PA ⊥x 轴于点A ,交y =3x 的图象于点C ,PB ⊥y 轴于点B ,交y =3x的图象于点D.(1) 求证:D 是BP 的中点; (2) 求四边形ODPC 的面积.22.(9分)如图,已知反比例函数y =k 1x 的图象与一次函数y =k 2x +b 的图象交于A ,B 两点,A 点横坐标为1,B(-12,-2).(1) 求反比例函数和一次函数的解析式;(2) 在x 轴上是否存在点P ,使△AOP 为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.23.(12分)如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数y =k x (k >0,x >0)的图象上,点P(m ,n)是函数y =kx (k >0,x >0)的图象上任一点,过点P 分别作x 轴、y轴的垂线,垂足分别为E ,F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S.(1) 求点B 的坐标和k 的值; (2) 当S =92时,求点P 的坐标;(3) 写出S 关于m 的函数表达式.答案; 一、1---8 ACABA ABD 二、9. y =-1x (答案不唯一)10. < 11. -2 12. (23,3) 13. 4 14. -163三、15. 解:设y =k 13x +k 2(-x 2),求得y =72x +32x 2,当x =3时,y =44316. 解:(1)-43(2)43<y <417. 解:(1)A =(a +b )2-4ab ab (a -b )2=a 2+b 2+2ab -4ab ab (a -b )2=(a -b )2ab (a -b )2=1ab (2)∵点P(a ,b)在反比例函数y =-5x 的图象上,∴ab =-5,∴A =1ab =-1518. 解:(1)由题意可知,m(m +1)=(m +3)(m -1),解得m =3,∴A(3,4),B(6,2),∴k =4×3=12,∴y=12x ,∵A 点坐标为(3,4),B 点坐标为(6,2),∴⎩⎪⎨⎪⎧3a +b =4,6a +b =2,∴⎩⎪⎨⎪⎧a =-23,b =6,∴y =-23x +6(2)根据图象得x 的取值范围:0<x <3或x >619. 解:(1)12×5=60(万元),100-60=40(万元),∴y =60x,超超家交了40万元的首付款(2)把x =10代入y =60x得y =6,∴每年应向银行交付6万元(3)∵y≤2,∴60x≤2,∴2x ≥60,∴x ≥30,∴至少要30年才能结清余款20. 解:(1)反比例函数图象的两支曲线分别位于第一、三象限,∴当-4≤x ≤-1时,y 随着x 的增大而减小,又∵当-4≤x≤-1时,-4≤y ≤-1,∴当x =-4时,y =-1,由y =kx得k =4,∴该反比例函数的表达式为y =4x(2)当点M ,N 都在直线y =x 上时,线段MN 的长度最短,当MN 的长度最短时,点M ,N 的坐标分别为(2,2),(-2,-2),利用勾股定理可得MN 的最短长度为42,故线段MN 长度的取值范围为MN≥4 2 21. 解:(1)∵点P 在函数y =6x 上,∴设P 点坐标为(6m ,m),∵点D 在函数y =3x 上,BP ∥x 轴,∴设点D 坐标为(3m ,m),由题意,得BD =3m ,BP =6m=2BD ,∴D 是BP 的中点(2)S 四边形OAPB =6m ·m =6,设C 点坐标为(x ,3x ),D 点坐标为(3y ,y),S △OBD =12·y ·3y =32,S △OAC =12·x ·3x =32,S 四边形OCPD =S 四边形OAPB -S △OBD -S △OAC =6-32-32=322. 解:(1)反比例函数为y =1x ,一次函数为y =2x -1(2)存在,点P 的坐标是(1,0)或(2,0)23. 解:(1)依题意,设B 点的坐标为(x B ,y B ),∴S 正方形OABC=x B ·y B =9,∴x B =y B =3,即点B 的坐标为(3,3).又∵x B y B =k ,∴k =9(2)①∵P (m ,n)在y =9x上,当P 点位于B 点下方时,如图①,∴S矩形OEPF=mn =9,S矩形OAGF=3n.由已知,得S =9-3n =92,∴n =32,m =6,即此时P 点的坐标为P 1(6,32) ②当P 点位于B 点上方时,如图②,同理可求得P 2(32,6)(3)①如图①,当m≥3时,S 矩形OAGF =3n ,∵mn =9,∴n =9m ,∴S =S 矩形OEP 1F -S 矩形OAGF =9-3n =9-27m ②如图②,当0<m <3时,S 矩形OEGC =3m ,∴S =S 矩形OEP 2F -S 矩形OEGC =9-3m专项训练二 概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A .通常加热到100℃时,水沸腾B .抛掷2枚正方体骰子,都是6点朝上C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:事件A 必然事件 随机事件(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
人教版数学九年级(下)单元练习卷:《反比例函数》一.选择题1.已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.每一象限内y随x的增大而减少C.图象在第一、三象限D.若x>1,则y<22.已知点A(x1,y1)、B(x2,y2)是反比例函数y=﹣图象上的点,若x1>0>x2,则下列一定成立的是()A.y1<0<y2B.y1<y2<0 C.y2<0<y1D.0<y1<y23.如图,当x>2时,反比例函数y=的函数值y的取值范围是()A.y>1 B.0<y<1 C.y>2 D.0<y<24.如图,点B在反比例函数y=(x>0)的图象上,过点B向x轴作垂线,垂足为A,连结BO,则△OAB的面积为()A.1 B.2 C.3 D.45.反比例函数y=(k≠0)的图象经过点(2,5),若点(﹣5,n)在反比例函数的图象上,则n等于()A.﹣10 B.﹣5 C.﹣2 D.﹣6.已知反比例函数y=﹣,下列各点中,在其图象上的有()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(1,6)7.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别于AB、BC 交于点D、E,若四边形ODBE的面积为9,则k的值为()A.3 B.4 C.5 D.68.如图,在平面直角坐标系中,点A在函数y=(k<0,x<0)的图象上,过点A作AB ∥y轴交x轴于点B,点C在y轴上,连结AC、BC.若△ABC的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣69.若反比例函数y=的图象在其所在的每一个象限内,y都随x的增大而增大,则k的值可以是()A.2018 B.0 C.2017 D.﹣201710.如图,矩形的中心为直角坐标系的原点O,各边分别与坐标轴平行,其中一边AB交x 轴于点C,交反比例函数图象于点P,且点P是AC的中点.已知图中阴影部分的面积为8,该反比例函数的表达式是()A.B.C.D.11.以矩形ABCD两条对角线的交点O为坐标原点,建立如图的平面直角坐标系,且AB⊥x 轴,双曲线y=经过点D,则矩形的面积为()A.10 B.11 C.12 D.1312.如图,直线y=x+m交双曲线y=于A、B两点,交x轴于点C,交y轴于点D,过点A作AH⊥x轴于点H,连结BH,若OH:HC=1:5,S=1,则k的值为()△ABHA.1 B.C.D.二.填空题13.如图,一次函数的图象y=﹣x+b与反比例函数的图象y=交于A(2,﹣4),B(m,2)两点.当x满足条件时,一次函数的值大于反比例函数值.14.如图,已知A(5,0),B(4,4),以OA、AB为边作▱OABC,若一个反比例函数的图象经过C 点,则这个函数的解析式为 .15.如图,已知点A ,点C 在反比例函数y =(k >0,x >0)的图象上,AB ⊥x 轴于点B ,OC 交AB 于点D ,若CD =OD ,则△AOD 与△BCD 的面积比为 .16.如图,分别过第二象限内的点P 作x ,y 轴的平行线,与y ,x 轴分别交于点A ,B ,与双曲线分别交于点C ,D .下面三个结论,①存在无数个点P 使S △AOC =S △BOD ; ②存在无数个点P 使S △POA =S △POB ; ③存在无数个点P 使S 四边形OAPB =S △ACD . 所有正确结论的序号是 .17.如图,直线y =mx ﹣1交y 轴于点B ,交x 轴于点C ,以BC 为边的正方形ABCD 的顶点A (﹣1,a )在双曲线y =﹣(x <0)上,D 点在双曲线y =(x >0)上,则k 的值为.( )18.如图,在平面直角坐标系中,直线y =﹣4x +4与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线y =上;将正方形A BCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线在第一象限的分支上,则a 的值是 .19.如图在Rt △ABC 中,∠BAC =90°,AB =2,边AB 在x 轴上,BC 边上的中线AD 的反向延长线交y 轴于点E (0,3),反比例函数y =(x >0)的图象过点C ,则k 的值为 .三.解答题20.如图,一次函数y 1=k 1x +2与反比例函数y 2=的图象交于点A (4,m )和B (﹣8,﹣2),与y 轴交于点C .(1)k 1= ,k 2= ;(2)根据函数图象可知,当y 1>y 2时,x 的取值范围是 ;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =3:1时,求直线OP 的解析式.21.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.22.如图,反比例函数y=(x>0)过点A(4,3),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试直接写出符合条件的所有D点的坐标.23.在平面直角坐标系中,已知点A、B的坐标分别为(﹣,0)、(0,﹣1),把点A绕坐标原点O 顺时针旋转135°得点C ,若点C 在反比例函数y =的图象上. (1)求反比例函数的表达式;(2)若点D 在y 轴上,点E 在反比例函数y =的图象上,且以点A 、B 、D 、E 为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D 、E 的坐标.24.已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示. (1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A ,那么该用电器的可变电阻至少是多少?25.如图,直线y 1=x +b 交x 轴于点B ,交y 轴于点A (0,2),与反比例函数y 2=的图象交于C (1,m ),D (n ,﹣1),连接OC ,OD . (1)求k 的值; (2)求△COD 的面积.(3)根据图象直接写出y 1<y 2时,x 的取值范围.(4)点M 是反比例函数y 2=上一点,是否存在点M ,使点M 、C 、D 为顶点的三角形是直角三角形,且CD 为直角边,若存在,请直接写出点M 的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A 、图象必经过点(1,2),说法正确;B 、每一象限内y 随x 的增大而减少,说法正确;C 、图象在第一、三象限,说法正确;D 、若x >1,则y <2,说法错误,应为0<y <2.故选:D .2.解:∵k =﹣2<0,∴双曲线在第二,四象限,在每个象限内,y 随x 的增大而增大, 又∵x 1>0>x 2,∴A ,B 两点不在同一象限内, ∴y 1<0<y 2; 故选:A .3.解:当x =2时,y ===1,即当x >2时,反比例函数y =的函数值y 的取值范围是0<y <1, 故选:B . 4.解:设B 点坐标为(x ,y ),则xy =2,OA =x ,AB =y , ∴S △OAB =OA •AB =xy =×2=1,(本题也可以直接利用反比例函数系数k 的几何意义来求得答案). 故选:A .5.解:∵反比例函数y =(k ≠0)的图象经过点(2,5), ∴代入得:k =2×5=10, 即y =,∵点(﹣5,n )在反比例函数的图象上, ∴代入得:n ==﹣2,故选:C .6.解:∵反比例函数y =﹣中,k =﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上, 四个选项中只有C 选项符合. 故选:C .7.解:由题意得:E 、M 、D 位于反比例函数的图象上,则S △OCE =|k |,S △OAD =|k |.过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点, ∴S 矩形ABCO =4S 矩形ONMG =4|k |,由于函数图象在第一象限,k >0,则k +k +9=4k , 解得:k =3. 故选:A .8.解:连接AO ,由同底等高得到S △AOB =S △ABC =3, ∴|k |=3,即|k |=6, ∵反比例函数在第二象限过点A , ∴k =﹣6, 故选:D .9.解:∵它在每个象限内,y随x增大而增大,∴2017﹣k<0,则k>2017观察选项,只有A选项符合题意.故选:A.10.解:∵矩形的中心为直角坐标系的原点O,图中阴影部分的面积为8,∴矩形OCAD的面积是8,设A(x,y),则xy=8,∵点P是AC的中点,∴P(x, y),设反比例函数的解析式为y=,∵反比例函数图象于点P,∴k=x•y=xy=4,∴反比例函数的解析式为y=.故选:B.11.解:∵双曲线y=经过点D,∴第一象限的小长方形的面积是3,∴矩形ABCD的面积是3×4=12.故选:C.12.解:设OH=a,则HC=5a,∴C(6a,0)代入y=﹣x+m,得m=3a,设A点坐标为(a,n)代入y=﹣x+m,得n=﹣a+3a=a,∴A(a, a),代入y=得,∴k=a2,∴y=,解方程组,可得:,,∴A点坐标为(a, a),B点坐标为(5a, a),∴AH=a,∴S=×a×(5a﹣a)=5a2,△ABH=1,∵S△ABH∴5a2=1,即a2=,∴k=×=.故选:B.二.填空题(共7小题)13.解:∵反比例函数的图象y=经过A(2,﹣4),B(m,2)两点,∴a=2×(﹣4)=2m,解得m=﹣4∴点B(﹣4,2),∴由函数的图象可知,当x<﹣4或0<x<2时,一次函数值大于反比例函数值,故答案为x<﹣4或0<x<2.14.解:∵A(5,0),B(4,4),以OA、AB为边作▱OABC,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一个反比例函数的图象经过C点,则这个函数的解析式为:y=﹣.故答案为:y=﹣.15.解:作CE⊥x轴于E,如图,∵DB∥CE,∴===,设D(m,n),则C(2m,2n),∵C(2m,2n)在反比例函数图象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD =×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD与△BCD的面积比=mn: mn=3.故答案为3.16.解:如图,设C (m ,),D (n ,),则P (n ,), ∵S △AOC =3,S △BOD =3, ∴S △AOC =S △BOD ;所以①正确;∵S △POA =﹣n ×=﹣,S △POB =﹣n ×=﹣, ∴S △POA =S △POB ;所以②正确; ∵S 四边形OAPB =﹣n ×=﹣,S △ACD =×(﹣n )×(﹣)=﹣+3,∴S 四边形OAPB ≠S △ACD .所以③不正确. 故答案为①②.17.解:∵A (﹣1,a )在双曲线y =﹣(x <0)上, ∴a =2, ∴A (﹣1,2),∵点B 在直线y =mx ﹣1上, ∴B (0,﹣1), ∴AB ==,∵四边形ABCD 是正方形, ∴BC =AB =,设C (n ,0),∴=,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y=(x>0)上,∴k=2×3=6,故答案为6.18.解:当x=0时,y=4,∴B(0,4),当y=0时,x=1,∴A(1,0),∴OA=1,OB=4,∵ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,过点D、C作DM⊥x轴,CN⊥y轴,垂足为M、N,∴∠ABO=∠BCN=∠DAM,∵∠AOB=∠BNC=∠AMD=90°,∴△AOB≌△BNC≌△DMA(AAS),∴OA=DM=BN=1,AM=OB=CN=4∴OM=1+4=5,ON=4+1=5,∴C(4,5),D(5,1),把D(5,1)代入y=得:k=5,∴y=,当y=5时,x=1,∴E(1,5),点C向左平移到E时,平移距离为4﹣1=3,即:a=3,故答案为:3.19.解:∵E (0,3), ∴OE =3,∵AD 是Rt △ABC 中斜边BC 上的中线, ∴AD =DB =DC , ∴∠DAB =∠ABC , ∵∠BAC =∠AOE =90° ∴△ABC ∽△OAE ∴,∴OA •AC =AB •OE =3×2=6, 又∵反比例函数的图象在第四象限, ∴k =﹣6, 故答案为:﹣6. 三.解答题(共6小题)20.解:(1)把B (﹣8,﹣2)代入y 1=k 1x +2得﹣8k 1+2=﹣2,解得k 1=, ∴一次函数解析式为y 1=x +2; 把B (﹣8,﹣2)代入y 2=得k 2=﹣8×(﹣2)=16, ∴反比例函数解析式为y 2=,故答案为:,16;(2)∵当y 1>y 2时即直线在反比例函数图象的上方时对应的x 的取值范围, ∴﹣8<x <0或x >4; 故答案为:﹣8<x <0或x >4;(3)把A (4,m )代入y 2=得4m =16,解得m =4,∴点A 的坐标是(4,4),而点C 的坐标是(0,2), ∴CO =2,AD =OD =4.∴S 梯形ODAC =×(2+4)×4=12, ∵S 梯形ODAC :S △ODE =3:1, ∴S △ODE =×12=4, ∴OD •DE =4, ∴DE =2,∴点E 的坐标为(4,2).设直线OP 的解析式为y =kx ,把E (4,2)代入得4k =2,解得k =, ∴直线OP 的解析式为y =x . 21.解:(1)∵等边△OAB ,∴AB =BO =AO =4,∠ABO =∠BOA =∠OAB =60°, ∵点C 是AB 的中点, ∴BC =AC =2,过点C 作CM ⊥OB ,垂足为M ,在Rt △BCM 中,∠BCM =90°﹣60°=30°,BC =2, ∴BM =1,CM =,∴OM =4﹣1=3, ∴点C 的坐标为(﹣3,),代入y =得:k =﹣3答:k 的值为﹣3.(2)过点A 作AN ⊥OB ,垂足为N , 由题意得:AN =2CM =2,ON =OB =2,∴A (﹣2,2),设直线OA 的关系式为y =kx ,将A 的坐标代入得:k =﹣,∴直线OA 的关系式为:y =﹣x ,由题意得:,解得:舍去,,∴D(﹣,3)过D作DE⊥OB,垂足为E,S△OCD =S CMED+S△DOE﹣S△COM=S CMED=(+3)×(3﹣)=3,答:△OCD的面积为3.(3)①当与直线CD平行的直线y=mx+n过点O时,此时y=mx+n的n=0,②当与直线CD平行的直线y=mx+n经过点A时,设直线CD的关系式为y=ax+b,把C、D坐标代入得:,解得:a=1,b=3+∴直线CD的关系式为y=x+3+,∵y=mx+n过与直线y=x+3+平行,∴m=1,把A(﹣2,2)代入y=x+n得:n=2+2因此:0≤n≤2+2.答:n的取值范围为:0≤n≤2+2.22.解:(1)把A(4,3)代入y=得:k=12,当x=6时,y=12÷6=2,∴点B(6,2),答:k的值为12,点B的坐标为(6,2).(2)A(4,3),B(6,2)、C(6,0),BC=2,①过A 作BC 的平行线,在这条平行线上截取AD 1=BC ,AD 2=BC , 此时D 1(4,1),D 2(4,5),②过点C 作AB 的平行线与过B 作AC 的平行线相交于D 3, 过点A 作AM ⊥BC ,垂足为M ,过D 3作D 3N ⊥BC ,垂足为N , ∵ABCD 3是平行四边形, ∴AC =BD 3,∠ACM =∠DBN , ∴△ACM ≌△D 3BN (AAS ) ∴D 3N =AM =6﹣4=2,CM =BN =3, ∴D 3的横坐标为6+2=8,CN =3﹣2=1 ∴D 3(8,﹣1)答:符合条件的所有D 点的坐标为(4,1),(4,5),(8,﹣1).23.解:(1)由旋转得:OA =OA =,∠AOC =135°,过点C 作CM ⊥y 轴,垂足为M ,则∠COM =135°﹣90°=45°, 在Rt △OMC 中,∠COM =45°,OC =,∴OM =CM =1,∴点C (1,1),代入y =得: k =1, ∴反比例函数的关系式为:y =, 答:反比例函数的关系式为:y =(2)①当点E 在第三象限反比例函数的图象上,如图1,图2, ∵点D 在y 轴上,AEDB 是平行四边形, ∴AE ∥DB ,AE =BD ,AE ⊥OA , 当x =﹣时,y ==﹣,∴E (﹣,﹣)∵B(0,﹣1),BD=AE=,当点D在B的下方时,∴D(0,﹣1﹣)当点D在B的上方时,∴D(0,﹣1+),②当点E在第一象限反比例函数的图象上时,如图3,过点E作EN⊥y轴,垂足为N,∵ABED是平行四边形,∴AB=DE,AB=DE,∴∠ABO=∠EDO,∴△AOB≌△END(AAS),∴EN=OA=,DN=OB=1,当x=时,代入y=得:y=,∴E(,),∴ON=,OD=ON+DN=1+,∴D(0,1+)24.解(1)设反比例函数表达式为I=(k≠0)将点(10,4)代入得4=∴k=40∴反比例函数的表达式为(2)由题可知,当I=8时,R=5,且I随着R的增大而减小,∴当I≤8时,R≥5∴该用电器的可变电阻至少是5Ω.25.解:(1)把A(0,2)代入y=x+b得:b=2,1即一次函数的表达式为y 1=x +2,把C (1,m ),D (n ,﹣1)代入得:m =1+2,﹣1=n +2, 解得m =3,n =﹣3,即C (1,3),D (﹣3,﹣1),把C 的坐标代入y 2=得:3=,解得:k =3;(2)由y 1=x +2可知:B (﹣2,0),∴△AOC 的面积为×2×3+×2×1=4;(3)由图象可知:y 1<y 2时,x 的取值范围是x <﹣3或0<x <1;(4)当M 在第一象限,根据题意MC ⊥CD ,∵直线y 1=x +2,∴设直线CM 的解析式为y =﹣x +b 1,代入C (1,3)得,3=﹣1+b 1解得b 1=4,∴直线CM 为y =﹣x +4,解得,, ∴M (3,1);当M 在第三象限,根据题意MD ⊥CD ,∵直线y 1=x +2,∴设直线DM 的解析式为y =﹣x +b 2,代入D (﹣3,﹣1)得,﹣1=3+b 2解得b 2=﹣4,∴直线DM 为y =﹣x ﹣4,解得或,∴M(﹣1,﹣3),综上,点M的坐标为(3,1)或(﹣1,﹣3).。
人教版数学九年级下《反比例函数》基础测试题(含答案及解析)时间:60分钟总分:1001.以下函数中,是正比例函数的是()A. y=kx B. 3x+2y=0 C. xy−√2=0 D. y=2x+12.以下式子中,y是x的正比例函数的是()A. y=1x B. y=x2C. y=xx+1D. xy=13.正比例函数y=−32x中常数k为()A. −3B. 2C. −12D. −324.以下函数关系式中属于正比例函数的是()A. y=3xB. y=−2xC. y=x2+3D. x+y=55.以下关系式中:①y=2x;②yx =5;③y=−7x;④y=5x+1;⑤y=x2−1;⑥y=1x2;⑦xy=11,y是x的正比例函数的共有()A. 4个B. 3个C. 2个D. 1个6.假定函数y=x2m+1为正比例函数,那么m的值是()A. 1B. 0C. 0.5D. −17.以下所给的两个变量之间,是正比例函数关系的有()(1)某村有耕地346.2ℎm2,人口数量n逐年发作变化,该村人均占有的耕空中积m(ℎm2/人)与全村人口数n的关系;(2)导体两端的电压恒定时,导体中的电流与导体的电阻之间;(3)周长一定时,等腰三角形的腰长和底边边长之间;(4)面积5cm2的菱形,它的底边和底边上的高之间.A. 1个B. 2个C. 3个D. 4个8.一个圆柱的正面展开图是一个面积为4平方单位的矩形,那么这个圆柱的母线长L和底面半径r之间的函数关系是()A. 正比例函数B. 正比例函数C. 一次函数D. 二次函数9.以下关系中,两个量之间为正比例函数关系的是()A. 正方形的面积S与边长a的关系B. 正方形的周长l与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,长a与宽b之间的关系10.以下四个关系式中,y是x的正比例函数的是()A. y=4xB. y=13x C. y=1x2D. y=1x+1二、填空题〔本大题共10小题,共30.0分〕11.假定y=(m−3)x m2−2m−4是正比例函数,那么m=______ .12.正比例函数y=(2m−1)x m2−2,在每个象限内,y随x的增大而增大,那么m的值是______ .13.函数y=(m+1)x m2−2m−4是y关于x的正比例函数,那么m=______.14.假定正比例函数y=(2k−1)x3k2−2k−1经过第一、三象限,那么k=______15.函数y=(k−3)x 8−k2为正比例函数,那么k=______ .16.假设函数y=kx2k2+k−2是正比例函数,那么k=______ .17.正比例函数y=(m+2)x m2−10的图象散布在第二、四象限内,那么m的值为______ .18.假定函数y=(m−1)x m2−2是正比例函数,那么m的值等于______ .19.假定函数y=(3+m)x8−m2是正比例函数,那么m=______ .20.假定函数y=(m+1)x m2+3m+1是y关于x的正比例函数,那么m的值为______ .三、解答题〔本大题共5小题,共40.0分〕21.函数y=(m−1)x m2−m−1是正比例函数.(1)求m的值;(2)指出该函数图象所在的象限,在每个象限内,y随x的增大如何变化?,2)能否在这个函数的图象上.(3)判别点(1222.y是x的正比例函数,且事先x=2,y=−3,请你确定该正比例函数的解析式,并求事先y=6,自变量x的值.23.假定函数y=(m+1)x m2+3m+1是正比例函数,求m的值.24.函数y=(m2+2m−3)x|m|−2.(1)假定它是正比例函数,那么m=______ ;(2)假定它是正比例函数,那么m=______ .25.当k为何值时,y=(k−1)x k2−2是正比例函数?答案和解析【答案】1. C2. D3. D4. B5. C6. D7. C8. A9. D10. B11. −112. −113. 314. 2315. −316. −1或1217. −318. −119. 320. −2m−1≠0,解得m=0.21. 解:(1)由题意:{m2−m−1=−1(2)∵正比例函数的解析式为y=−1,x∴函数图象在二四象限,在每个象限内,y随x的增大而增大.(3)事先x=1,y=−2≠2,2,2)不在这个函数的图象上.∴点(12(k≠0),22. 解:设正比例函数y=kx∵事先x=2,y=−3,∴k=xy=2×(−3)=−6,∴y与x之间的函数关系式y=−6.x,那么x=−1.把y=6代入y=−6x23. 解:由函数y=(m+3)x m2+3m+1为正比例函数可知m2+3m+1=−1,且m+1≠0解得m=−1(舍去),m=−2,m的值是−2.24. 3;−125. 解:y=(k−1)x k2−2是正比例函数,得{k2−2=−1,k−1≠0解得k=−1,事先k=−1,y=(k−1)x k2−2是正比例函数.【解析】1. 解:A、不是正比例函数,故此选项错误;B、不是正比例函数,故此选项错误;C、是正比例函数,故此选项正确;D、不是正比例函数,故此选项错误;应选:C.依据正比例函数的概念形如y=kx(k为常数,k≠0)的函数称为正比例函数停止剖析即可.此题主要考察了正比例函数的概念,判别一个函数能否是正比例函数,首先看看两个变量能否具有正比例关系,然后依据正比例函数的意义去判别,其方式为y=kx(k为常数,k≠0)或y=kx−1(k为常数,k≠0).2. 【剖析】此题考察了正比例函数,应用正比例函数的定义是解题关键.依据正比例函数的意义,可得答案.【解答】解:y=1x,y=x−1,yx=1是正比例函数.应选D.3. 解:正比例函数y=−32x 中常数k为−32,应选D.找出正比例函数解析式中k的值即可.此题考察了正比例函数的定义,熟练掌握正比例函数解析式的普通方式是解此题的关键.4. 解:A、该函数是正比例函数,故本选项错误;B、该函数契合正比例函数的定义,故本选项正确;C、该函数是二次函数,故本选项错误;D、该函数是一次函数,故本选项错误;应选:B.依据正比例函数的定义停止判别.此题考察了正比例函数的定义,正比例函数的普通方式是y=kx(k≠0).5. 解:①y=2x是正比例函数;②yx=5可化为y=5x,不是正比例函数;③y=−7x契合正比例函数的定义,是正比例函数;④y=5x+1是一次函数;⑤y=x2−1是二次函数;⑥y=1x2不是正比例函数;⑦xy=11可化为y=11x,契合正比例函数的定义,是正比例函数.应选C.区分依据正比例函数、二次函数及一次函数的定义对各小题停止逐一剖析即可.此题考察的是正比例函数的定义,熟知形如y=kx(k为常数,k≠0)的函数称为正比例函数是解答此题的关键.6. 解:依据题意得2m+1=−1,解得m=−1.应选D.依据正比例函数的定义.即y=kx(k≠0),只需令2m+1=−1即可.此题考察了正比例函数的定义,重点是将普通式y=kx(k≠0)转化为y=kx−1(k≠0)的方式.7. 解:(1)由题意可得:m=346.2n,是正比例函数关系;(2)由题意可得:I=UR,是正比例函数关系;(3)设腰长为x,底边长为y,由题意可得:x=C−y2,不是正比例函数关系;(4)设底边长为x,底边上的高为h,依据题意可得:x=5ℎ,是正比例函数关系.应选:C.依据题意区分得出两变量的关系式,进而应用正比例函数的定义得出答案.此题主要考察了正比例函数的定义,正确得出各函数关系是解题关键.8. 解:依据题意,得2πrL=4,那么L=42πr =2πr.所以这个圆柱的母线长L和底面半径r之间的函数关系是正比例函数.应选A.依据题意,由等量关系〝矩形的面积=底面周长×母线长〞列出函数表达式再判别它们的关系那么可.此题考察了正比例函数的定义和圆柱正面积的求法,触及的知识面比拟广.9. 解:A、依据题意,得S=a2,所以正方形的面积S与边长a的关系是二次函数关系;故本选项错误;B、依据题意,得l=4a,所以正方形的周长l与边长a的关系是正比例函数关系;故本选项错误;C、依据题意,得S=20a,所以正方形的面积S与边长a的关系是正比例函数关系;故本选项错误;D、依据题意,得b=40a,所以正方形的面积S与边长a的关系是正比例函数关系;故本选项正确.应选D.依据每一个选项的题意,列出方程,然后由正比例函数的定义停止逐一验证即可.此题考察了正比例函数的定义.正比例函数的普通方式是y=kx(k≠0).10. 解:y=13x =13x是正比例函数,应选:B.依据正比例函数的定义,可得答案.此题考察了正比例函数的定义,应用正比例函数的定义是解题关键.11. 解:由函数y=(m−3)x m2−2m−4是正比例函数,可知m2−2m−4=−1,m−3≠0,解得:m=−1.故答案为:−1.依据正比例函数的定义可知m2−2m−4=−1,m−3≠0,继而求出m的值.(k≠0)转化为y=此题考察了正比例函数的定义,属于基础题,重点是将普通式y=kxkx−1(k≠0)的方式.m2−2=−1,12. 解:依据题意得:{2m−1<0解得:m=−1.故答案为−1.依据正比例函数的定义列出方程求解,再依据它的性质决议解的取舍.,事先k>0,在每一个象限内,函此题考察了正比例函数的性质.关于正比例函数y=kx数值y随自变量x的增大而减小;事先k<0,在每一个象限内,函数值y随自变量x的增大而增大.13. 解:∵函数y=(m+1)x m2−2m−4是y关于x的正比例函数,∴m2−2m−4=−1且m+1≠0,解得m=3.故答案是:3.依据正比例函数的普通方式失掉m2−2m−4=−1且m+1≠0,由此来求m的值即可.(k≠0).此题考察了正比例函数的定义,正比例函数的普通方式是y=kx14. 解:∵是正比例函数,∴3k2−2k−1=−1,,解得k=0,或k=23∵正比例函数y=(2k−1)x3k2−2k−1经过第一、三象限,∴2k−1>0,解答k>0.5,∴k=2.3.故答案为:23让正比例函数中x的指数为−1,系数大于0列式求值即可.考察正比例函数的定义及正比例函数图象的性质;用到的知识点为:正比例函数的普通方式为y=kx−1(k≠0);正比例函数中的比例系数大于0,图象的两个分支在一、三象限.15. 解:∵函数y=(k−3)x 8−k2为正比例函数,∴8−k2=−1且k−3≠0.解得k=−3.故答案是:−3.依据正比例函数的定义失掉8−k2=−1且k−3≠0.(k≠0).此题考察了正比例函数的定义,正比例函数的普通方式是y=kx16. 解:依据题意得{2k2+k−2=−1,k≠0解得k=−1或1.2普通地,假设两个变量x、y之间的关系可以表示成y=k或写成y=kx−1(k为常数,k≠x0)的方式,那么称y是x的正比例函数.(k≠0),转化为y=kx−1(k≠0)的方式,依据(1)将正比例函数解析式的普通式y=kx正比例函数的定义条件可以求出k的值;(2)特别留意不要疏忽k≠0这个条件.17. 解:依据题意得,m2−10=−1且m+2<0,解得m1=3,m2=−3且m<−2,所以m=−3.故答案为:−3.依据正比例函数的定义可得m2−10=−1,依据函数图象散布在第二、四象限内,可得m+2<0,然后求解即可.(k≠0),此题考察了正比例函数的定义,正比例函数的性质,关于正比例函数y=kx(1)k>0,正比例函数图象在一、三象限;(2)k<0,正比例函数图象在第二、四象限内.18. 解:∵y=(m−1)x m2−2是正比例函数,∴m2−2=−1,m−1≠0,∴m=−1.故答案为−1.依据正比例函数的定义先求出m的值,再依据系数不为0停止取舍.(k≠0)转化为y=kx−1(k≠0)的此题考察了正比例函数的定义,重点是将普通式y=kx方式.19. 解:依据题意得:{8−m2=−1,3+m≠0解得:m=3.故答案是:3.依据正比例函数的普通方式:x的次数是−1,且系数不等于0,即可求解.(k≠0)转化为y=kx−1(k≠0)的此题考察了正比例函数的定义,重点是将普通式y=kx方式.20. 解:∵函数y=(m+1)x m2+3m+1是y关于x的正比例函数,∴{m+1≠0m2+3m+1=−1,解得m=−2.故答案为:−2.依据正比例函数的定义列出关于m的不等式组,求出m的值即可.(k为常数,k≠0)的函数称为正比例此题考察的是正比例函数的定义,熟知形如y=kx函数是解答此题的关键.m−1≠0,解得m=0.21. (1)依据正比例函数的定义可得{m2−m−1=−1(2)应用正比例函数的性质即可处置效果;(3)应用待定系数法即可处置效果;此题考察正比例函数图象上的点的特征,正比例函数的性质等知识,解题的关键是灵敏运用所学知识处置效果,属于中考常考题型.(k≠0),然后应用待定系数法停止求解;22. 由题意y是x的正比例函数,可设y=kx把y=6代入函数解析式求得相应的x的值即可.此题主要考察应用待定系数法求函数的解析式,是一道基础题,比拟复杂.23. 依据正比例函数的定义先求出m的值.(k≠0)转化为y=kx−1(k≠0)的此题考察了正比例函数的定义,重点是将普通式y=kx方式.24. 解:(1)y=(m2+2m−3)x|m|−2是正比例函数,m2+2m−3≠0,|m|−2=1m=3,(2)y=(m2+2m−3)x|m|−2是正比例函数,m2+2m−3≠0,|m|−2=−1,m=−1,故答案为:3,−1.(1)依据y=kx(k是常数,k≠0)是正比例函数,可得m的值;(2)依据y=k(k是常数,k≠0)是正比例函数,可得m的值.x此题考察了正比例函数,留意k不能为0.25. 依据正比例函数的定义,可得答案.(k≠0)转化为y=kx−1(k≠0)的此题考察了正比例函数的定义,重点是将普通式y=kx方式.。
第二十六章反比例函数单元练习题(含答案)一、选择题1.矩形面积为4,它的一边长y与邻边长x的函数关系用图象表示大致是() A.B.C.D.2.)若点M(-3,a),N(4,-6)在同一个反比例函数的图象上,则a的值为() A.8B.-8C.-7D.53.对于反比例函数y=(k≠0),下列说法不正确的是()A.它的图象分布在第一、三象限B.点(k,k)在它的图象上C.它的图象关于原点对称D.在每个象限内y随x的增大而增大4.平面直角坐标系中,反比例函数y=的图象只可能是()A.B.C.D.5.如图,点B是反比例函数y=(x>0)的图象上任意一点,过点B分别向x轴、y轴作垂线,垂足分别为点A和点C,则矩形OABC的面积为()A.1B.2C.4D.不能确定6.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是() A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例7.如图,A,B,C为反比例函数图象上的三个点,分别从A,B,C向xy轴作垂线,构成三个矩形,它们的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1=S2>S3B.S1<S2<S3C.S1>S2>S3D.S1=S2=S38.已知函数y=-(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C.D.9.)函数y=(a-2)是反比例函数,则a的值是()A.1或-1B.-2C.2D.2或-210.在反比例函数y=的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<1二、填空题11.长方形的面积为100,则长方形的长y与宽x间的函数关系是____________.12.已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是______________.13.如果反比例函数y=的图象经过点(1,3),那么它一定经过点(-1,______).14.小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1 200牛和0.5米,那么动力F和动力臂之间的函数关系式是_______________.15.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为________________.16.已知函数y=(k-3)为反比例函数,则k=__________.17.小王驾车从甲地到乙地,他以70千米/时的平均速度4小时到达目的地,当他按原路匀速返回甲地时,汽车的速度y(千米/时)与时间x(时)(x≠0)的函数关系式为________________.18.已知圆柱的侧面积是10π cm2,若圆柱底面半径为r cm,高为h cm,则h与r的函数关系式是______________.19.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是___________.20.若函数y=(3+m)是反比例函数,则m=______.三、解答题21.甲、乙两地相距100 km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.22.画出反比例函数y=的图象,并根据图象回答下列问题:(1)根据图象指出x=-2时y的值.(2)根据图象指出当-2<x<1时,y的取值范围.(3)根据图象指出当-3<y<2时,x的取值范围.23.当k为何值时,y=(k-1)是反比例函数?24.如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成的矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.25.某科技小组进行野外考察,途中遇到一片十几米宽的泥地,他们沿着前进路线铺了若干块木板,构成一条临时近道,木板对地面的压强P(Pa)是木板面积S( m2)的反比例函数,其图象如图所示.(1)写出这一函数的关系式和自变量的取值范围.(2)当木板面积为0.2 m2时,压强是多少?(3)如果要求压强不超过6 000 Pa,那么木板的面积至少为多少?26.如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:(1)猜测y与x之间的函数关系,求出函数关系式并加以验证;(2)当砝码的质量为24 g时,活动托盘B与点O的距离是多少?(3)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?27.我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为a=(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:______________(s为常数,s≠0).28.在同一直角坐标系中分别画出函数y=x与y=的图象,利用这两个图象回答:(1)x取什么值时,x比大?(2)x取什么值时,x比小?答案解析1.【答案】A【解析】∵xy=4,∴y=(x>0,y>0),故选A.2.【答案】A【解析】设反比例函数解析式为y=,根据题意得k=-3a=4×(-6),解得a=8.故选A.3.【答案】D【解析】A.反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,故本选项错误;B.把点(k,k),代入反比例函数y=(k≠0)中成立,故本选项错误;C.反比例函数y=(k≠0),k2>0根据反比例函数的性质它的图象分布在第一、三象限,是关于原点对称,故本选项错误;D.反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,在每个象限内,y随x的增大而减小,故本选项正确.故选D.4.【答案】A【解析】由k=3>0可知,反比例函数的图象在一三象限.故选A.5.【答案】B【解析】矩形OABC的面积=|2|=2.故选B.6.【答案】B【解析】设该直角三角形的两直角边是a、b,面积为S.则S=ab.∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选B.7.【答案】D【解析】过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.设点A坐标为(x1,y1) 点B坐标(x2,y2) 点C坐标(x3,y3),∵S1=x1·y1=k,S2=x2·y2=k,S3=x3·y3=k,∴S1=S2=S3.故选D.8.【答案】C【解析】由图可知,m<-1,n=1,∴m+n<0,∴一次函数y=mx+n经过第一、二、四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二、四象限;故选C.9.【答案】A【解析】∵函数y=(a-2)是反比例函数,∴a2-2=-1,a-2≠0.解得a=±1.故选A.10.【答案】A【解析】根据题意,在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,即可得k-1>0,解得k>1.故选A.11.【答案】y=【解析】根据长方形的面积公式即可求解.长方形的面积为100,则长方形的长y=,故答案是y=.12.【答案】(-1,-3)【解析】∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(-1,-3).故答案为(-1,-3).13.【答案】-3【解析】∵反比例函数y=的图象经过点(1,3),∴k=1×3=3,∵3=(-1)×(-3),∴它一定过点(-1,-3).14.【答案】F=【解析】由题意知,F阻=1 200牛,L阻=0.5米,由杠杆平衡条件得:F动×L动=F阻×L阻,动力F===,故答案为F=.15.【答案】(2,-3)【解析】根据题意知,点A与B关于原点对称,∵点A的坐标是(-2,3),∴B点的坐标为(2,-3).故答案是(2,-3).16.【答案】-3【解析】∵函数y=(k-3)为反比例函数,∴8-k2=-1且k-3≠0.解得k=-3.故答案是-3.17.【答案】y=(x>0)【解析】根据速度×时间=路程,可以求出甲地去乙地的路程;再根据行驶速度=路程÷时间,得到y与x的函数解析式.由已知,得甲地去乙地的路程=70×4=280,则汽车的速度y(千米/时)与时间x(时)(x≠0)的函数关系式为y=(x>0).18.【答案】h=(r>0)【解析】圆柱的侧面积是一个长方形,根据面积=底面周长×高=2πrh可列出关系式.由题意,得h与r的函数关系式是h==,半径应大于0.故本题答案为h=(r>0).19.【答案】y1<y2【解析】∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2.20.【答案】3【解析】根据反比例函数的一般形式:x的次数是-1,且系数不等于0,即可求解.根据题意,得解得m=3.故答案是3.21.【答案】解∵路程为100,速度为v,∴时间t=,t是v的反比例函数.【解析】时间=路程÷速度,把相关数值代入即可求得相关函数,看符合哪类函数的一般形式即可.22.【答案】解根据题意,作出y=的图象,(1)根据图象,过(-2,0)作与x轴垂直的直线,与双曲线相交,过交点向y轴引垂线,易得y =-3,故当x=-2时,y的值为-3,(2)根据图象,当-2<x<1时,可得y<-3或y>6.(3)同理,当-3<y<2时,x的取值范围是x<-2或x>3.【解析】根据题意,作出y=的图象,根据所作的图象回答问题即可.23.【答案】解y=(k-1)是反比例函数,得解得k=-1,当k=-1时,y=(k-1)是反比例函数.【解析】根据反比例函数的定义,可得答案.即y=(k≠0)中,k-1≠0,k2-2=-1.24.【答案】解(1)由题意,得xy=60,即y=.∴所求的函数关系式为y=.(2)由y=,且x,y都是正整数,x可取1,2,3,4,5,6,10,12,15,20,30,60,又∵2x+y≤26,0<y≤12,∴符合条件的有x=5时,y=12;x=6时,y=10;x=10时,y=6.答:满足条件的围建方案有AD=5 m,DC=12 m或AD=6 m,DC=10 m或AD=10 m,DC =6 m.【解析】(1)由面积=长×宽,列出y与x之间的函数关系式;(2)由AD与DC均是正整数知,x、y的值均是60的因数,所以x=1,2,3,4,5,6,10,12,15,20,30,60.再根据三边材料总长不超过26 m,AB边长不超过12 m,得到关于x、y的不等式,然后将x的可能取值代入验证,得到AD和DC的长.25.【答案】解(1)设所求P与S之间的函数关系式为P=(k≠0).∵A(1.5,400)在该函数的图象上,∴400=,解得k=600.∴P与S之间的函数关系式为P=(S>0).(2)当S=0.2时,P==3 000,故当木板面积为0.2 m2时,压强是3 000 Pa.(3)由题意知,≤6 000,解得S≥0.1.故木板的面积至少为0.1 m2.【解析】26.【答案】解(1)由表格猜测y与x之间的函数关系为反比例函数,∴设y=(k≠0),把x=10,y=30代入,得k=300,∴y=,将其余各点代入验证均适合,∴y与x的函数关系式为y=;(2)把y=24代入y=,得x=12.5,∴当砝码的质量为24 g时,活动托盘B与点O的距离是12.5 cm.(3)根据反比例函数的增减性,即可得出,随着活动托盘B与O点的距离不断减小,砝码的示数会不断增大;∴应添加砝码.【解析】(1)观察可得:x,y的乘积为定值300,故y与x之间的函数关系为反比例函数,将数据代入用待定系数法可得反比例函数的关系式;(2)把x=24代入解析式求解,可得答案;(3)利用函数增减性即可得出,随着活动托盘B与O点的距离不断增大,砝码的示数应该不断减小.27.【答案】解本题通过范例,再联系日常生活、生产或学习当中可以举出许许多多与反比例函数有关的例子来,例如:实例1,三角形的面积S一定时,三角形底边长y是高x的反比例函数,其函数关系式可以写出y=(S为常数,S≠0).实例2,甲、乙两地相距100千米,一辆汽车从甲地开往乙地,这时汽车到达乙地所用时间y(小时)是汽车平均速度x(千米/小时)的反比例函数,其函数关系式可以写出y=.【解析】联系日常生活,要解答本题关键要找出日常生活中两个数的乘积是一个不为零的常数,写出其函数关系式.28.【答案】解在y=x经过点(0,0)和(1,1).(1)当-1<x<0或x>1时,x比大;(2)当x<-1或0<x<1时,x比小.【解析】首先画出两个函数的图象.(1)当y=x的图象在反比例函数的图象的上边,x比大;(2)当y=x的图象在反比例函数的图象的下边,x比小.第二十六章反比例函数单元练习题(含答案)一、选择题1.矩形面积为4,它的一边长y与邻边长x的函数关系用图象表示大致是()A.B.C.D.2.)若点M(-3,a),N(4,-6)在同一个反比例函数的图象上,则a的值为() A.8B.-8C.-7D.53.对于反比例函数y=(k≠0),下列说法不正确的是()A.它的图象分布在第一、三象限B.点(k,k)在它的图象上C.它的图象关于原点对称D.在每个象限内y随x的增大而增大4.平面直角坐标系中,反比例函数y=的图象只可能是()A.B.C.D.5.如图,点B是反比例函数y=(x>0)的图象上任意一点,过点B分别向x轴、y轴作垂线,垂足分别为点A和点C,则矩形OABC的面积为()A.1B.2C.4D.不能确定6.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是() A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例7.如图,A,B,C为反比例函数图象上的三个点,分别从A,B,C向xy轴作垂线,构成三个矩形,它们的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1=S2>S3B.S1<S2<S3C.S1>S2>S3D.S1=S2=S38.已知函数y=-(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C.D.9.)函数y=(a-2)是反比例函数,则a的值是()A.1或-1B.-2C.2D.2或-210.在反比例函数y=的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<1二、填空题11.长方形的面积为100,则长方形的长y与宽x间的函数关系是____________.12.已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是______________.13.如果反比例函数y=的图象经过点(1,3),那么它一定经过点(-1,______).14.小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1 200牛和0.5米,那么动力F和动力臂之间的函数关系式是_______________.15.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为________________.16.已知函数y=(k-3)为反比例函数,则k=__________.17.小王驾车从甲地到乙地,他以70千米/时的平均速度4小时到达目的地,当他按原路匀速返回甲地时,汽车的速度y(千米/时)与时间x(时)(x≠0)的函数关系式为________________.18.已知圆柱的侧面积是10π cm2,若圆柱底面半径为r cm,高为h cm,则h与r的函数关系式是______________.19.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是___________.20.若函数y=(3+m)是反比例函数,则m=______.三、解答题21.甲、乙两地相距100 km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.22.画出反比例函数y=的图象,并根据图象回答下列问题:(1)根据图象指出x=-2时y的值.(2)根据图象指出当-2<x<1时,y的取值范围.(3)根据图象指出当-3<y<2时,x的取值范围.23.当k为何值时,y=(k-1)是反比例函数?24.如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成的矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.25.某科技小组进行野外考察,途中遇到一片十几米宽的泥地,他们沿着前进路线铺了若干块木板,构成一条临时近道,木板对地面的压强P(Pa)是木板面积S( m2)的反比例函数,其图象如图所示.(1)写出这一函数的关系式和自变量的取值范围.(2)当木板面积为0.2 m2时,压强是多少?(3)如果要求压强不超过6 000 Pa,那么木板的面积至少为多少?26.如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:(1)猜测y与x之间的函数关系,求出函数关系式并加以验证;(2)当砝码的质量为24 g时,活动托盘B与点O的距离是多少?(3)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?27.我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为a=(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:______________(s为常数,s≠0).28.在同一直角坐标系中分别画出函数y=x与y=的图象,利用这两个图象回答:(1)x取什么值时,x比大?(2)x取什么值时,x比小?答案解析1.【答案】A【解析】∵xy=4,∴y=(x>0,y>0),故选A.2.【答案】A【解析】设反比例函数解析式为y=,根据题意得k=-3a=4×(-6),解得a=8.故选A.3.【答案】D【解析】A.反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,故本选项错误;B.把点(k,k),代入反比例函数y=(k≠0)中成立,故本选项错误;C.反比例函数y=(k≠0),k2>0根据反比例函数的性质它的图象分布在第一、三象限,是关于原点对称,故本选项错误;D.反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,在每个象限内,y随x的增大而减小,故本选项正确.故选D.4.【答案】A【解析】由k=3>0可知,反比例函数的图象在一三象限.故选A.5.【答案】B【解析】矩形OABC的面积=|2|=2.故选B.6.【答案】B【解析】设该直角三角形的两直角边是a、b,面积为S.则S=ab.∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选B.7.【答案】D【解析】过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.设点A坐标为(x1,y1) 点B坐标(x2,y2) 点C坐标(x3,y3),∵S1=x1·y1=k,S2=x2·y2=k,S3=x3·y3=k,∴S1=S2=S3.故选D.8.【答案】C【解析】由图可知,m<-1,n=1,∴m+n<0,∴一次函数y=mx+n经过第一、二、四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二、四象限;故选C.9.【答案】A【解析】∵函数y=(a-2)是反比例函数,∴a2-2=-1,a-2≠0.解得a=±1.故选A.10.【答案】A【解析】根据题意,在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,即可得k-1>0,解得k>1.故选A.11.【答案】y=【解析】根据长方形的面积公式即可求解.长方形的面积为100,则长方形的长y=,故答案是y=.12.【答案】(-1,-3)【解析】∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(-1,-3).故答案为(-1,-3).13.【答案】-3【解析】∵反比例函数y=的图象经过点(1,3),∴k=1×3=3,∵3=(-1)×(-3),∴它一定过点(-1,-3).14.【答案】F=【解析】由题意知,F阻=1 200牛,L阻=0.5米,由杠杆平衡条件得:F动×L动=F阻×L阻,动力F===,故答案为F=.15.【答案】(2,-3)【解析】根据题意知,点A与B关于原点对称,∵点A的坐标是(-2,3),∴B点的坐标为(2,-3).故答案是(2,-3).16.【答案】-3【解析】∵函数y=(k-3)为反比例函数,∴8-k2=-1且k-3≠0.解得k=-3.故答案是-3.17.【答案】y=(x>0)【解析】根据速度×时间=路程,可以求出甲地去乙地的路程;再根据行驶速度=路程÷时间,得到y与x的函数解析式.由已知,得甲地去乙地的路程=70×4=280,则汽车的速度y(千米/时)与时间x(时)(x≠0)的函数关系式为y=(x>0).18.【答案】h=(r>0)【解析】圆柱的侧面积是一个长方形,根据面积=底面周长×高=2πrh可列出关系式.由题意,得h与r的函数关系式是h==,半径应大于0.故本题答案为h=(r>0).19.【答案】y1<y2【解析】∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2.20.【答案】3【解析】根据反比例函数的一般形式:x的次数是-1,且系数不等于0,即可求解.根据题意,得解得m=3.故答案是3.21.【答案】解∵路程为100,速度为v,∴时间t=,t是v的反比例函数.【解析】时间=路程÷速度,把相关数值代入即可求得相关函数,看符合哪类函数的一般形式即可.22.【答案】解根据题意,作出y=的图象,(1)根据图象,过(-2,0)作与x轴垂直的直线,与双曲线相交,过交点向y轴引垂线,易得y =-3,故当x=-2时,y的值为-3,(2)根据图象,当-2<x<1时,可得y<-3或y>6.(3)同理,当-3<y<2时,x的取值范围是x<-2或x>3.【解析】根据题意,作出y=的图象,根据所作的图象回答问题即可.23.【答案】解y=(k-1)是反比例函数,得解得k=-1,当k=-1时,y=(k-1)是反比例函数.【解析】根据反比例函数的定义,可得答案.即y=(k≠0)中,k-1≠0,k2-2=-1.24.【答案】解(1)由题意,得xy=60,即y=.∴所求的函数关系式为y=.(2)由y=,且x,y都是正整数,x可取1,2,3,4,5,6,10,12,15,20,30,60,又∵2x+y≤26,0<y≤12,∴符合条件的有x=5时,y=12;x=6时,y=10;x=10时,y=6.答:满足条件的围建方案有AD=5 m,DC=12 m或AD=6 m,DC=10 m或AD=10 m,DC =6 m.【解析】(1)由面积=长×宽,列出y与x之间的函数关系式;(2)由AD与DC均是正整数知,x、y的值均是60的因数,所以x=1,2,3,4,5,6,10,12,15,20,30,60.再根据三边材料总长不超过26 m,AB边长不超过12 m,得到关于x、y的不等式,然后将x的可能取值代入验证,得到AD和DC的长.25.【答案】解(1)设所求P与S之间的函数关系式为P=(k≠0).∵A(1.5,400)在该函数的图象上,∴400=,解得k=600.∴P与S之间的函数关系式为P=(S>0).(2)当S=0.2时,P==3 000,故当木板面积为0.2 m2时,压强是3 000 Pa.(3)由题意知,≤6 000,解得S≥0.1.故木板的面积至少为0.1 m2.【解析】26.【答案】解(1)由表格猜测y与x之间的函数关系为反比例函数,∴设y=(k≠0),把x=10,y=30代入,得k=300,∴y=,将其余各点代入验证均适合,∴y与x的函数关系式为y=;(2)把y=24代入y=,得x=12.5,∴当砝码的质量为24 g时,活动托盘B与点O的距离是12.5 cm.(3)根据反比例函数的增减性,即可得出,随着活动托盘B与O点的距离不断减小,砝码的示数会不断增大;∴应添加砝码.【解析】(1)观察可得:x,y的乘积为定值300,故y与x之间的函数关系为反比例函数,将数据代入用待定系数法可得反比例函数的关系式;(2)把x=24代入解析式求解,可得答案;(3)利用函数增减性即可得出,随着活动托盘B与O点的距离不断增大,砝码的示数应该不断减小.27.【答案】解本题通过范例,再联系日常生活、生产或学习当中可以举出许许多多与反比例函数有关的例子来,例如:实例1,三角形的面积S一定时,三角形底边长y是高x的反比例函数,其函数关系式可以写出y=(S为常数,S≠0).实例2,甲、乙两地相距100千米,一辆汽车从甲地开往乙地,这时汽车到达乙地所用时间y(小时)是汽车平均速度x(千米/小时)的反比例函数,其函数关系式可以写出y=.【解析】联系日常生活,要解答本题关键要找出日常生活中两个数的乘积是一个不为零的常数,写出其函数关系式.28.【答案】解在y=x经过点(0,0)和(1,1).(1)当-1<x<0或x>1时,x比大;(2)当x<-1或0<x<1时,x比小.【解析】首先画出两个函数的图象.(1)当y=x的图象在反比例函数的图象的上边,x比大;(2)当y=x的图象在反比例函数的图象的下边,x比小.九年级(下)第一次段测数学试卷(解析版)一、选择题(本大题共10小题,共30.0分)1.在将式子(m>0)化简时,小明的方法是:;小亮的方法是:;小丽的方法是:.则下列说法正确的是()A. 小明、小亮的方法正确,小丽的方法不正确B. 小明、小丽的方法正确,小亮的方法不正确C. 小明、小亮、小丽的方法都正确D. 小明、小丽、小亮的方法都不正确2.如图,丝带重叠的部分一定是()A. 正方形B. 矩形C. 菱形D. 都有可能3.若关于x的不等式组有实数解,则a的取值范围是()A. B. C. D.4.期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师:“我班的学生考得还不错,有一半的学生考79分以上,一半的学生考不到79分.”王老师:“我班大部分的学生都考在80分到85分之间喔.”依照上面两位老师所叙述的话你认为林、王老师所说的话分别针对()A. 平均数、众数B. 平均数、极差C. 中位数、方差D. 中位数、众数5.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.6.如图,AT是⊙O的切线,AB是⊙O的弦,∠B=55°,则∠BAT等于()A.B.C.D.7.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.B.C.D.8.如图,直线l上有两动点C、D,点A、点B在直线l同侧,且A点与B点分别到l的距离为a米和b米(即图中AA′=a米,BB′=b米),且A′B′=c米,动点CD之间的距离总为S米,使C到A的距离与D到B的距离之和最小,则AC+BD的最小值为()A. B.C. D.9.如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、Q分别是、上一点(不与端点重合),如果∠MNP=∠MNQ,下面结论:①∠1=∠2;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.其中正确的是()A. B. C. D.10.如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x 轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.分解因式:a2+2ab+b2-4=______.12.三张完全相同的卡片上分别写有函数y=3x,y=,y=x2,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y随x的增大而增大的概率是______.13.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是______.14.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为______.15.二次函数y=x2-8x的最低点的坐标是______.16.二次函数y=x2+2的图象,与y轴的交点坐标为______.三、计算题(本大题共1小题,共10.0分)17.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个红球的概率为0.75.(1)根据题意,袋中有______个蓝球;(2)若第一次随机摸出一球,不放回,再随机摸出第二个球,请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).四、解答题(本大题共8小题,共92.0分)18.解方程:(1)=(2)+1=.19.某民营企业准备用14000元从外地购进A、B两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.(1)该民营企业从外地购得A、B两种商品各多少件?(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将A、B两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.。
二十六章 反比例函数测试题 26.1 反比例函数 第1课时 反比例函数
1.下列函数中,不是反比例函数的是( ) A.y=-3x B.y=-32x C.y=1x-1 D.3xy=2
2.已知点P(-1,4)在反比例函数y=kx(k≠0)的图象上,则k的值是( ) A.-14 B.14 C.4 D.-4 3.反比例函数y=15x中的k值为( ) A.1 B.5 C.15 D.0 4.近视眼镜的度数y(单位:度)与镜片焦距x(单位:m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数解析式为( )
A.y=400x B.y=14x C.y=100x D.y=1400x 5.若一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( ) A.正比例函数关系 B.反比例函数关系 C.一次函数关系 D.不能确定
6.反比例函数y=kx的图象与一次函数y=2x+1的图象都经过点(1,k),则反比例函数的解析式是____________. 7.若y=1x2n-5是反比例函数,则n=________.
8.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数解析式是__________(不考虑x的取值范围).
9.已知直线y=-2x经过点P(-2,a),反比例函数y=kx(k≠0)经过点P关于y轴的对称点P′. (1)求a的值; (2)直接写出点P′的坐标; (3)求反比例函数的解析式. 10.已知函数y=(m+1)xm2-2是反比例函数,求m的值. 11.分别写出下列函数的关系式,指出是哪种函数,并确定其自变量的取值范围. (1)在时速为60 km的运动中,路程s(单位:km)关于运动时间t(单位:h)的函数关系式; (2)某校要在校园中辟出一块面积为84 m2的长方形土地做花圃,这个花圃的长y(单位:m)关于宽x(单位:m)的函数关系式.
第2课时 反比例函数的图象和性质 1.反比例函数y=-1x(x>0)的图象如图2617,随着x值的增大,y值( ) 图2617 A.增大 B.减小 C.不变 D.先增大后减小 2.某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( ) A.(-3,2) B.(3,2) C.(2,3) D.(6,1)
3.反比例函数y=k2+1x的图象大致是( )
4.如图2618,正方形ABOC的边长为2,反比例函数y=kx的图象经过点A,则k 的值是( ) 图2618 A.2 B.-2 C.4 D.-4
5.已知反比例函数y=1x,下列结论中不正确的是( ) A.图象经过点(-1,-1) B.图象在第一、三象限 C.当x>1时,0D.当x<0时,y随着x的增大而增大
6.已知反比例函数y=bx(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过第几象限.( ) A.一 B.二 C.三 D.四
7.若反比例函数y=kx(k<0)的函数图象过点P(2,m),Q(1,n),则m与n的大小关系是:m____n (填“>”“=”或“<”). 8.已知一次函数y=x-b与反比例函数y=2x的图象,有一个交点的纵坐标是2,则b的值为________. 9.已知y是x的反比例函数,下表给出了x与y的一些值:
x -2 -1 12 1
y 23 2 -1
(1)求这个反比例函数的解析式; (2)根据函数解析式完成上表.
10.(2012年广东)如图2619,直线y=2x-6与反比例函数y=kx(x>0)的图象交于点A(4,2),与x轴交于点B.
(1)求k的值及点B的坐标; (2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由. 图2619 11.当a≠0时,函数y=ax+1与函数y=ax在同一坐标系中的图象可能是( )
12.如图26110,直线x=t(t>0)与反比例函数y=2x,y=-1x的图象分别交于B,C两点,A为y轴上的任意一点,则△ABC的面积为( )
图26110 A.3 B.32t C.32 D.不能确定
13.如图26111,正比例函数y=12x的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1. (1)求反比例函数的解析式; (2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.
图26111 26.2 实际问题与反比例函数 1.某学校食堂有1500 kg的煤炭需运出,这些煤炭运出的天数y与平均每天运出的质量x(单位:kg)之间的函数关系式为____________. 2.某单位要建一个200 m2的矩形草坪,已知它的长是y m,宽是x m,则y与x之间的函数解析式为______________;若它的长为20 m,则它的宽为________m.
3.近视眼镜的度数y(单位:度)与镜片焦距x(单位:m)成反比例即y=kxk≠0,已知200度近视眼镜的镜片焦距为0.5 m,则y与x之间的函数关系式是____________. 4.小明家离学校1.5 km,小明步行上学需x min,那么小明步行速度y(单位:m/min)
可以表示为y=1500x; 水平地面上重1500 N的物体,与地面的接触面积为x m2,那么该物体对地面的压强y(单位:N/m2)可以表示为y=1500x …… 函数关系式y=1500x还可以表示许多不同情境中变量之间的关系,请你再列举一例: ________________________________________________________________________. 5.已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d(单位:天),平均每天工作的时间为t(单位:小时),那么能正确表示d与t之间的函数
关系的图象是( ) 6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数,其图象如图2622.当气球内的气压大于120 kPa时,气球将爆炸.为了安全起见,气球的体积应( )
图2622 A.不小于54 m3 B.小于54 m3 C.不小于45 m3 D.小于45 m3 7.某粮食公司需要把2400吨大米调往灾区救灾. (1)调动所需时间t(单位:天)与调动速度v(单位:吨/天)有怎样的函数关系? (2)公司有20辆汽车,每辆汽车每天可运输6吨,预计这批大米最快在几天内全部运到灾区?
8.如图2623,先在杠杆支点左方5 cm处挂上两个50 g的砝码,离支点右方10 cm处挂上一个50 g的砝码,杠杆恰好平衡.若在支点右方再挂三个砝码,则支点右方四个砝码离支点__________cm时,杠杆仍保持平衡.
图2623 9.由物理学知识知道,在力F(单位:N)的作用下,物体会在力F的方向上发生位移s(单位:m),力F所做的功W(单位:J)满足:W=Fs,当W为定值时,F与s之间的函数图象如图2624,点P(2,7.5)为图象上一点. (1)试确定F与s之间的函数关系式; (2)当F=5时,s是多少? 图2624 10.一辆汽车匀速通过某段公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系:t=kv,其图象为如图2625所示的一段曲线,且端点为A(40,1)和B(m,0.5). (1)求k和m的值; (2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?
图2625 11.甲、乙两家商场进行促销活动,甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元.乙商场按顾客购买商品的总金额打6折促销. (1)若顾客在甲商场购买了510元的商品,付款时应付多少钱? (2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率
为pp=优惠金额购买商品的总金额,写出p与x之间的函数关系式,并说明p随x的变化情况; (3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由. 第二十六章 反比例函数 26.1 反比例函数 第1课时 反比例函数 【课后巩固提升】 1.C 2.D 3.C 4.C 5.B
6.y=3x 解析:把点(1,k)代入函数y=2x+1得:k=3,所以反比例函数的解析式为:
y=3x.
7.3 解析:由2n-5=1,得n=3. 8.y=90x 解析:由题意,得1213x+x·y=60,整理可得y=90x. 9.解:(1)将P(-2,a)代入y=2x,得 a=-2×(-2)=4.
(2)∵a=4,∴点P的坐标为(-2,4). ∴点P′的坐标为(2,4).
(3)将P′(2,4)代入y=kx得4=k2,解得k=8,
∴反比例函数的解析式为y=8x. 10.解:由题意,得m2-2=-1,解得m=±1. 又当m=-1时,m+1=0,所以m≠-1. 所以m的值为1. 11.解:(1)s=60t,s是t的正比例函数,自变量t≥0.
(2)y=84x,y是x的反比例函数,自变量x>0.
第2课时 反比例函数的图象和性质 【课后巩固提升】 1.A 2.A 3.D 解析:k2+1>0,函数图象在第一、三象限. 4.D 5.D 6.B 解析:当x>0时,y随x的增大而增大,则b<0,所以一次函数不经过第二象限. 7.> 解析:k<0,在第四象限y随x的增大而增大.
8.-1 解析:将y=2代入y=2x,得x=1.再将点(1,2)代入y=x-b,得2=1-b,b=-1. 9.解:(1)设y=kx(k≠0),把x=-1,y=2代入y=kx中,得2=k-1,∴k=-2.
∴反比例函数的解析式为y=-2x. (2)如下表: x -3 -2 -1 12 1 2
y 23 1 2 -4 -2 -1