多轴电机控制传动系统
- 格式:ppt
- 大小:4.02 MB
- 文档页数:20
简析多电机同步控制技术我国现代工业的不断发展与机械自动化技术的不断提高,很多生产场合都无法满足现代工业的发展要求,其电机控制系统要求多台电机共同驱动一台设备运作。
在整个生产过程中,应尽量满足现代工业的发展需求,确保这些电机能够协调运行,所以多电机同步控制技术的应用越来越广泛,这种技术在机械传动系统中,尤其是卷接机组中,可以通过多个电机向多个主要机组,传递其生产需要的动力,这种传动方式是控制方式上的一大创新。
一、多电机同步控制技术为了保证多电机能够实现同步控制,可以通过两种方式:机械方式和电方式。
在同步控制技术应用初期,机械同步控制技术在工业自动化生产中广泛应用。
因为机械控制方式与传动连接十分可靠,这种连接在应用初期得到了广泛应用,但是这种机械控制方式有一些常见的缺点,整个系统智能运用一台电机作为动力输出,所以动力分配到各个单元的动力功率都比较小,很难进行系统同的维修工作,且系统只能获得有效的传动范围[1]。
机械同步控制系统通过齿轮、皮带、链条这些零件进行传动,造成整个系统出现劣迹误差,所以在整个控制过程中,系统的控制精度很容易受到影响。
工作人员在一些精度要求较高的环境,电方式的多电机协调控制更加灵活,拥有更高的精度和稳定性,并能在生产实践中,逐渐被完善。
二、卷接机中同步控制技术的应用流程多电机同步控制技术一般选用YJ27卷接机组,其机械设备结构复杂,且各个鼓轮的转速间应保持精准的比例关系。
现阶段,相关单位采用的是传统的机械式齿轮传动方式对各个鼓轮进行同步控制,从而保证系统精度,对于高速环境下的齿轮,工作人员应为其设置润滑系统,确保整个系统的传动链不会太长,机构系统导致传动造成过大,在连续工作时,造成设备损坏,润滑齿轮箱容易出现漏油,以及传动误差较大等现象,设备的维修量会大幅增加,传动系统速度的波动会影响卷接机的运用功能[2]。
(一)偏差耦合结构控制工作人员以YJ27卷接机组的几个主要的工作鼓轮作为研究对象,并总结这些设备的机械传动关系,得出他们之间的速度比例,然后算出每个鼓轮的负载特点,将与之相对的永磁同步电动机作为这种设备的驱动电机,在一定环境中建立起一个鼓轮的同步控制系统的仿真模型,然后通过这种仿真模型的相关原理,运用改进型屏偏差耦合对结构进行控制,制定模糊滑模控制策略,这也是一种比较理想的控制方法[3]。
机械电子工程专业《电力传动控制系统》期末考试复习题,模拟题《电力传动控制系统》作业一(绪论、第一篇)一、 选择题(每小题2分,共计20分)1、负载转矩的大小恒定,方向不变,称作( D )。
A .反抗性恒转矩B .风机、泵类负载C .恒功率负载D .位能性恒转矩负载2、忽略传动机构的损耗,多轴电力传动系统的等效原则是折算前后( A )。
A .传递的功率及储存的动能相同B .传递的功率相同、储存的动能不同C .传递的功率不同、储存的动能相同D .传递的功率及储存的动能都不同3、电力传动系统稳定运行的充分必要条件是( C )。
A .e L 0T T -=、e L d d 0d d T T n n -= B .e L 0T T -<、e L d d 0d d T T n n-= C . e L 0T T -=、e L d d 0d d T T n n -< D .e L 0T T -<、e L d d 0d d T T n n -< 4、直流电机的励磁方式如下图所示,其中( A )是他励式。
5、直流电动机带载运行时,( B )。
A .只产生力矩、不产生感应电动势B .即产生力矩、又产生感应电动势C .不产生力矩、只产生感应电动势D .即不产生力矩、又不产生感应电动势6、人为改变直流电动机参数引起的机械特性称人为机械特性,可以改变的参数为( D )。
A .改变电枢电压U aB .改变励磁电流I fC .电枢外接电阻RD .以上三者均可7、三相交流产生圆形旋转磁场的必要条件是( C )。
A .三相绕组在空间对称B .通入三相对称电流C .三相绕组在空间对称、通入三相对称电流D .以上三者均不是8、异步电动机等效电路,需要对转子电路做( C )III f I I f1A B C DA .频率折合B .匝数折合C .频率折合和匝数折合D .不需要任何折合9、异步电动机的机械特性为一条( D )A .上翘的直线B .水平的直线C .下垂的直线D .非线性的曲线10、同步电动机的机械特性为一条( C )A .上翘的直线B .水平的直线C .下垂的直线D .非线性的曲线二、 填空题(每题2分,共计28分)1、 当T e = T L 时,电动机 运行,为稳态或静态。
电机及其传动系统原理、控制、建模和仿真电机及其传动系统是现代工业中常见的电力传动装置,其原理、控制、建模和仿真是电机学习的重要内容。
本文将从以下几个方面进行介绍。
一、电机原理:电机是将电能转化为机械能的装置。
按工作原理可以分为直流电机和交流电机两大类。
直流电机以直流电源为动力,通过磁场与电流的相互作用实现转动。
交流电机以交流电源为动力,通过电磁感应原理产生转动力。
电机工作原理涉及到电磁学、电路学和力学等多个学科的知识。
二、电机控制:电机控制是指通过对电机的电流、电压或磁场进行调节,使电机达到所需要的运动控制要求。
常见的电机控制方法有直接启动控制、启动电阻控制、电压调制控制、频率调制控制等。
在现代工业中,常使用的电机控制装置有变频器、PLC、单片机等。
三、电机建模:电机建模是指通过数学方法将电机的物理特性转化为数学模型,以便进行仿真计算和控制设计。
电机建模通常从电机的电磁特性和转动特性入手,运用电机理论和系统理论的知识,建立模型方程。
根据电机的类型和用途不同,建模方法也有所差异,常见的建模方法有瞬态模型、稳态模型、频域模型等。
四、电机仿真:电机仿真是指使用计算机软件对电机的运行过程进行模拟和分析。
通过仿真可以得到电机在不同工况下的性能指标、效率、负载特性等信息。
电机仿真可以辅助电机的设计和调试工作,提高工作效率。
常用的电机仿真软件有ANSYS、MATLAB/Simulink、ADAMS等。
综上所述,电机及其传动系统的原理、控制、建模和仿真是电机学习中不可忽视的内容。
只有深入理解电机原理,掌握电机的控制方法,灵活应用电机建模和仿真技术,才能在实际工程中高效地设计、操控和优化电机及其传动系统。
机电传动控制第五版课后答案--最全版机电传动控制是一门涉及机械、电气和控制等多领域知识的重要学科,对于相关专业的学生和从业者来说,掌握这门课程的知识至关重要。
而课后习题的答案则是检验学习成果、加深理解的重要工具。
以下为您提供机电传动控制第五版的课后答案,希望能对您的学习有所帮助。
第一章绪论1、机电传动控制的目的是什么?答:机电传动控制的目的是将电能转变为机械能,实现生产机械的启动、停止、调速、反转以及各种生产工艺过程的要求,以满足生产的需要,提高生产效率和产品质量。
2、机电传动系统由哪些部分组成?答:机电传动系统通常由电动机、传动机构、生产机械、控制系统和电源等部分组成。
电动机作为动力源,将电能转化为机械能;传动机构用于传递动力和改变运动形式;生产机械是工作对象;控制系统用于控制电动机的运行状态;电源则为整个系统提供电能。
3、机电传动系统的运动方程式是什么?其含义是什么?答:运动方程式为 T M T L =J(dω/dt) 。
其中,T M 是电动机产生的电磁转矩,T L 是负载转矩,J 是转动惯量,ω 是角速度,dω/dt 是角加速度。
该方程式表明了机电传动系统中电动机的电磁转矩与负载转矩之间的平衡关系,当 T M > T L 时,系统加速;当 T M < T L 时,系统减速;当 T M = T L 时,系统以恒定速度运行。
第二章机电传动系统的动力学基础1、为什么机电传动系统中一般需要考虑转动惯量的影响?答:转动惯量反映了物体转动时惯性的大小。
在机电传动系统中,由于电动机的转速变化会引起负载的惯性力和惯性转矩,转动惯量越大,系统的加速和减速过程就越困难,响应速度越慢。
因此,在设计和分析机电传动系统时,需要考虑转动惯量的影响,以确保系统的性能和稳定性。
2、多轴传动系统等效为单轴系统的原则是什么?答:多轴传动系统等效为单轴系统的原则是:系统传递的功率不变,等效前后系统的动能相等。
3、如何计算机电传动系统的动态转矩?答:动态转矩 T d = T M T L ,其中 T M 是电动机的电磁转矩,TL 是负载转矩。
机电传动系统的组成
机电传动系统的组成包括:电机、机械传动装置和控制系统。
1. 电机:电机是机电传动系统的核心组成部分,负责将电能转换为机械能等形式的能量输出。
常见的电机包括直流电机、交流电机和步进电机等。
根据具体应用的需求,选择适合的电机类型。
2. 机械传动装置:机械传动装置主要用于将电机的旋转运动转换为所需的线性运动、转动力矩或转速等。
常见的机械传动装置包括齿轮传动、皮带传动、链传动和联轴器等。
根据传动的需求和性能要求,选择合适的机械传动装置。
3. 控制系统:控制系统用于控制和实时监测机电传动系统的运行状态,常见的控制方式有手动控制和自动控制。
手动控制可以通过开关、按钮等手动操作来控制传动系统;自动控制则需要使用传感器、控制器、编码器等部件,通过采集和处理输入和输出信号,实现对传动系统的自动控制和调节。
以上是机电传动系统的主要组成部分,不同的应用领域和具体需求可能会有所不同,需要根据具体情况进行选择和配置。
多永磁电机传动系统的同步控制策略研究一、引言随着工业自动化和智能制造的快速发展,多永磁电机传动系统在工业生产中的应用越来越广泛。
然而,由于多个电机之间存在一定的耦合性,传统的独立控制策略往往难以实现多电机之间的同步控制。
因此,研究多永磁电机传动系统的同步控制策略具有重要的现实意义。
本文将围绕永磁电机控制原理、同步控制策略设计、同步控制策略实现、实验验证与分析、结论与展望等方面展开讨论。
二、永磁电机控制原理永磁电机是一种具有高效率、高转矩密度的电动机,其结构主要包括定子、转子和永磁体。
在永磁电机的控制中,主要采用矢量控制方法,通过控制定子电流的幅值和相位来控制电机的转速和转矩。
同时,矢量控制方法还可以减少电流和电压的谐波分量,提高电机的运行效率。
三、同步控制策略设计为了实现多永磁电机传动系统的同步控制,需要设计一种合适的同步控制策略。
该策略需要考虑多个电机之间的耦合性,采用一种协调控制方法来确保各个电机之间的同步运行。
具体而言,可以采用以下几种方法:1.分布式协调控制:通过在每个电机上安装独立的控制器,实现各个电机的独立控制。
同时,通过通信网络将各个电机的状态信息进行共享,从而实现对各个电机的协调控制。
2.主从控制:将其中一个电机作为主电机,其他电机作为从电机。
主电机的转速和转矩作为其他电机的参考值,通过调整其他电机的电流和电压来实现与主电机的同步运行。
3.模型预测控制:通过建立电机的数学模型,预测未来一段时间内的转速和转矩变化。
然后,根据预测值调整各个电机的电流和电压,以确保各个电机的同步运行。
四、同步控制策略实现为了实现上述同步控制策略,需要采用合适的算法和软件实现方法。
具体而言,可以采用以下几种方法:1.算法实现:根据所选择的同步控制策略,采用合适的算法来实现对各个电机的协调控制。
例如,可以采用PID算法、模糊控制算法等来实现对电机的精确控制。
2.软件实现:采用合适的编程语言和开发工具来实现同步控制策略的软件实现。
五轴联动数控机床的设计与研究随着机械制造业的发展,五轴联动数控机床已经成为了工业制造中不可或缺的一部分。
这种机床具有越来越广泛的应用前景,可以满足复杂薄壁零件的加工需求。
本文将从设计和研究两个方面介绍五轴联动数控机床的相关内容。
一、五轴联动数控机床的设计五轴联动数控机床是一种能够及时调整工作坐标系的机器,其中螺旋插补系统控制器的主轴是一种独特的五轴联动系统。
设计一个五轴联动数控机床需要考虑以下主要因素:1、传动系统传动系统是机床中一项非常重要的部分,直接影响到机床的性能。
在五轴机床中,采用齿轮传动和链传动的方法。
齿轮传动比链传动更加稳定、准确、耐用,一些精密机床也会使用直接驱动技术。
2、处理器和控制器五轴数控机床的处理器系统需要能够准确执行各种计算和运算任务,以便实现高度的控制精度和精准度。
同时,相关的控制器也需要能够实现高速的数据传输、控制和确保稳定性。
3、机械结构机械结构是机床中另一个非常重要的部分,通常采用刚性框架、机械手臂和伺服电机来实现五轴联动机床的稳定结构。
刚性框架具有高度的刚度和精度,可以保证零件的加工质量。
机械手臂则可以支持刀具运动,伺服电机则可以对刀具进行实时控制。
4、人机交互界面五轴联动数控机床需要有直观、易于操作的人机交互界面。
机床操作人员可以通过交互界面轻松调整五轴联动系数和各个轴的参数。
二、五轴联动数控机床的研究五轴联动数控机床的研究领域非常广泛,主要涉及以下方面:1、模型构建实现五轴联动的机床模型需要建立一个全球统一的数学模型,考虑到机床结构、动力和切削力等系数。
在五轴联动加工过程中,所有的轴向变量的运动都是依靠模型来进行研究和实践的。
2、刀路规划刀路规划在机床加工中是一个非常重要的环节,它直接影响到零件加工的质量。
在五轴联动中,刀路规划必须考虑到机床的轴向变量以及工件的加工要求。
为了提高零件的加工质量和加工效率,研究人员需要探索出一种先进的刀路规划算法。
3、控制技术五轴联动数控机床控制技术是这个领域的重点研究,它主要涉及到如何实现高精度控制和高速运动。
电机传动系统控制 pdf
电机传动系统控制技术是一种调节机械系统中电机状态的技术。
它可以将系统中的输入信号转化为控制电机的输出,从而使系统做出特定的运动。
使用电机传动系统技术,系统和电机的性能可以显著提高,从而节省能量,提高效率,改善工作安全和精度。
电机传动系统控制的主要技术有传动系统调速控制、电机转矩控制和智能电机调速控制。
调速控制用来控制电机的转速,也可以被用来控制电机的转矩。
转矩控制可以调节电机的输出功率,以达到设定的功率,减少过热和提高精度。
智能调速控制是一种基于计算机智能控制算法,专门针对多轴伺服电机系统的一种控制方法。
电机传动系统控制采用计算机控制技术实现,需要选择与电机类型适宜的传感器、模拟主板、数字处理器、控制系统、以及多种伺服电机控制器。
根据不同的系统需求,利用这些元件组成比较复杂的控制系统,用于实现高精度的电机控制。
浅谈同轴多电机同步控制在数控系统中,有时采用多台电机联动虚拟为一个坐标轴,来驱动机床坐标的运动。
最常用的多电机驱动为同步(Synchronous)运动的形式,比如,要求两台以相同的速度和位移运动的电机带动齿轮与齿条啮合作为一个坐标轴运动,这样的坐标轴被称为“同步轴”。
同步技术被广泛应用在数控技术中,比如大跨距龙门机床的龙门直线移动、大型三坐标测量机的双柱直线移动,为保持运动的均匀,都需要两个电机同步驱动。
一、同步控制系统本文主要从TFT-LCD产线内Stoker实现自动搬送的村田Crane Y-Axis四个私服电机的精确同步控制来讨论,使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点。
现在我们所需要讨论的是为什么四个伺服电机的转速、定位达到同步,如图1所示。
图1实现同步一般有两种方法:一是机械同步:同步系统由机械装置组成。
这种同步方法容易实现,但机械传动链复杂,传动件加工精度要求高,所需的零件多,难以更换传动比,且占用的空间大。
二是电伺服同步:同步系统由控制器、电子调节器、功率放大器、伺服电机和机械传动箱等组成。
所需机械传动链简单、调试方便、精度高、容易改变电子齿轮比。
在电伺服同步系统中,“同步”的概念是指系统中具有两个或两个以上由电子控制的伺服放大器和伺服电机组成的“控制对象”,其中一个为“主(Master)控制对象”,另外一个或多个为“从(Slave)控制对象”,控制量为机械的位移或速度(对旋转运动为转角或转速)。
通过控制器使“从控制对象”和“主控制对象”的输出控制量保持一定的严格比例关系,这种运动系统称为同步系统。
一般同步系统的输出控制量为位置和速度。
前面所提到的“同步轴”,“主控制对象”与“从控制对象”的输出控制量相等。
为了简化讨论,同步系统中的控制装置可被简化为具有一个积分环节的位置系统,其框图如图2所示。
其中KV为简化后控制装置的位置控制器的开环增益,XC、XO为位置输入、输出;FC为速度指令,Δ为位置误差,KF为速度环增益。
电机传动系统的控制技术研究电机传动系统控制技术是现代工业制造和生产中最为重要的技术之一,对于提高生产效率、优化生产质量、节约资源能源、改善生产环境、促进产业升级和经济发展等方面都具有重要的意义和作用。
目前,电机传动系统广泛应用于机械、电子、自动化、航空、航天、轨道交通、能源、医疗、家电等领域,其控制技术的发展和创新将直接推动这些领域的发展。
电机传动系统的控制技术研究包括电机驱动技术、电机控制技术、电机保护技术、电动机制动技术等多个方面,需要从理论研究、实验研究、技术创新、应用开发等多个层面进行深入探索。
下面我们将从电机驱动技术、电机控制技术和电机保护技术三个方面来探讨电机传动系统的控制技术研究。
一、电机驱动技术电机驱动技术是电机传动系统的基础技术,也是控制技术研究的前提条件。
电机驱动技术主要针对电动机的运转特性、电动机启动和制动、电动机的振动和噪声、电动机节能等技术问题进行研究。
其中,电动机的运转特性是研究电动机的运转状态、功率因数、效率等方面的问题,有助于选择合适的电动机型号和优化电机的设计制造;电动机的启动和制动技术主要是针对电动机的起动和停车时避免因电压降低、电流过大而造成的损坏,采用软启动器、矢量控制器、变频器、电阻式起动器等设备;电动机的振动和噪声技术主要是研究电动机的机械振动、电磁振动、气动振动等因素对噪声的影响,并提出相应的降噪措施;电动机节能技术主要是通过优化电机的设计和控制方式,减小电动机的损耗和能耗,实现生产成本和能源的节约目标。
二、电机控制技术电机控制技术是电机传动系统的核心技术,是实现电机正常运转和稳定工作的关键技术。
电机控制技术主要包括开环控制、闭环控制、矢量控制等多种方式,其中闭环控制是最常用的控制方式之一,通过采集电动机运转时的反馈信号,自动调节电机的工作状态,保证电机的稳定运转。
矢量控制技术则是近年来发展起来的一种高级电机控制技术,通过对电动机的电流、电压、转速进行闭环控制,实现对电机的精准控制和调节,优化电机的性能和能效。
电动汽车传动系统的组成1. 电机电动汽车传动系统的核心组成部分是电机。
电机是将电能转化为机械能的装置,用于驱动车辆前进。
电动汽车一般使用交流电机或直流电机,其中交流电机又分为异步电机和同步电机。
电机通过与传动系统的配合,实现驱动力的传递和转速的调节。
2. 电池电动汽车传动系统的能量来源是电池。
电池是将化学能转化为电能的装置,用于储存和释放电能。
电动汽车通常使用锂离子电池或钴酸锂电池等高能量密度的电池。
电池的质量、容量和充电速度直接影响着电动汽车的续航里程和性能。
3. 控制系统电动汽车的传动系统离不开一个高效稳定的控制系统。
控制系统包括电机控制器和车辆控制单元(VCU)。
电机控制器负责控制电机转速和扭矩输出,VCU负责监测和控制电池状态、转速、温度等参数,并对整个电动汽车进行管理和控制。
4. 变速器电动汽车的传动系统中,变速器的作用是调节电机转速和车辆速度之间的匹配关系。
电动汽车的变速器相对于传统汽车来说更加简单,一般只有单速变速器。
单速变速器是根据电机扭矩和转速特性设计的,能够提供适合不同速度和负载的动力输出。
5. 驱动轴驱动轴是将电机的输出传递给车轮的装置。
一般情况下,电动汽车采用前驱、后驱或四驱的驱动方式。
前驱车辆的驱动轴位于前轮,后驱车辆的驱动轴位于后轮,四驱车辆则由电机输出同时驱动前后轮。
6. 车轮车轮是电动汽车传动系统中的重要组成部分,负责将电机产生的转动力传递给地面,实现车辆的前进和驱动。
电动汽车的车轮一般采用特殊的轮胎,以满足电动汽车对高速、低滚阻、低噪音等性能要求。
7. 能量回收系统电动汽车传动系统一大特点是能量回收系统的存在。
能量回收系统可以将制动时产生的能量转换为电能,存储到电池中,以延长续航里程。
能量回收系统可以提高电动汽车的能源利用率,减少能源浪费,更加环保和节能。
8. 充电系统电动汽车的传动系统离不开高效便捷的充电系统。
充电系统包括充电器和充电接口。
充电器负责将交流电能转换为适合电池充电的直流电能,充电接口则提供了电动汽车和充电桩之间的连接。
两个(或多个)电机如何同步的问题,包括要求转速或转角完全同步,另外,如果要求两个电机输出的线速度同步,而机械系统存在误差时,两个电机如何同步的问题。
#以前做项目时涉及过这个问题,当时考虑的两种方法:1、第一个主动电机使用速度(或位置)控制方式,由PLC或运动控制器输出模拟量控制其转速,其伺服驱动器将电机编码器的脉冲输出,并连接到从动电机驱动器的脉冲输入口中,这样,从动电机的转动角度由主动电机编码器的输出脉冲给定,其转速也由主动电机编码器的脉冲频率确定,使两者的转速和转动角度一致。
2、主动电机的控制方式同上,但是将第一个电机的转矩输出(通过总线或模拟量),并输入到从动电机驱动器中,从动电机使用转矩控制方式,其转矩与第一个电机的输出转矩一致。
通过主动电机和从动电机负载之间的物理约束,使得两者的转速和转角同步。
使用该方式时可以避免受到两个电机传动系统机械误差的影响。
根据我们的使用条件,电机启动时设置3~4秒的加减速时间到达工作转速,我们用的是第二种同步方式,效果不错。
#在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。
但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。
下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。
1、利用PLC和变频器实现速度同步控制薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。
在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。
电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。