第1章 3.2 全集与补集
- 格式:docx
- 大小:256.30 KB
- 文档页数:16
学业分层测评(四)(建议用时:45分钟)[学业达标]一、选择题1.已知集合A ={x |-1<x <2},B ={x |0<x <4}.则集合A ∩(∁R B )=( )A .{x |0<x <2}B .{x |-1<x ≤0}C .{x |2<x <4}D .{x |-1<x <0}【解析】 ∵∁R B ={x |x ≤0,或x ≥4},∴A ∩(∁R B )={x |-1<x ≤0}.【答案】 B2.已知全集U =R ,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -4<x <12,B ={x |x ≤-4},C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≥12,则集合C =( ) A .A ∩BB .A ∪BC .∁U (A ∩B )D .∁U (A ∪B ) 【解析】 因为A ∪B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <12,故∁U (A ∪B )=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≥12. 【答案】 D3.图1-3-5中的阴影表示的集合是( )图1-3-5A .(∁U A )∩BB .(∁U B )∩BC .∁U (A ∩B )D .∁U (A ∪B )【解析】 由图像可知,阴影部分的元素是由属于集合B ,但不属于集合A 的元素构成,则对应的集合为(∁U A )∩B .故选A.【答案】 A4.已知U =R ,A ={x |x >0},B ={x |x ≤-1},则[A ∩(∁U B )]∪[B ∩(∁U A )]=( )A .∅B .{x |x ≤0}C .{x |x >-1}D .{x |x >0,或x ≤-1}【解析】 由题可知∁U A ={x |x ≤0},∁U B={x|x>-1},∴A∩(∁U B)={x|x>0},B∩(∁U A)={x|x≤-1},∴[A∩(∁U B)]∪[B∩(∁U A)]={x|x>0,或x≤-1}.【答案】 D5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() A.a≤2 B.a<1C.a≥2 D.a>2【解析】∁R B={x|x≤1,或x≥2},∵A∪(∁R B)=R,∴a≥2.【答案】 C二、填空题6.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________.【解析】把集合A看作全集,故∁A B={x|0≤x<2,或x=5}.【答案】{x|0≤x<2,或x=5}7.如果S={x∈N|x<6},A={1,2,3},B={2,4,5},那么(∁S A)∪(∁S B)=________.【解析】S={0,1,2,3,4,5},(∁S A)∪(∁S B)=∁S(A∩B)={0,1,3,4,5}.【答案】{0,1,3,4,5}8.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 【导学号:04100011】【解析】∵U={0,1,2,3},∁U A={1,2},∴A={0,3},∴0+3=-m,∴m=-3.【答案】-3三、解答题9.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3}.求∁U A,A∩B,∁(A∩B),(∁U A)∩B.U【解】把全集U和集合A,B在数轴上表示如下:由图可知∁U A={x|x≤-2,或3≤x≤4},A∩B={x|-2<x<3},∁U(A∩B)={x|x≤-2,或3≤x≤4},(∁U A)∩B={x|-3<x≤-2,或x=3}.10.设全集U={x∈Z||x|<4},a∈U,集合A={x|(x-1)(x-a)=0},B={x|x2+2x-3=0},求(∁U A)∩B.【解】U={-3,-2,-1,0,1,2,3},A={a,1},B={-3,1}.∴当a=1时,(∁U A)∩B={-3};当a=-3时,(∁U A)∩B=∅;当a≠1,-3时,(∁U A)∩B={-3}.综上,a=-3时,(∁U A)∩B=∅;a≠-3,a∈U时,(∁U A)∩B={-3}.[能力提升]1.已知全集U={x|-1<x<9},A={x|1<x<a},A是U的子集,若A≠∅,则a的取值范围是()A.a<9 B.a≤9C.a≥9 D.1<a≤9【解析】由题意知,集合A≠∅,所以a>1,又因为A是U的子集,故需a≤9,所以a的取值范围是1<a≤9.【答案】 D2.已知全集U=Z,P={-2,-1,1,2},Q={x|x2-3x+2=0},则图1-3-6中阴影部分表示的集合为()图1-3-6A.{-1,-2} B.{1,2}C.{-2,1} D.{-1,2}【解析】由Venn图可知,阴影部分的元素为属于P且不属于Q的元素构成,所以用集合表示为P∩(∁U Q),又Q={x|x2-3x+2=0}={1,2},所以P∩(∁U Q)={-1,-2}.故选A.【答案】 A3.已知集合A ={1,3,x },B ={1,x 2},若B ∪(∁U B )=A ,则∁U B =________.【解析】 ∵B ∪(∁U B )=A ,∴U =A .∴x 2∈A ,∴x 2=3或x 2=x ,解得x =±3,0.当x =3时,B ={1,3},∁U B ={3};当x =-3时,B ={1,3},∁U B ={-3};当x =0时,B ={1,0},∁U B ={3}.【答案】 {3}或{-3}或{3}4.已知集合A ={x |-1≤x ≤3},集合B ={x |m -2≤x ≤m +2,x ∈R }.(1)若A ∩B ={x |0≤x ≤3},求实数m 的值;(2)若A ∩(∁R B )=A ,求实数m 的取值范围.【解】 (1)因为A ∩B ={x |0≤x ≤3},所以⎩⎨⎧ m -2=0,m +2≥3,所以⎩⎨⎧ m =2,m ≥1,所以m =2. (2)∁R B ={x |x <m -2,或 x >m +2},由已知可得A ⊆∁R B ,所以 m -2>3或m +2<-1,所以m >5或m <-3.故实数m 的取值范围为{m |m >5,或m <-3}.初中数学试卷马鸣风萧萧。
2014高中数学 第一章《全集与补集》参考教案 北师大版必修1 教学目标:了解全集的意义,理解补集的概念,能利用Venn 图表达集合间的关系;渗透相对的观点. 教学重点:补集的概念.教学难点:补集的有关运算.课 型:新授课教学手段:发现式教学法,通过引入实例,进而对实例的分析,发现寻找其一般结果,归纳其普遍规律.教学过程:一、 创设情境1.复习引入:复习集合的概念、子集的概念、集合相等的概念;两集合的交集,并集.2.相对某个集合U ,其子集中的元素是U 中的一部分,那么剩余的元素也应构成一个集合,这两个集合对于U 构成了相对的关系,这就验证了“事物都是对立和统一的关系”。
集合中的部分元素与集合之间关系就是部分与整体的关系.这就是本节课研究的话题 ——全集和补集。
二、 新课讲解请同学们举出类似的例子如:U ={全班同学} A ={班上男同学} B ={班上女同学}特征:集合B 就是集合U 中除去集合A 之后余下来的集合,可以用文氏图表示。
我们称B 是A 对于全集U 的补集。
1、 全集如果集合S 包含我们要研究的各个集合,这时S 可以看作一个全集。
全集通常用字母U 表示2、补集(余集)设U 是全集,A 是U 的一个子集(即A ⊆U ),则由U 中所有不属于A 的元素组成的集合,叫作“A 在U 中的补集”,简称集合A 的补集,记作U A ð,即{}|,U A x x U x A=∈∉且ð 补集的Venn 图表示: 说明:补集的概念必须要有全集的限制练习:{}{}{}121,2,1,2,3,1,2,3,4A U U ===,则{}{}12334U U A A ==,,痧。
3、基本性质①()U A C A U ⋃=,()U A C A ⋂=Φ, A A C C U U =)(②U U U U =∅∅=,痧③B C A C B A C U U U ⋂=⋃)(,B C A C B A C U U U ⋃=⋂)(注:借助venn 图的直观性加以说明三、 例题讲解例1(P13例3)例2(P13例4) ①注重借助数轴对集合进行运算②利用结果验证基本性质四、 课堂练习1.举例,请填充(参考)(1)若S ={2,3,4},A ={4,3},则ðS A =____________.(2)若S ={三角形},B ={锐角三角形},则ðS B =___________.(3)若S ={1,2,4,8},A =∅,则ðS A =_______. (4)若U ={1,3,a 2+2a +1},A ={1,3},ðU A ={5},则a =_______(5)已知A ={0,2,4},ðU A ={-1,1},ðU B ={-1,0,2},求B =_______(6)设全集U ={2,3,m 2+2m -3},a ={|m +1|,2},ðU A ={5},求m .(7)设全集U ={1,2,3,4},A ={x |x 2-5x +m =0,x ∈U },求ðU A 、m .师生共同完成上述题目,解题的依据是定义例(1)解:ðS A ={2}评述:主要是比较A 及S 的区别.例(2)解:ðS B ={直角三角形或钝角三角形}评述:注意三角形分类.例(3)解:ðS A =3评述:空集的定义运用.例(4)解:a 2+2a +1=5,a =-1±5 评述:利用集合元素的特征.例(5)解:利用文恩图由A 及ðU A 先求U ={-1,0,1,2,4},再求B ={1,4}.例(6)解:由题m 2+2m -3=5且|m +1|=3解之 m =-4或m =2例(7)解:将x =1、2、3、4代入x 2-5x +m =0中,m =4或m =6当m =4时,x 2-5x +4=0,即A ={1,4}又当m =6时,x 2-5x +6=0,即A ={2,3}故满足题条件:ðU A ={1,4},m =4;ðU B ={2,3},m =6. 评述:此题解决过程中渗透分类讨论思想.2.P14练习题1、2、3、4、5五、 回顾反思 本节主要介绍全集与补集,是在子集概念的基础上讲述补集的概念,并介绍了全集的概念1.全集是一个相对的概念,它含有与研究的问题有关的各个集合的全部元素,通常用“U ”表示全集.在研究不同问题时,全集也不一定相同.2.补集也是一个相对的概念,若集合A 是集合S 的子集,则S 中所有不属于A 的元素组成的集合称为S 中子集A 的补集(余集),记作U A ð,即U A ð={x|A x S x ∉∈且,}. 当S 不同时,集合A 的补集也不同.六、作业布置1、 P15习题4,52、 用集合A ,B ,C 的交集、并集、补集表示下图有色部分所代表的集合3、思考:p15 B 组题1,2 精美句子1、善思则能“从无字句处读书”。
精 品 教 学 设 计3.2全集与补集一.教学目标1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
2.能使用V enn 图进行集合的补集运算,理解补集运算性质,体会直观图示对抽象概念的作用。
二.教学重、难点重点:全集与补集的概念以及补集的运算性质。
难点:理解补集的概念及补集的运算性质。
三.教学过程设计(一)创设情境(){}(){}(){} U=x x 1A x x 1B x x 1.U A B ==问题:已知集合为高一班同学,为高一班男同学,为高一班女同学问这三个集合,,间有何关系?(二)新课讲解1.全集:一般地,如果一个集合含有我们所研究问题中所涉的所有元素,那么就称这个集合为全集,通常记作U.2.补集:设U 是全集,A 是U 的一个子集(即A U ⊆),则由U 中所有不属于A 的元素组成的集合,称为集合A 相对于全集U 的补集,简称为集合A 的补集(或余集)记作U C A 。
{|,}U C A x x U x A =∈∈即:且补集可用V enn 图表示为:例1.设U={x|x 是小于9的正整数},A={1,2,3},B={3,4,5,6},求C U A,C U B . 解:根据题意可知,U={1,2,3,4,5,6,7,8},所以C U A={4,5,6,7,8},C U B={1,2,7,8} .例2. 设全集U={x|x 是三角形},A={x|x 是锐角三角形},B={x|x 是钝角三角形} 求A ∩B,C U (A ∪B).A ,.,.U B U A B U A B ⊆⊆==∅易知:(): ,{|},{|}.U A B A B x x C A B x x ⋂=∅⋃=⋃=解根据三角形的分类可知是锐角三角形或钝角三角形直角三角形请同学们填充:(1) 若U={2,3,4},A={4,3},则U C A = .(2) 若U={三角形},B={锐角三角形},则B U C = .(3) 若U={1,2,4,8},A=ø,则U C A = .(4) 若U={1,3,221a a ++},A={1,3},U C A ={4},则a= .(5) 已知A={0 ,2,4},U C A ={-1,1},B U C ={-1,0,2},求B= .3.补集的性质()1()(2)()()(3)()()()()()()U U U U U U U U U U U U C C A AC U C U A C A A C A UC A B C A C A C A B C A C A =∅==∅=∅=== (三)范例讲解例1.试用集合A, B 的交集、并集、补集分别表示图中Ⅰ, Ⅱ, Ⅲ, Ⅳ四个部分所表示的集合.解: Ⅰ部分:;A BⅡ部分:();U A C BⅢ部分:();U B C AⅣ部分:()()().U U U C A B C B C A 或例2. 设全集为R ,{}{}5,3.A x x B x x =<=>求:()1;A B ()2;A B ()3,;R R C A C B ()()()4;R R C A C B ()()()5;R R C A C B ()()6;R C A B ()()7.R C A B 并指出其中相等的集合。
§3.2全集与补集一 学习目标:1理解全集的意义及给定集合中一个子集的补集的含义,会求给定子集的补集2能使用韦恩图表达集合间的关系,体会直观图示对理解抽象概念的作用3在渗透数形结合思想的同时培养学生主动学习积极参与的意识二 学习重点:集合的全集与补集的概念三 学习难点:对全集和补集概念的理解四 知识链接:集合的概念,集合的基本关系预习案1全集的概念:2补集的概念:记作:3补集的性质:(1)⋃A A C U ==U (2)⋂A A C U =¢ (3)A A C C U U =)( (4)=U C U ¢ (5)U C ¢=U探究案例1 已知全集U ={X |X ≤4},集合A={X |-2<X <-3},B={X |-3<X ≤3}求A C U ,A ∩B ,)(B A C U ⋂,B A C U ⋂)(变式:设全集U=R ,A={X |X >1},B={X |X+a <0},B A C R ⊂,求实数a 的取值范围例2设全集U={1,2,X 22-},A={1,X},求A C U变式:已知集合A={1,3,-X},B={1,X+2},是否存在X ,使得B A B C A =⋃)(?若存在,求出集合A 和B ;若不存在,说明理由。
例3若下列三个方程:,0)1(,0344222=+-+=+-+a x a x a ax x 0222=-+a ax x 中至少有一个方程有实数根,求实数a 的取值范围。
训练案1 设全集U 和集合A ,B ,P 满足A=P C B B C U U =,,则A 与P 的关系是( ) A A=P C U B A=P C A ⊃P D A ⊂P2 设全集U={(x,y)|x ∈R,y ∈R},集合M={(x,y) |123=--x y },集合N={(x,y) |y ≠x+1}那么)(N M C U ⋃等于( )A ¢B {(2,3)}C (2,3)D {(x,y)|y=x+1} 3 设U={X |-1≤X ≤3},A={ X |-1<X <3},B={ X |X 2-2X-3=0},求A C U ,并判断A C U 和集合B 的关系。
必修一第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1交集与并集3.2全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1函数的概念2.2函数的表示方法2.3映射§3 函数的单调性§4 二次函数性质的再研究4.1二次函数的图像4.2二次函数的性质§5 简单的幂函数第二章指数函数与对数函数§1 正指数函数§2 指数扩充及其运算性质2.1指数概念的扩充2.2指数运算是性质§3 指数函数3.1指数函数的概念3.2指数函数的图像和性质3.3指数函数的图像和性质§4 对数4.1对数及其运算4.2换底公式§5 对数函数5.1对数函数的概念5.2 的图像和性质5.3对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数的应用§1 函数和方程1.1利用函数性质判定方程解的存在1.2利用二分法求方程的近似解§2 实际问题的函数建模2.1实际问题的函数刻画2.2用函数模型解决实际问题2.3函数建模案例必修二第一章立体几何初步§1 简单几何体1.1简单旋转体1.2简单多面体§2 直观图§3 三视图3.1简单组合体的三视图3.2由三视图还原成实物图§4 空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理§5 平行关系5.1平行关系的判定5.2平行关系的性质§6 垂直关系6.1垂直关系的判定6.2垂直关系的性质§7 简单几何体的面积和体积7.1简单几何体的侧面积7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3球的表面积和体积第二章解析几何初步§1 直线和直线的方程1.1直线的倾斜角和斜率1.2直线的方程1.3两条直线的位置关系1.4两条直线的交点1.5平面直接坐标系中的距离公式§2 圆和圆的方程2.1圆的标准方程2.2圆的一般方程2.3直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1空间直接坐标系的建立3.2空间直角坐标系中点的坐标3.3空间两点间的距离公式必修三第一章统计§1 从普查到抽样§2 抽样方法2.1简单随机抽样2.2分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1平均数、中位数、众数、极差、方差4.2标准差§5 用样本估计总体5.1估计总体的分布5.2估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8最小二乘估计第二章算法初步§1 算法的基本思想1.1算法案例分析1.2排序问题与算法的多样性§2 算法框图的基本结构及设计2.1顺序结构与选择结构2.2变量与赋值2.3循环结构§3 几种基本语句3.1条件语句3.2 循环语句第三章概率§1 随机事件的概率1.1频率与概率1.2生活中的概率§2 古典概型2.1古典概型的特征和概率计算公式2.2建立概率模型2.3互斥事件§3 模拟方法——概率的应用必修四第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1任意角的正弦函数、余弦函数的定义4.2单位圆与周期性4.3单位圆与诱导公式§5 正弦函数的性质与图像5.1从单位圆看正弦函数的性质5.2正弦函数的图像5.3正弦函数的性质§6 余弦函数的图像和性质6.1余弦函数的图像6.2余弦函数的性质§7 正切函数7.1正切函数的定义7.2正切函数的图像和性质7.3正切函数的诱导公式§8 函数的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1位移、速度和力1.2向量的概念§2 从位移的合成到向量的加法2.1向量的加法2.2向量的减法§3 从速度的倍数到数乘向量3.1数乘向量3.2平面向量基本定理§4 平面向量的坐标4.1平面向量的坐标表示4.2平面向量线性运算的坐标表示4.3向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1点到直线的距离公式7.2向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1两角差的余弦函数2.2两角和与差的正弦、余弦函数2.3两角和与差的正切函数§3 二倍角的三角函数必修五第一章数列§1 数列1.1数列的概念1.2数列的函数特性§2 等差数列2.1等差数列2.2等差数列的前n项和§3 等比数列3.1等比数列3.2等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1正弦定理1.2余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1不等关系1.2不等关系与不等式§2 一元二次不等式2.1一元二次不等式的解法2.2一元二次不等式的应用§3 基本不等式3.1基本不等式3.2基本不等式与最大(小)值§4 简单线性规划4.1二元一次不等式(组)与平面区域4.2简单线性规划4.3简单线性规划的应用选修2—1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1充分条件2.2必要条件2.3充要条件§3 全称量词与存在量词3.1全称量词与全称命题3.2存在量词与特称命题3.3全称命题与特称命题的否定§4 逻辑连结词“且”“或”“非”4.1逻辑连结词“且”4.2逻辑连结词“或”4.3逻辑连结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理3.1空间向量的标准正交分解与坐标表示3.2空间向量基本定理3.3空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算5.1直线间的夹角5.2平面间的夹角5.3直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆1.1椭圆及其标准方程1.2椭圆的简单性质§2 抛物线2.1抛物线及其标准方程2.2抛物线的简单性质§3 双曲线3.1双曲线及其标准方程3.2双曲线的简单性质§4 曲线与方程4.1 曲线与方程4.2圆锥曲线的共同特征4.3直线与圆锥曲线的交点选修2—2第一章推理与证明§1 归纳与类比1.1归纳推理1.2类比推理§2 综合法与分析法2.1综合法2.2分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1导数的概念2.2导数的几何意义§3 计算导数§4 导数的四则运算法则4.1导数的加法与减法法则4.2导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数的应用§1 函数的单调性与极值1.1导数与函数的单调性1.2函数的极值§2 导数在实际问题中的应用2.1实际问题中导数的意义2.2最大值、最小值问题第四章定积分§1 定积分的概念1.1定积分的背景——面积和路程问题1.2定积分§2 微积分基本定理§3 定积分的简单应用3.1平面图形的面积3.2简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1数的概念的扩展1.2复数的有关概念§2 复数的四则运算2.1复数的加法与减法2.2复数的乘法与除法。
【高一】高一数学全集与补集练习题(有答案)3.2全集与补集一、(每题5分,共20分)1.已知全集u={1,2,3,4,5,6,7,8},m={1,3,5,7},那么N={5,6,7}呢?u(m)∪n)=( )a.{5,7}b.{2,4}c、 {2,4,8}d.{1,3,5,6,7}【解析】m∪n={1,3,5,6,7},U(m)∪ n) ={2,4,8},所以选择C【答案】c2.已知u={X-1≤ 十、≤ 3} ,a={X-1<X<3},B={xx2-2x-3=0},C={X-1≤ x<3},则下列关系正确的是( )a、 ua=b?b、 ub=cc.?(ub)c?d.?ac【分析】B={-1,3},UA={-1,3},∴ua=b.[答]?A.3.设u=z,a={1,3,5,7,9},b={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}? B{1,2,3,4,5}c.?{7,9}?d.?{2,4}[分析]作者?维恩?从图中可以看出,阴影部分代表的集合是B∩ (UA)={2,4}【答案】?d?4.给定集合a={XX<a},B={X1<x<2},a∪ (RB)=R,实数a的取值范围为()?a.?a≤2?b.?a<1C一≥2.Da>2【解析】∵b={x1<x<2},‡RB={XX≥ 2或X≤ 1} 如下图所示若要a∪(rb)=r,必有a≥2.[答]?C二、题(每小题5分,共10分)5.如果s={x∈ nx<6},a={1,2,3},B={2,4,5},然后(SA)∪ (某人)=【解析】∵s={x∈nx<6}={0,1,2,3,4,5}.∴sa={0,4,5},sb={0,1,3}. ∴(南非)∪(sb)={0,1,3,4,5}。
【答案】{0,1,3,4,5}6.如果a={XX≤ 1或x>3},B={XX>2},然后(RA)∪ B=【解析】ra={x1<x≤3},∴(拉)∪b=xx>1。
3.2 全集与补集学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn 图.3.会求补集,并能解决一些集合综合运算的问题.知识点一 全集(1)定义:在研究某些集合时,这些集合往往是某个给定集合的子集,这个给定的集合叫作全集,全集含有我们所要研究的这些集合的全部元素. (2)记法:全集通常记作U .知识点二 补集思考 实数集中,除掉大于1的数,剩下哪些数? 答案 剩下不大于1的数,用集合表示为{x ∈R |x ≤1}. 梳理 补集的概念1.根据研究问题的不同,可以指定不同的全集.( √ ) 2.存在x 0∈U ,x 0∉A ,且x 0∉∁U A .( × )3.设全集U =R ,A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 1x >1,则∁U A =⎩⎨⎧⎭⎬⎫x ⎪⎪1x≤1.( × ) 4.设全集U ={}(x ,y )|x ∈R ,y ∈R ,A ={(x ,y )|x >0且y >0},则∁U A ={(x ,y )|x ≤0且y ≤0)}.( × )类型一求补集例1(1)若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于()A.{x|0<x<2} B.{x|0≤x<2}C.{x|0<x≤2} D.{x|0≤x≤2}考点补集的概念及运算题点无限集合的补集答案 C解析∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2},故选C.(2)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.考点补集的概念及运算题点有限集合的补集解根据题意可知,U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8},∁U B={1,2,7,8}.(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B,∁U(A∪B).考点补集的概念及运算题点无限集合的补集解根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},∁U(A∪B)={x|x是直角三角形}.反思与感悟求集合的补集,需关注两处:一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图、数轴、坐标系来求解.跟踪训练1(1)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=________.考点补集的概念及运算题点有限集合的补集答案{3,4,5}(2)已知集合U=R,A={x|x2-x-2≥0},则∁U A=________.考点补集的概念及运算题点无限集合的补集答案{x|-1<x<2}(3)已知全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|xy>0},则∁U A=________.考点补集的概念及运算题点无限集合的补集答案{(x,y)|xy≤0}类型二补集性质的应用命题角度1补集性质在集合运算中的应用例2已知A={0,2,4,6},∁U A={-1,-3,1,3},∁U B={-1,0,2},用列举法写出集合B.考点补集的概念及运算题点有限集合的补集解∵A={0,2,4,6},∁U A={-1,-3,1,3},∴U={-3,-1,0,1,2,3,4,6}.而∁U B={-1,0,2},∴B=∁U(∁U B)={-3,1,3,4,6}.反思与感悟从Venn图的角度讲,A与∁U A就是圈内和圈外的问题,由于(∁U A)∩A=∅,(∁A)∪A=U,所以可以借助圈内推知圈外,也可以反推.U跟踪训练2如图所示的Venn图中,A,B是非空集合,定义A*B表示阴影部分的集合.若A={x|0≤x≤2},B={y|y>1},则A*B=________________.考点补集的概念及运算题点无限集合的补集答案{x|0≤x≤1或x>2}解析A∩B={x|1<x≤2},A∪B={x|x≥0},由图可得A*B=∁(A∪B)(A∩B)={x|0≤x≤1或x>2}.命题角度2补集性质在解题中的应用例3关于x的方程:x2+ax+1=0,①x2+2x-a=0,②x 2+2ax +2=0,③若三个方程至少有一个有解,求实数a 的取值范围. 考点 交并补集的综合问题题点 与交并补集运算有关的参数问题 解 假设三个方程均无实根,则有⎩⎪⎨⎪⎧Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,即⎩⎪⎨⎪⎧-2<a <2,a <-1,-2<a < 2.解得-2<a <-1,∴当a ≤-2或a ≥-1时,三个方程至少有一个方程有实根,即a 的取值范围为{a |a ≤-2或a ≥-1}.反思与感悟 运用补集思想求参数取值范围的步骤 (1)把已知的条件否定,考虑反面问题. (2)求解反面问题对应的参数的取值范围. (3)求反面问题对应的参数的取值集合的补集.跟踪训练3 若集合A ={x |ax 2+3x +2=0}中至多有一个元素,求实数a 的取值范围. 考点 交并补集的综合问题题点 与交并补集运算有关的参数问题 解 假设集合A 中含有2个元素, 即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,解得a <98且a ≠0,则集合A 中含有2个元素时,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a <98且a ≠0. 在全集U =R 中,集合⎩⎨⎧⎭⎬⎫a ⎪⎪ a <98且a ≠0的补集是⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥98或a =0, 所以满足题意的实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥98或a =0.类型三集合的综合运算例4(1)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q等于() A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}考点交并补集的综合问题题点有限集合的交并补运算答案 C解析∵∁U P={2,4,6},∴(∁U P)∪Q={1,2,4,6}.(2)已知集合A={x|x≤a},B={x|1≤x≤2},且A∪(∁R B)=R,则实数a的取值范围是________.考点交并补集的综合问题题点无限集合的交并补运算答案{a|a≥2}解析∵∁R B={x|x<1或x>2}且A∪(∁R B)=R,∴{x|1≤x≤2}⊆A,∴a≥2.即实数a的取值范围是{a|a≥2}.反思与感悟解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集混合运算可借助Venn图,与不等式有关的可借助数轴.跟踪训练4(1)已知集合U={x∈N|1≤x≤9},A∩B={2,6},(∁U A)∩(∁U B)={1,3,7},A∩(∁U B)={4,9},则B等于()A.{1,2,3,6,7} B.{2,5,6,8}C.{2,4,6,9} D.{2,4,5,6,8,9}考点交并补集的综合问题题点有限集合的交并补运算答案 B解析根据题意可以求得U={1,2,3,4,5,6,7,8,9},画出Venn图(如图所示),可得B={2,5,6,8},故选B.(2)已知集合U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B).考点交并补集的综合问题题点无限集合的交并补运算解如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},∴∁U A={x|x≤-2或3≤x≤4},∁U B={x|x<-3或2<x≤4}.A∩B={x|-2<x≤2},∴(∁U A)∪B={x|x≤2或3≤x≤4},A∩(∁U B)={x|2<x<3}.1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M等于()A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}考点补集的概念及运算题点有限集合的补集答案 C2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于() A.{1,3,4} B.{3,4}C.{3} D.{4}考点交并补集的综合问题题点有限集合的交并补运算答案 D3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}考点交并补集的综合问题题点无限集合的交并补运算答案 C4.设全集U=R,则下列集合运算结果为R的是()A.Z∪(∁U N) B.N∩(∁U N)C.∁U(∁U∅) D.∁U Q考点交并补集的综合问题题点无限集合的交并补运算答案 A5.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N等于() A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}考点交并补集的综合问题题点有限集合的交并补运算答案 B1.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A,求A.一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}考点交并补集的综合问题题点有限集合的交并补运算答案 C解析∁U A={0,4},所以(∁U A)∪B={0,2,4},故选C.2.已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B等于()A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}考点并交补集的综合问题题点有限集合的并交补运算答案 A解析因为集合A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1} ={-2,-1}.3.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( ) A .0或2 B .0 C .1或2D .2考点 补集的概念及运算 题点 由补集运算结果求参数的值 答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.4.图中的阴影部分表示的集合是( )A .A ∩(∁UB ) B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )考点 交并补集的综合问题题点 用并交补运算表示Venn 图指定区域 答案 B解析 阴影部分表示集合B 与集合A 的补集的交集. 因此阴影部分所表示的集合为B ∩(∁U A ).5.已知U 为全集,集合M ,N ⊆U ,若M ∩N =N ,则( ) A .∁U N ⊆∁U M B .M ⊆∁U N C .∁U M ⊆∁U ND .∁U N ⊆M 考点 交并补集的综合问题题点 与集合运算有关的子集或真子集 答案 C解析 由M ∩N =N 知N ⊆M ,∴∁U M ⊆∁U N .6.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A 等于( ) A .∅ B .{2} C .{5} D .{2,5} 考点 补集的概念及运算 题点 无限集合的补集 答案 B解析 因为A ={x ∈N |x ≤-5或x ≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.7.设U={1,2,3,4},M={x|x∈U|x2-5x+p=0},若∁U M={2,3},则实数p的值为() A.-4 B.4 C.-6 D.6考点补集的概念及运算题点与补集运算有关的参数问题答案 B解析∵∁U M={2,3},∴M={1,4},∴1,4是方程x2-5x+p=0的两根.由根与系数的关系可知p=1×4=4.二、填空题8.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=______,(∁U A)∩(∁U B)=________.考点交并补集的综合问题题点无限集合的交并补运算答案{x|0<x<1}{x|0<x<1}解析A∪B={x|x≤0或x≥1},∁U(A∪B)={x|0<x<1}.∁U A={x|x>0},∁U B={x|x<1},∴(∁U A)∩(∁U B)={x|0<x<1}.9.若全集U={(x,y)|x∈R,y∈R},A={(x,y)|x>0,y>0},则点(-1,1)________∁U A.(填“∈”或“∉”)考点补集的概念及运算题点无限集合的补集答案∈解析显然(-1,1)∈U,且(-1,1)∉A,∴(-1,1)∈∁U A.10.若集合A={x|0≤x≤2},B={x|x<0或x>1},则图中阴影部分所表示的集合为________.考点Venn图表达的集合关系及运用题点Venn图表达的集合关系答案{x|x≤1或x>2}解析如图,设U=A∪B=R,A∩B={x|1<x≤2},∴阴影部分为∁U(A∩B)={x|x≤1或x>2}.11.设全集U ={(x ,y )|x ∈R ,y ∈R },A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,B ={(x ,y )|y =x +1},则(∁U A )∩B =________.考点 交并补集的综合问题题点 无限集合的交并补运算答案 {(2,3)}解析 ∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1={(x ,y )|y =x +1,x ≠2},∴∁U A ={(x ,y )|y ≠x +1}∪{(2,3)}. 又B ={(x ,y )|y =x +1},∴(∁U A )∩B ={(2,3)}.三、解答题12.已知全集U =R ,集合A ={x |1≤x ≤2},若B ∪(∁U A )=R ,B ∩(∁U A )={x |0<x <1或2<x <3},求集合B .考点 交并补集的综合问题题点 无限集合的交并补运算解 ∵A ={x |1≤x ≤2},∴∁U A ={x |x <1或x >2}.又B ∪(∁U A )=R ,A ∪(∁U A )=R ,可得A ⊆B .而B ∩(∁U A )={x |0<x <1或2<x <3},∴{x |0<x <1或2<x <3}⊆B .借助于数轴可得B =A ∪{x |0<x <1或2<x <3}={x |0<x <3}.13.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.考点 交并补集的综合问题题点 与交并补集运算有关的参数问题解 (1)当m =1时,B ={x |1≤x <4},又A ={x |-1<x ≤3},所以A ∪B ={x |-1<x <4}.(2)∁R A ={x |x ≤-1或x >3}.当B =∅时,即m ≥1+3m ,得m ≤-12,满足B ⊆∁R A , 当B ≠∅时,使B ⊆∁R A 成立,则⎩⎪⎨⎪⎧ m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧ m <1+3m ,m >3,解得m >3. 综上可知,实数m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m >3或m ≤-12. 四、探究与拓展14.如图,已知I 是全集,A ,B ,C 是它的子集,则阴影部分所表示的集合是( )A .(∁I A ∩B )∩CB .(∁I B ∪A )∩CC .(A ∩B )∩(∁I C )D .(A ∩∁I B )∩C考点 Venn 图表达的集合关系及运用题点 Venn 图表达的集合关系答案 D解析 由题图可知阴影部分中的元素属于A ,不属于B ,属于C ,则阴影部分表示的集合是(A ∩∁I B )∩C .15.设全集U ={x |x ≤5,且x ∈N +},其子集A ={x |x 2-5x +q =0},B ={x |x 2+px +12=0},且(∁U A )∪B ={1,3,4,5},求实数p ,q 的值.考点题点解 由已知得U ={1,2,3,4,5}.(1)若A =∅,则(∁U A )∪B =U ,不合题意;(2)若A={x0},则x0∈U,且2x0=5,不合题意;(3)设A={x1,x2},则x1,x2∈U,且x1+x2=5,∴A={1,4}或{2,3}.若A={1,4},则∁U A={2,3,5},与(∁U A)∪B={1,3,4,5}矛盾,舍去;若A={2,3},则∁U A={1,4,5},由(∁U A)∪B={1,3,4,5}知3∈B,同时可知B中还有一个不等于3的元素x,由3x=12得x=4,即B={3,4}.综上可知,A={2,3},B={3,4},∴q=2×3=6,p=-(3+4)=-7.。