数学人教版七年级上册整式乘除
- 格式:doc
- 大小:77.50 KB
- 文档页数:8
七年级数学上知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章、有理数知识概念1.有理数:1凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;2有理数的分类:①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:1只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;2相反数的和为0 a+b=0 a 、b 互为相反数.4.绝对值:1正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:1正数的绝对值越大,这个数越大;2正数永远比0大,负数永远比0小;3正数大于一切负数;4两个负数比大小,绝对值大的反而小;5数轴上的两个数,右边的数总比左边的数大;6大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a ≠0,那么a 的倒数是a1;若ab=1 a 、b 互为倒数;若ab=-1 a 、b 互为负倒数.7.有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3一个数与0相加,仍得这个数.8.有理数加法的运算律:1加法的交换律:a+b=b+a ;2加法的结合律:a+b+c=a+b+c.9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+-b.10有理数乘法法则:1两数相乘,同号为正,异号为负,并把绝对值相乘;2任何数同零相乘都得零;3几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11有理数乘法的运算律:1乘法的交换律:ab=ba ;2乘法的结合律:abc=abc ;3乘法的分配律:ab+c=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:1正数的任何次幂都是正数;2负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时:-a n =-a n 或a-b n =-b-a n ,当n 为正偶数时:-a n =a n 或a-b n =b-a n .14.乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在;重点利用有理数的运算法则解决实际问题.体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力;教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位;第二章、整式的加减知识概念1.单项式:在代数式中,若只含有乘法包括乘方运算;或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;通过本章学习,应使学生达到以下学习目标:1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系;2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号;在准确判断、正确合并同类项的基础上,进行整式的加减运算;3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立;4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来;在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识;第三章、一元一次方程知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式:ax+b=0x 是未知数,a 、b 是已知数,且a ≠0.3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……检验方程的解.4.列一元一次方程解应用题:1读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.2画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系可把未知数看做已知量,填入有关的代数式是获得方程的基础.5.列方程解应用题的常用公式:1行程问题:距离=速度·时间时间距离速度=速度距离时间=; 2工程问题:工作量=工效·工时工时工作量工效=工效工作量工时=; 3比率问题:部分=全体·比率全体部分比率=比率部分全体=; 4顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;5商品价格问题:售价=定价·折·101,利润=售价-成本,%100⨯-=成本成本售价利润率; 6周长、面积、体积问题:C 圆=2πR,S 圆=πR 2,C 长方形=2a+b,S 长方形=ab,C 正方形=4a,S 正方形=a 2,S 环形=πR 2-r 2,V 长方体=abc,V 正方体=a 3,V 圆柱=πR 2h,V 圆锥=31πR 2h.本章内容是代数学的核心,也是所有代数方程的基础;丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法;第四章、图形的认识初步本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角.本章书涉及的数学思想:1.分类讨论思想;在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性;2.方程思想;在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决;3.图形变换思想;在研究角的概念时,要充分体会对射线旋转的认识;在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化;4.化归思想;在进行直线、线段、角以及相关图形的计数时,总要划归到公式nn-1/2的具体运用上来; 七年级数学下知识点人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容;第五章、相交线与平行线知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角;2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角;3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线;4.平行线:在同一平面内,不相交的两条直线叫做平行线;5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角;内错角:∠2与∠6像这样的一对角叫做内错角;同旁内角:∠2与∠5像这样的一对角叫做同旁内角;6.命题:判断一件事情的语句叫命题;7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移;8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点;9.定理与性质对顶角的性质:对顶角相等;10垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直;性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短;11.平行公理:经过直线外一点有且只有一条直线与已知直线平行;平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行;12.平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补;13.平行线的判定:判定1:同位角相等,两直线平行;判定2:内错角相等,两直线平行;判定3:同旁内角相等,两直线平行;本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计;第六章、平面直角坐标系知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做a,b2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系;3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点;4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b 分别叫点P的横坐标和纵坐标;5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限;坐标轴上的点不在任何一个象限内;平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用;另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想;掌握本节内容对以后学习和生活有着积极的意义;教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识;第七章、三角形知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形;2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边;3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高;4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线;5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线;6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性;6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形;7.多边形的内角:多边形相邻两边组成的角叫做它的内角;8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角;9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线;10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形;11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面;12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和;性质2:三角形的一个外角大于任何一个和它不相邻的内角;多边形内角和公式:n边形的内角和等于n-2·180°多边形的外角和:多边形的内角和为360°;多边形对角线的条数:1从n边形的一个顶点出发可以引n-3条对角线,把多边形分词n-2个三角形;2n边形共有23)-n(n条对角线;三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘;注重培养学生正确的数学情操和几何思维能力;第八章、二元一次方程组知识概念1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次;方程,一般形式是ax+by=ca≠0,b≠0;2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组;3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解;4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组;5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想;6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法;7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法;本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法.重点:二元一次方程组的解法,列二元一次方程组解决实际问题.难点:二元一次方程组解决实际问题第九章、不等式与不等式组知识概念1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式;2.不等式的解:使不等式成立的未知数的值,叫做不等式的解;3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集;4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式;5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组;7.定理与性质不等式的性质:不等式的基本性质1:不等式的两边都加上或减去同一个数或式子,不等号的方向不变;不等式的基本性质2:不等式的两边都乘以或除以同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以或除以同一个负数,不等号的方向改变;本章内容要求学生经历建立一元一次不等式组这样的数学模型并应用它解决实际问题的过程,体会不等式组的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识;第十章、数据的收集、整理与描述3.总体:要考察的全体对象称为总体;4.个体:组成总体的每一个考察对象称为个体;5.样本:被抽取的所有个体组成一个样本;6.样本容量:样本中个体的数目称为样本容量;7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数;8.频率:频数与数据总数的比为频率;9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距;本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度;八年级数学上知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容;第十一章、全等三角形知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动或称变换使之与另一个重合,这两个三角形称为全等三角形;2.全等三角形的性质:全等三角形的对应角相等、对应边相等;3.三角形全等的判定公理及推论有:1“边角边”简称“SAS”2“角边角”简称“ASA”3“边边边”简称“SSS”4“角角边”简称“AAS”5斜边和直角边相等的两直角三角形HL;4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上;()()()321000.0k ⎪⎩⎪⎨⎧<=><b b b ()()()321000.0k ⎪⎩⎪⎨⎧<=>>b b b 5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系,②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式顺序和对应关系从已知推导出要证明的问题.在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形;通过直观的理解和比较发现全等三角形的奥妙之处;在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力;第十二章、轴对称知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴;2.性质:1轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线;2角平分线上的点到角两边距离相等;3线段垂直平分线上的任意一点到线段两个端点的距离相等;4与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;5轴对称图形上对应线段相等、对应角相等;3.等腰三角形的性质:等腰三角形的两个底角相等,等边对等角4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”;5.等腰三角形的判定:等角对等边;6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形;有一个角是60°的等腰三角形是等边三角形有两个角是60°的三角形是等边三角形;8.直角三角形中,30°角所对的直角边等于斜边的一半;9.直角三角形斜边上的中线等于斜边的一半;本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题; 第十三章、实数5.数a 的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是01.算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a,那么正数x 叫做a 的算术平方根,记作a ;0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根;2.平方根:一般地,如果一个数x 的平方根等于a,即x 2=a,那么数x 就叫做a 的平方根;3.正数有两个平方根一正一负它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根;4.正数的立方根是正数;0的立方根是0;负数的立方根是负数;实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算;重点是实数的意义和实数的分类;实数的运算法则及运算律;第十四章、一次函数知识概念1.一次函数:若两个变量x,y 间的关系式可以表示成y=kx+bk ≠0的形式,则称y 是x 的一次函数x 为自变量,y 为因变量;特别地,当b=0时,称y 是x 的正比例函数;2.正比例函数一般式:y=kxk ≠0,其图象是经过原点0,0的一条直线;33.正比例函数y=kxk ≠0的图象是一条经过原点的直线,当k>0时,直线y=kx 经过第一、三象限,y 随x 的增大而增大,当k<0时,直线y=kx 经过第二、四象限,y 随x 的增大而减小,在一次函数y=kx+b 中:当k>0时,y 随x 的增大而增大;当k<0时,y 随x 的增大而减小;4.已知两点坐标求函数解析式:待定系数法一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石;在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物;培养学生良好的变化与对应意识,体会数形结合的思想;在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣;第十五章、整式的乘除与分解因式1.同底数幂的乘法法则:n m n m a a a +=⋅m,n 都是正数2..幂的乘方法则:mn n m a a =)(m,n 都是正数3.整式的乘法1单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式;2单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加;3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加;4.平方差公式:22))((b a b a b a -=-+5.完全平方公式:2222)(b ab a b a +±=±6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a-=÷a ≠0,m 、n 都是正数,且m>n.在应用时需要注意以下几点: ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0.②任何不等于0的数的0次幂等于1,即)0(10≠=a a ,如1100=,=1,则00无意义. ③任何不等于0的数的-p 次幂p 是正整数,等于这个数的p 的次幂的倒数,即p p a a 1=-a ≠0,p 是正整数,而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的;当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序.7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法。
人教版七年级上册数学知识点知识是嘈杂的,智慧是宁静的。
知识总是在卖弄,智慧却深藏不露;知识,只有当它靠积极的思维得来,而不是凭记忆得来的时候,才是真正的知识。
下面小编给大家分享一些人教版七年级上册数学知识,希望能够帮助大家,欢迎阅读!人教版七年级上册数学知识1整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
《2.1整式(第三课时)——多项式》我说课的题目是多项式。
下面我将从教材、学情、教法、学法、教学程序、板书设计六个方面进行说明。
恳请在座的各位评委、同仁批评指正。
一.教材分析1、地位和作用本节内容选自人教版数学七年级上册第二章第一节第三课时,是初中代数的重要内容之一。
一方面本节课是建立在学生已经学习了单项式的基础上,对整式知识的进一步深入和拓展;另一方面又为学习整式加减等知识奠定了基础,是进一步研究整式的工具性内容。
鉴于这种认识,我认为本节课起着承前启后的作用。
2.教学目标知识与技能:1.掌握多项式及其项、次数、常数项的概念.2.准确地确定一个多项式的项数和次数.3.知道整式的概念.过程与方法:1.通过小组讨论、合作交流,让学生经历新知识的形成过程.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生对知识的迁移和知识结构体系的更新.情感态度与价值观:1.让学生经历数学活动,体验主动探究问题的乐趣与成功的快乐,感受数学活动充满探索与创新的机遇.3.教学重点.多项式的定义、多项式的项和次数以及常数项等概念.4.教学难点.多项式的次数.二.学情分析七年级二班学生基础不是很扎实,整体学习能力处于中等水平,学习新的知识需要较长的理解过程,再加上学生的好动性,注意力易分散,爱发表见解这一特点,容易将单项式与多项式的相关概念混淆,所以教学中教师应予以简单明白、深入浅出的分析,同时要创造条件和机会,让学生发表见解,发挥学生学习的主动性,提高学生学习的积极性。
三.教学方法鉴于以上对教材和学情的分析,本节课我将采用启发式、讨论式以及讲练结合的教学方法,带着学生去发现和探究新知识,以问题的提出、问题的解决为主线,同时在教学过程中,我将以列表格等多种形式加深学生对知识点的理解,激发学生的学习兴趣,提高教学效率并注意学生的观察能力和语言表达能力的培养。
四.学法分析1、学生采用对比学习的方法,即通过与单项式的比较学习多项式。
初一上册数学知识点:一元一次方程1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
七年级上册第2.1 整式综合测试题一、选择题(每题 3 分,共 24 分)1、假如1a 2b 2n 1 是五次单项式,则 n 的值为()2A 、1 B、 2 C、3 D 、42、多项式 x22xy y 31是()4A 、三次三项式 B、二次四项式C、三次四项式D、二次三项式3、多项式 x 2 y 3 3xy 3 2的次数和项数分别为()A 、5,3B、5,2C 、2,3D 、 3,34、对于单项式2 r 2 的系数、次数分别为()A 、- 2,2B 、- 2,3 C、 2 ,2 D、2 ,35、以下说法中正确的选项是( )A 、2 3B 、 x 11x 3x2 x 是六次三项式xx 2 是二次三项式C 、 x 2 2x 25 是五次三项式D 、 5x 5 2x 4 y 21是六次三项式6、以下式子中不是整式的是()A 、 23xB、a2b C、 12x 5yD、 0a7、以下说法中正确的选项是()A 、- 5,a 不是单项式B、abc的系数是- 22C 、 x 2 y 2的系数是1,次数是 4D、 x 2 y 的系数为 0,次数为 2338、以下用语言表达式子“ a 3 ”所表示的数目关系,错误的选项是()A 、 a 与- 3 的和B、- a 与 3 的差C 、- a 与 3 的和的相反数 D、- 3 与 a 的差二、填空题(每题3 分,共 24 分)1、单项式4xy 2 的系数为____,次数为_____。
32、多项式 x 3xyy 2y1是_____次__项式,各项分别为___,各2项系数的和为____。
3、 a 的 3 倍的相反数可表示为____,系数为____,次数为_____。
4、以下各式: 1, a23ab b 2,1x, xy,1 x, 3a 2b , r 4 , x 2 3x 1 ,此中单项式有22 2____,多项式有_____。
5、以下式子 0, 2ab,3x 2yz,3a 3b, 1 x 2 1,它们都有一个共同的特色是__2 2 3__。
2021-2022学年度 秋季 七年级上学期 人教版数学初一数学上册整式练习题1、计算或化简)753(132)1(22-+-++-x x x x(2)(4x 2y-3xy 2)-(1+4x 2-3xy 2)(3) 22314[(3)3]22x x x x ---+2.先化简,后求值:(1)1)32(34922---+y xy x xy ,其中1=x ,1-=y(2)()()[]a a a a a 3252a 52222-----,其中a=4(3)(x 3-2y 3-3 x 2y )-[3(3x 3-2y 3)-4x 2y ],其中x= -2, y= -13.已知2222539,822y xy x B x y xy A -+=+-=,求(1)B A -;(2)B A 23+-。
4.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3,求()cd x cd b a x -++-25.当多项式()()13212x 522--+---x n x m 不含二次项和一次项时,求m 、n 的值。
6.解答题(1) ()()的值。
求且若b a c c b a a -⋅=-=++-32,21,0212(2) 已知m n n m -=-,且4m =,3n =,求 的值2()m n +=(3)若单项式-3a 2-m b 与b n+1a 2是同类项,求代数式m 2-(-3mn+3n 2)+2n 2的值.人教版七年级数学上册必须要记、背的知识点1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
整式和一元一次方程含参问题(原卷版)第一部分 教学案类型一 求单项式或多项式中指数或系数中的字母1.(2022秋•河北区期中)已知(m ﹣1)a |m +1|b 3是关于a 、b 的五次单项式,则m 的值为( ) A .﹣1B .1C .﹣3D .32.(2022秋•市南区)已知a ,b 满足|a ﹣2|+(b +3)2=0,则单项式﹣5πx a ﹣b y 的系数和次数分别是( ) A .﹣5π,5B .﹣5π,6C .﹣5,7D .﹣5,63.(2021秋•建华区校级期中)已知多项式(m +4)x |m |y 2+xy ﹣4x +1六次四项式,单项式5x 2n y 6﹣m与多项式的次数相同,(m ,n 是常数),则m n = .4.(2021秋•清镇市校级期中)多项式3x |m |y 2﹣(m +2)x +1是一个四次三项式,那么m = . 5.(2021秋•克东县校级期中)已知多项式x ﹣3xy m +1+x 3y ﹣3x 4﹣1是五次多项式,则m = .6.(2021秋•通城县期中)已知多项式﹣2m 3n 2﹣5中,含字母的项的系数为a ,多项式的次数为b ,常数为c ,则a +b +c = .7.(2021秋•陇县期末)多项式12x |m|−(m +2)x +7是关于x 的二次三项式,则m = .二、求同类项中指数的字母及代数式8.(2022秋•武汉期中)若3a x ﹣1b 2与4a 3b y +2是同类项,则x ,y 的值分别是( )A .x =4,y =0B .x =4=2C .x =3,y =1D .x =1,y =39.(2022秋•巴彦县期中)若﹣3x 2m y 3与2x 4y n 是同类项,则m n =( ) A .6B .7C .8D .910.(2021秋•丰宁县期末)如果单项式﹣3x a +3y 2与2xy b﹣3能合并成一项,那么ab 的结果为( ) A .10B .﹣10C .﹣12D .1211.(2022秋•营口期中)单项式2a m b 1﹣2n与a 3b 9的和是单项式,则(m +n )2022=( )A .1B .﹣1C .0D .0或112.(2021秋•射阳县校级期末)若3x m +5y 2与23x 8y n +4的差是一个单项式,则代数式n m 的值为( ) A .﹣8B .6C .﹣6D .8类型三 整式加减中的取值无关或不含某项问题13.(2021秋•八步区期末)x 2+ax ﹣2y +7﹣(bx 2﹣2x +9y ﹣1)的值与x 的取值无关,则b ﹣a 的值为( ) A .﹣3B .3C .﹣1D .114.(2021秋•澄海区期末)若代数式ax 2+4x ﹣y +3﹣(2x 2﹣bx +5y ﹣1)的值与x 的取值无关,则a +b 的值为( ) A .6B .﹣6C .2D .﹣215.(2021秋•吉安县期末)已知:A =3x 2+2xy +3y ﹣1,B =x 2﹣xy . (1)计算:A ﹣3B ;(2)若(x +1)2+|y ﹣2|=0,求A ﹣3B 的值; (3)若A ﹣3B 的值与y 的取值无关,求x 的值.16.(2021秋•五莲县期末)当k = 时,多项式x 2+(k ﹣1)xy ﹣3y 2﹣2xy ﹣5中不含xy 项.类型四 求一元一次方程中指数或系数中的字母的值17.(2021秋•长沙期末)若(m ﹣3)x 2|m |﹣5﹣4m =0是关于x 的一元一次方程,求m 2﹣2m +1的值.18.(2021秋•巨野县期末)如果方程ax |a +1|+3=0是关于x 的一元一次方程,则a 的值为 . 19.(2021秋•阳信县期末)若(a ﹣3)x |a |﹣2﹣7=0是一个关于x 的一元一次方程,则a 等于 .类型五 两个一元一次方程的解相关问题20.(2021秋•和平县期末)已知关于x 的一元一次方程x 2020+5=2020x +m 的解为x =2021,那么关于y 的一元一次方程10−y 2020−5=2020(10﹣y )﹣m 的解为 .21.(2022秋•宿城区期中)关于x 的方程ax +4=1﹣2x 的解恰好为方程2x ﹣1=5的解,则a = .22.(2021秋•渭城区期末)已知关于x 的方程x−m 2=x +m3与方程x−12=3x ﹣2的解互为倒数,则m 的值为 .23.(2022春•朝阳区校级期末)新定义:如果两个一元一次方程的解互为相反数,就称这两个方程为“友好方程”,如:方程2x =6和3x +9=0为“友好方程”. (1)若关于x 的方程3x +m =0与方程2x ﹣6=4是“友好方程”,求m 的值. (2)若某“友好方程”的两个解的差为6,其中一个解为n ,求n 的值.六、一元一次方程的整数解问题24.(2021秋•巫溪县期末)从﹣3,﹣2,﹣1,1,2,3中选一个数作为k 的值,使得关于x 的方程1−2x−k 4=2x+k3−x 的解为整数,则所有满足条件的k 的值的积为( ) A .﹣4B .﹣12C .18D .3625.(2022秋•渝北区校级期中)若关于x 的方程5x ﹣3=kx +4有整数解,那么满足条件的所有整数k 的和为( ) A .20B .6C .4D .226.(2021秋•监利市期末)已知关于x 的一元一次方程kx =4﹣x 的解为正整数,则满足条件的k 的正整数值是 . 27.(2021秋•黄陂区期末)下列说法:①若x =2是关于x 的方程ax +b =0的解,则b =﹣2a ;②若a =2b ,则关于x 的方程ax +b =0(a ≠0)的解为x =−12;③若a ≠b ,则关于x 的方程a (x ﹣1)=b (x ﹣1)的解为x =1;④若2a +b =6(a 为正整数),且关于x 的方程ax +b =0的解为整数,则a 的值为1或2.其中一定正确的结论有 (填序号即可). 七、一元一次方程的错解问题28.(2021秋•淮北期末)王涵同学在解关于x 的方程7a +x =18时,误将+x 看作﹣x ,得方程的解为x =﹣4,那么原方程的解为( ) A .x =4B .x =2C .x =0D .x =﹣229.(2021秋•浦口区校级月考)某同学在解方程2x−13=x+a 3−2去分母时,方程右边的﹣2没有乘3x =2,试求a 的值,并求出原方程的正确解.八、无解、唯一解、无数解问题29.(2021秋•凤山县期末)若关于x 的方程2ax ﹣b =﹣12a +6x 无解,则a ,b 的值分别为( ) A .a =0,b =0B .a =3,b =36C .a =36,b =3D .a =3,b =330.(2022春•上蔡县校级月考)若关于x 的方程mx +2=n ﹣x 有无数解,则3m +n 的值为( ) A .﹣1 B .1C .2D .以上答案都不对31.(2021秋•昌江区校级期末)(3a ﹣5b )x 2+ax +b ﹣a =0是关于x 的一元一次方程,且x 有唯一解,则x = .32.(2021秋•闽侯县期末)已知关于x 的一元一次方程kx+a 6−x−bk 3=2,其中a ,b ,k为常数.(1)当k =3,a =﹣1,b =1时,求该方程的解;(2)试说明当k =2时,原方程有无数多个解,并求出此时a +4b 的值; (3)若无论k 为何值时,该方程的解总是x =﹣3,求ab 的值.第二部分 配套作业1.(2021秋•文登区期末)若−13x m−3y 与2x 2y n﹣2是同类项,则(m ﹣2n )2022的值为( )A .2022B .﹣2022C .﹣1D .12.(2021秋•逊克县期末)若代数式﹣x 6y 3与2x 2n y 3是同类项,则n 的值是( ) A .2B .3C .4D .63.(2022秋•西山区期中)若单项式a m ﹣1b 2与12a 2b ﹣n的和仍是单项式,则n m 的值是( )A .﹣8B .﹣6C .6D .84.(2022秋•金水区期中)2x 2+ax ﹣y ﹣(bx 2﹣5x +9y +3)的化简结果与x 的取值无关,则﹣a +b 的值为( ) A .7B .﹣3C .3D .﹣75.(2021秋•泊头市期末)已知k 为整数,关于x 的方程(k +2)x =3有正整数解,则满足条件的k 的值有( ) A .1个B .2个C .3个D .无数多个6.(2022春•奉贤区校级期末)如果关于x 的方程(a +1)x =a 2+1无解,那么a 的取值范围是( ) A .a =−1B .a >−1C .a ≠−1D .任意实数7.(2021秋•冠县期末)若多项式m (m ﹣1)x 3+(m ﹣1)x +2是关于x 的一次多项式,则m 需满足的条件是 .8.(2022秋•宿城区期中)如果多项式x 2+5ab +b 2+kab ﹣1不含ab 项,则k 的值为 . 9.(2020秋•凤凰县期末)若(m +1)x |m |=6是关于x 的一元一次方程,则m 等于 . 10.(2021春•遂宁期末)关于x 的方程(k ﹣4)x |k |﹣3+1=0是一元一次方程,则k 的值是 .11.(2022•聊城模拟)已知关于x 的方程3a +x =x2−5的解为2,a 的值是 . 12.(2022春•岳池县期中)已知方程2(x +1)=3(x ﹣1)的解为a +2,则方程2(2x ﹣5)﹣3(x ﹣4)=2a 的解为x = .13.(2021秋•科尔沁区期末)若关于x 的方程mx =3﹣x 的解为整数,则正整数m 的值为 .14.(2019秋•梁园区期末)如果a ,b 为定值,关于x 的一次方程2kx+a 3−x−bk 6=2,无论k 为何值时,它的解总是1,则a +2b = . 15.(2022秋•秀屿区校级期末)如果方程x−43−8=−x+22的解与方程4x ﹣(3a +1)=6x +2a ﹣1的解相同,求式子a ﹣a 2的值.16.(2021秋•建瓯市校级期中)已知关于x 的方程2(x +1)=3m +1的解与方程5x +3=﹣7的解互为相反数,求m 的值.17.(2021秋•巴南区期末)已知方程3x−52=5x−83的解满足等式m10−3(x−m)2=3x−m 4−25(3x +m ),求m 的值.18.(2022秋•鼓楼区校级月考)已知方程2(x +1)=3(x ﹣1)的解为a +2,求方程2[2(x +3)﹣3(x ﹣a )]=3a 的解.。
整式的概念【要点梳理】要点一、单项式1.单项式的概念:如22xy -,13mn ,-1,它们都是数与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式包括三种类型:①数字与字母相乘或字母与字母相乘组成的式子;②单独的一个数;③单独的一个字母.(2)单项式中不能含有加减运算,但可以含有除法运算.如:2st 可以写成12st 。
但若分母中含有字母,如5m就不是单项式,因为它无法写成数字与字母的乘积. 2.单项式的系数:单项式中的数字因数叫做这个单项式的系数.要点诠释:(1)确定单项式的系数时,最好先将单项式写成数与字母的乘积的形式,再确定其系数;(2)圆周率π是常数.单项式中出现π时,应看作系数;(3)当一个单项式的系数是1或-1时,“1”通常省略不写;(4)单项式的系数是带分数时,通常写成假分数,如:2114x y 写成254x y . 3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.要点诠释:单项式的次数是计算单项式中所有字母的指数和得到的,计算时要注意以下两点:(1)没有写指数的字母,实际上其指数是1,计算时不能将其遗漏;(2)不能将数字的指数一同计算.要点二、多项式1.多项式的概念:几个单项式的和叫做多项式.要点诠释:“几个”是指两个或两个以上.2. 多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项. 要点诠释:(1)多项式的每一项包括它前面的符号.(2)一个多项式含有几项,就叫几项式,如:2627x x --是一个三项式.3. 多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.要点诠释:(1)多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数.(2)一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出. 要点三、 整式单项式与多项式统称为整式.要点诠释:(1)单项式、多项式、整式这三者之间的关系如图所示.即单项式、多项式必是整式,但反过来就不一定成立.(2)分母中含有字母的式子一定不是整式.【典型例题】类型一、整式概念辨析1.指出下列各式中哪些是单项式?哪些是多项式?哪些是整式? 22x y +,x -,3a b +,10,61xy +,1x ,217m n ,225x x --,22x x +,7a举一反三: 【变式】下列代数式:322332111;;;;2;-232a x y ab x x y x y y x+--++π①②③④⑤⑥,其中是单项式的是_______________,是多项式的是_______________.类型二、单项式2.指出下列代数式中的单项式,并写出各单项式的系数和次数.234a b -,a -,442x ,a mn ,223a y π,a -3,5-3,82-310tm ⨯,2x y举一反三:【变式1】单项式3x 2y 3的系数是 .【变式2】下列结论正确的是( ).A .没有加减运算的代数式叫做单项式.B .单项式237xy 的系数是3,次数是2. C .单项式m 既没有系数,也没有次数.D .单项式2xy z -的系数是-1,次数是4.类型三、多项式3.多项式24242153x y x y x -+-+,这个多项式的最高次项是什么?一次项的系数是什么?常数项是什么?这是几次几项式?4. 已知多项式32312246753m x xy x y y x y ---+--. (1)求多项式各项的系数和次数.(2)如果多项式是七次五项式,求m 的值.举一反三:【变式】多项式()34ba x x xb --+-是关于x 的二次三项式,求a 与b 的差的相反数.类型四、整式的应用5. 用整式填空:(1)某商场将一种商品A 按标价的9折出售(即优惠10%)仍可获利10%,若商场商品A 的标价为a 元,那么该商品的进价为________元(列出式子即可,不用化简).(2)甲商品的进价为1400元,若标价为a 元,按标价的9折出售;乙商品的进价是400元,若标价为b 元,按标价的8折出售,列式表示两种商品的利润率分别为甲:________ 乙:________.举一反三:【变式】(2014秋•栖霞市期末)对下列代数式作出解释,其中不正确的是( )A. a ﹣b :今年小明b 岁,小明的爸爸a 岁,小明比他爸爸小(a ﹣b )岁B. a ﹣b :今年小明b 岁,小明的爸爸a 岁,则小明出生时,他爸爸为(a ﹣b )岁C. ab :长方形的长为acm ,宽为bcm ,长方形的面积为abcm2 D. ab :三角形的一边长为acm ,这边上的高为bcm ,此三角形的面积为abcm2【巩固练习】一、选择题1.(2014秋•章丘市校级期末)下面的说法正确的是( )A. ﹣2不是代数式B. ﹣a 表示负数C. 的系数是3D. x+1是代数式2.已知单项式243x y -,下列说法正确的是( ). A .系数是-4,次数是3B .系数是43-,次数是3 C .系数是43,次数是3 D .系数是43-,次数是2 3.如果一个多项式的次数是3,那么这个多项式的任何一项的次数( ).A .都小于3B .都等于3C .都不小于3D .都不大于34.下列式子:a+2b ,2a b -,221()3x y -,2a,0中,整式的个数是( ). A .2个 B .3个 C .4个 D .5个 5..关于单项式3222x y z -,下列结论正确的是( ).A .系数是-2,次数是4B .系数是-2,次数是5C .系数是-2,次数是8D .系数是-23,次数是56.一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,…,其中第10个式子是( ).A .1019a b +B .1019a b -C .1017a b -D .1021a b -二、填空题7.代数式23mn ,2353x y ,2x y -,23ab c -,0,31a a +-中是单项式的是________,是多项式的是________.8.关于x 的多项式3(1)23nm x x x --+的次数是2,那么______,______m n ==. 9.多项式2x 2-3x+5是_ 次______项式.10.(2015•长春模拟)今年五.一假期,张老师一家四口开着一辆轿车去长春市净月潭森林公园度假.若门票每人a 元,进入园区的轿车每辆收费20元,则张老师一家开车进入净月潭森林公园园区所需费用是 元(用含a 的代数式表示). 11.有一组单项式:2a ,32a -,43a ,…,请观察它们的构成规律,用你发现的规律写出第10个单项式:________.12.关于x 的二次三项式的一次项的系数为5,二次项的系数为-3,常数项为-4,按照x 的次数逐渐降低排列,这个二次三项式为________.13.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒……按此规律,请你推测第n 组应该取种子数是________粒.。