高等代数与解析几何2.1
- 格式:doc
- 大小:88.50 KB
- 文档页数:1
《高等代数(上)》课程标准1.课程说明《高等代数(上)》课程标准课程编码〔 37008 〕承担单位〔师范学院〕制定〔〕制定日期〔2022.11.20 〕审核〔〕审核日期〔〕批准〔〕批准日期〔〕(1)课程性质:本门课程是数学教育专业的专业基础课程之一,是本专业的核心课程,也是必修课程。
本课程是初等代数的延续与提高, 它的知识,技能,思想方法,对中小学数学教学有直接的指导作用,特别是数学能力的培养和提升发挥着不可替代的作用,可以增强学生的数学思维品质和提高学生的数学素养,为未来的数学教师生涯和今后的再学习奠定良好的专业理论基础。
(2)课程任务:本课程主要针对中小学数学教育教师及相关等岗位开设,主要任务是培养学生在中小学数学教育教师岗位的数学课程教学能力,要求学生掌握中小学数学教师在代数方面的专业理论基础知识、基本技能及思想方法和解决相关问题的能力。
(3)课程衔接:在课程设置上,前导课程有中学数学,后续课程有《高等代数(下)》、《解析几何》、《概率统计基础》、《数论》等。
2.学习目标通过本课程的学习,使学生掌握《高等代数(上)》的基础知识、基本理论、基本方法。
提高学生的逻辑推理能力,提高学生的数学思维能力,提高学生的再学习的能力。
培养学生实事求是、诚实守信、爱岗敬业、团结协作的职业精神,培养学生善于沟通、勇于合作的良好品质,为发展职业能力奠定良好的基础。
使学生成为具备从事中小学数学教育职业的高素质劳动者和教学高级技术人才。
(1)知识目标掌握一元多项式理论、线性方程组、行列式与矩阵及二次型的基本知识、基本理论。
熟练掌握行列式、矩阵的运算。
熟练掌握运用初等变换求解线性方程组、求可逆矩阵的逆矩阵等基本方法。
(2)素质目标培养良好的思想品德、心理素质。
培养良好的职业道德,包括爱岗敬业、诚实守信、遵守相关的法律法规等。
培养学生踏实、认真、求实的做事态度,使学生形成勇于承担责任、实事求是的工作作风。
培养良好的团队协作、协调人际关系的能力。
高等代数教学大纲(Higher Algebra)前言教学大纲是一门课程的指导性文件.教学大纲的科学化、规范化,对建设良好的教学秩序,提高教学质量,搞好教学管理等方面都有很重要的意义.为此,我们根据学校有关文件,编写了《高等代数》这门课程的教学大纲.《高等代数》这门课程是数学系各专业的必修专业基础课程之一,可为后继课程的学习打下必要的基础.它是数学系各专业硕士研究生入学考试的必考课程.它除培养学生掌握必要的基础知识之外,同时着重训练学生掌握数学结构的观念、公理化的方法、纯形式化的思维,从而在知识结构、综合素质、创新能力等方面对学生加以全面培养和整体提高.本课程的基本内容有: 包括:多项式,行列式,线性方程组, 矩阵,二次型,线性空间, 线λ矩阵,欧几里得内积空间,双线性函数和辛空间.重点是下列几章:多项式,行性变换, -列式,线性方程组, 矩阵,二次型,线性空间, 线性变换,欧几里得内积空间.通过本课程的学习,学生能正确理解矩阵、行列式、线性空间、线性变换、欧几里得空间等有关概念, 能理解并掌握线性方程组理论和多项式的理论,并能熟练地应用它们,为后续课程的学习打下坚实的基础.本课程作为基础课,对其它课程依赖不大,当然,如果在学完《空间解析几何》之后开设效果会更好.本课程作为基础课,应在大学低年级学生中开设,建议对本科一年级学生开设.本课程为一学年课程.教材: 《高等代数学》(第三版)北京大学数学系几何与代数教研室前代数小组, 高等教育出版社,2003年。
参考书:《线性代数》吴赣昌主编,中国人民大学出版社,2006年《高等代数学》姚慕生编, 复旦大学出版社,1999《高等代数新方法》王品超主编,山东教育出版社,1989年《高等代数学》(第二版)张贤科主编,清华大学出版社,2002年《Linear Algebra》S.K.Jain, A.D.Gunawardena,机械工业出版社,2003年建议学时分配课程内容第一章多项式[教学目的与要求]通过本章学习,实现如下目的:(1)理解整除、最大公因式、互素、多项式的不可约性、重因式、本原多项式等概念;(2)熟练掌握整除的性质;(3)熟练掌握最大公因式的求法;(4)熟练掌握有无重因式的判别方法;(5)熟练掌握整系数多项式的有理根的求法;(6)熟练掌握整系数多项式在有理数域上不可约的艾森斯坦判别法;(7)掌握复系数多项式因式分解定理、实系数多项式因式分解定理、有理系数多项式的因式分解定理的应用;(8)掌握韦达定理和多元多项式的基本性质.[教学重点]整除的性质、最大公因式的求法、有无重因式的判别方法、整系数多项式的有理根的求法、整系数多项式不可约的艾森斯坦判别法;复系数多项式因式分解定理、实系数多项式因式分解定理、有理系数多项式的因式分解定理的应用.[教学难点]整系数多项式的有理根的求法、整系数多项式不可约的艾森斯坦判别法.[教学内容]§1.1. 数域数域的定义和例子§1.2. 一元多项式一、一元多项式的定义二、一元多项式的运算和运算律§1.3. 整除的概念一、带余除法二、整除的定义和几个常用的性质§1.4. 最大公因式一、最大公因式的定义和求法二、互素§1.5. 因式分解定理一、不可约多项式的定义和简单性质二、因式分解唯一性定理§1.6. 重因式重因式的定义和性质§1.7. 多项式函数一、余数定理二、多项式的根或零点§1.8. 复系数与实系数多项式的因式分解一、复系数多项式的因式分解定理 二、实系数多项式的因式分解定理§1.9. 有理系数多项式一、本原多项式的定义和高斯引理 二、整系数多项式的有理根的求法 三、爱森斯坦判别法§1.10. 多元多项式多元多项式的定义及其次数§1.11. 对称多项式一、初等对称多项式二、对称多项式基本定理思考题1. 证明:多项式)(x f 整除任意多项式的充要条件是)(x f 是零次多项式.2. 设b a ,为两个不相等的常数.证明:多项式)(x f 被))((b x a x --除所得的余式为ba b bf a af x b a b f a f --+--)()()()(3. 证明:1|1--n d x x 当且仅当n d |.4. 设k 为正整数.证明:)(|x f x k 当且仅当)(|x f x .5. 已知242)(234---+=x x x x x f ,22)(234---+=x x x x x g ,求)(),(x v x u 使))(),(()()()()(x g x f x g x v x f x u =+. 6. 证明:如果)(|)(x f x d ,)(|)(x g x d ,且)()()()()(x g x v x f x u x d +=,则)(x d 是)(x f 与)(x g 的最大公因式.7. 证明:如果1))(),((=x g x f ,1))(),((=x h x f ,则1))()(),((=x h x g x f . 8. 证明:如果1))(),((=x g x f ,则1))(),((=mmx g x f . 9. 若1))(),((21=x f x f ,则对任意的)(x g ,))(),(())(),(())(),()((2121x g x f x g x f x g x f x f =.10.判断下列多项式在有理数域上是否有重因式,若有,则求出重因式,并确定重数(1)1)(24++=x x x f(2)277251815)(2346+-++-=x x x x x x f11.设)(x p 是)(x f '的k 重因式,能否说)(x p 是)(x f 的1+k 重因式,为什么?12.设n 为正整数,证明:如果)(|)(x g x f nn ,则)(|)(x g x f .13.设)(x p 为数域P 上的不可约多项式,)(x f 与)(x g 为数域P 上的多项式.证明:如果)()(|)(x g x f x p +,且)()(|)(x g x f x p ,则)(|)(x f x p ,且)(|)(x g x p .14.设)(x f 为数域P 上的n 次多项式,证明:如果)(|)(x f x f ',则nb x a x f )()(-=,其中P b a ∈,.15.求多项式92)(24++=x x x f 与944)(234-+-=x x x x g 的公共根.16.求多项式61510)(25-+-=x x x x f 的所有根,并确定重数.第二章 行列式[教学目的与要求] 通过本章学习,实现如下目的: (1) 理解行列式的概念;(2) 能熟练应用行列式的性质和展开定理计算行列式; (3) 会用Cramer 法则求解线性方程组. [教学重点]行列式的计算、Cramer 法则. [教学难点] 行列式的定义 [教学内容]§2.1. 引言二阶、三阶行列式与线性方程组的解§2.2. 排列一、排列及排列逆序数的定义 二、奇偶排列§2.3. n 阶行列式 n 阶行列式的定义§2.4. n 阶行列式的性质 n 阶行列式的性质及其推论§2.5. 行列式的计算n 阶行列式的计算§2.6. 行列式按一行一列展开一、n 阶行列式按一行一列展开定理 二、范德蒙(Vandermonde )行列式§2.7. 克拉默(Cramer )法则 克拉默(Cramer )法则§2.8. 拉普拉斯(Laplace )定理 行列式的乘法规则一、拉普拉斯(Laplace )定理 二、行列式的乘法规则思考题1. 求下列排列的逆序数:(1))2(24)12(13n n -; (2)21)1( -n n . 2. 写出四阶行列式中含有因子4123a a 的项,并指出应带的符号. 3.用行列式的定义计算下列行列式:(1)00001002001000nn -; (2)000000053524342353433323125242322211312a a a a a a a a a a a a a a a a . 4.用行列式的性质及行列式的展开定理计算下列行列式:(1)xa a a a x a a a a x a a a a xn nn321212121; (2)na a a +++11111111121,其中021≠n a a a(3)12125431432321-n n n; (4)221222212121211nn n n n na x a a a a a a a x a a a a a a a x +++其中021≠n x x x .(5)x a a a a a x x x n n n +-----122110000010001;(6)nnn n n nn n nna a a a a a a a a a a a21222212222121111---5. 已知4阶行列式D 中的第1行上的元素分别为4,0,2,1-,其余子式分别为1,5,2,1--;第3行上元素的余子式分别为x ,7,1,6-;求行列式D 的值,及x 的值.6.设4阶行列式1234302186427531中第4行元素的余子式分别为44434241,,,M M M M ,代数余子式分别为44434241,,,A A A A ,求44434241432A A A A +++,44434241432M M M M +++.7. 设4阶行列式2211765144334321中第4行元素的代数余子式分别为44434241,,,A A A A ,求4241A A +与4443A A +.8. 设行列式nn0010301002112531-中第1行元素的代数余子式分别为n A A A 11211,,, ,求n A A A 11211+++ .第三章 线性方程组[教学目的与要求] 通过本章学习,实现如下目的:(1) 掌握向量的线性表示、线性相关性的判别法; (2) 掌握极大无关组的求法; (3) 掌握矩阵秩的求法;(4) 掌握线性方程组解情况的判定方法; (5) 掌握齐次线性方程组的基础解系的求法; (6) 掌握非齐次线性方程组解结构定理[教学重点] 向量的线性表示、线性相关性、极大无关组、向量组的秩、矩阵的秩、齐次线性方程组的基础解系.[教学难点] 极大无关组、矩阵的秩.[教学内容]§3.1. 消元法消元法§3.2. n 维向量空间n 维向量及其运算§3.3. 线性相关性一、线性表示二、向量组的线性相关性 三、向量组的极大无关组、秩§3.4. 矩阵的秩矩阵的行秩、列秩、秩§3.5. 线性方程组有解判定定理线性方程组有解判定定理§3.6. 线性方程组解的结构一、齐次线性方程组的解结构 二、非齐次线性方程组的解结构§3.7. 二元高次方程组二元高次方程组可作为选学内容.思考题1.设)1,1,1(1λα+=,)1,1,1(2λα+=,)1,1,1(3λα+=,),,0(2λλβ=.问当λ为何值时(1)β不能由321,,ααα线性表出?(2)β可由321,,ααα线性表出,并且表示法唯一?(3)β可由321,,ααα线性表出,并且表示法不唯一? 2.设)1,2,(1a =α,)0,,2(2a =α,)1,1,1(3-=α,问a 为何值时321,,ααα线性相关?3. 求下列向量组的一个极大无关组,并将其余向量表为该极大无关组的线性组合.(1))5,2,1(1-=α,)1,2,3(2-=α,)17,10,3(3-=α;(2))4,0,1,1(1-=α,)6,5,1,2(2=α,)0,2,1,1(3--=α,)14,7,0,3(4=α. 4.已知21,ββ是非齐次线性方程组b Ax =的两个解,21,αα是其导出组0=Ax 的基础解系,21,k k 是任意常数,则b Ax =的通解是( ).(A)2)(2121211ββααα-+++k k ; (B)2)(2121211ββααα++-+k k ;(C)2)(2121211ββββα-+-+k k ; (D)2)(2121211ββββα++-+k k .5.设A 为秩为3的45⨯矩阵,321,,ααα是非齐次线性方程组b Ax =的三个不同的解,若)0,0,0,2(2321=++ααα,)8,6,4,2(321=+αα,求方程组b Ax =的通解. 6.设b Ax =为4元线性方程组,其系数矩阵A 的秩为3,又321,,ααα是b Ax =的三个解,且)0,2,0,2(1=α,)0,2,2,0(32=+αα,求方程组b Ax =的通解.7.已知β是非齐次线性方程组b Ax =的解,s ααα,,,21 是其导出组0=Ax 的基础解系,证明s αβαβαββ+++,,,,21 是b Ax =解向量组的极大无关组.8.线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++243214312143214321121053153363132k x x x x x x k x x x x x x x x x x ,当21,k k 取何值时,无解?有唯一解?有无穷多解?在方程组有无穷多解时,用导出组的基础解系表示其全部解.第四章 矩阵[教学目的与要求] 通过本章学习,实现如下目的:(1) 能熟练地进行矩阵的各种运算(加、减、数乘、乘、转置、求逆等); (2) 能熟练掌握矩阵的初等变换,理解初等变换和初等矩阵的关系; (3) 能掌握各种求逆矩阵的方法; (4) 会应用分块乘法的初等变换. [教学重点]矩阵的各种运算(加、减、数乘、乘、转置、求逆等);矩阵的初等变换; 初等变换求逆法;分块乘法的初等变换.[教学难点] 分块乘法的初等变换 [教学内容]§2.1. 矩阵的概念的一些背景矩阵的概念§2.2. 矩阵的运算一、矩阵的加法、减法 二、矩阵的乘法三、数与矩阵的乘法 四、矩阵的转置§2.3. 矩阵乘积的行列式与秩一、矩阵乘积的行列式 二、矩阵乘积的秩§2.4. 矩阵的逆一、矩阵可逆的定义 二、伴随矩阵求逆法§2.5. 矩阵的分块一、分块矩阵的概念 二、分块矩阵的运算三、几种分块矩阵的逆矩阵§2.6. 初等矩阵一、初等矩阵及其性质 二、初等变换求逆法§2.7. 分块乘法的初等变换及应用举例一、分块乘法的初等变换二、分块乘法的初等变换应用举例思考题1. 举例说明下列命题是错误的:(1) 若02=A ,则0=A ;(2) 若A A =2,则0=A 或E A =;(3) 若E A =2,则E A =或E A -=; (4) 若AY AX =,且0≠A ,则Y X =. 2. 证明(1)2222)(B AB A B A +±=±成立当且仅当BA AB =; (2)22))((B A B A B A -=-+成立当且仅当BA AB =. 3.已知n n ij a A ⨯=)(为n 阶方阵,写出:(1)2A 的k 行l 列元素; (2)TAA 的k 行l 列元素; (3)A A T的k 行l 列元素. 4. 已知)3,2,1(=α,)31,21,1(=β.设矩阵βαT A =,求n A . 5. 证明:对任意的n m ⨯矩阵A ,T AA 和A A T都是对称矩阵.6. 设A 是n 阶方阵,且E AA T=,1||=A ,求||n E A -.7.已知A 为三阶方阵,且21||=A ,求|2)3(|*1A A --.8.已知⎪⎪⎪⎭⎫ ⎝⎛--=100021201A ,求1*])[(-T A .9.(1)已知⎪⎪⎪⎭⎫ ⎝⎛=300130113A ,矩阵B 满足B A AB 2+=,求B ;(2)已知⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,矩阵B 满足B A E AB +=+2,求B ;(3)已知)1,2,1(-=diag A ,矩阵B 满足E BA BA A 82*-=,求B . 10.已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A .11.(1)证明)()()(B r A r B A r +≤+;(2)若n 阶矩阵B A ,满足0=AB ,证明n B r A r ≤+)()(;(3)若n 阶矩阵A 满足A A =2,证明n E A r A r =-+)()(;(4)若n 阶矩阵A 满足E A =2,证明n E A r E A r =-++)()(. 12.(1)B A ,为两个n 阶方阵,证明||||B A B A AB BA -⋅+=; (2)B A ,分别为m n ⨯和n m ⨯矩阵,证明||||BA E AB E E AB E m n nm -=-=.第五章 二次型[教学目的与要求] 通过本章学习,实现如下目的:(1)掌握用非退化线性替换把二次型化成标准形和规范形的方法; (2)会判断二次型的正定性.[教学重点] 二次型化标准形和规范形的方法;惯性定理;二次型的正定性. [教学难点] 惯性定理 [教学内容]§5.1. 二次型及其矩阵表示一、二次型及其矩阵表示 二、矩阵的合同§5.2. 标准形化二次型为标准形的配方法§5.3. 唯一性一、复二次型的规范形二、实二次型的规范形、惯性定理§5.4. 正定二次型一、正定二次型的概念和判定方法二、半正定二次型简介思考题1.写出下列二次型AX X '的矩阵,其中 (1)⎪⎪⎪⎭⎫⎝⎛---=205213111A ; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211 2. 设二次型32212221442x x x x x x f --+=,分别作下列可逆线性变换,求新二次型的矩阵,(1)Y X ⎪⎪⎪⎭⎫⎝⎛--=100210211; (2)Y X ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2101101121.3.分别用配方法和初等变换法化下列二次型为标准形,并写出所作的非退化线性替换(1)2332223121214322x x x x x x x x x f +++++=; (2)323121622x x x x x x f -+=.4. 分别在实数域和复数域上将3题中的两个二次型进一步化成规范型,并写出所作的非退化线性替换.5. 证明:秩等于r的对称矩阵可以表示成r个秩等于1的对称矩阵之和. 6. 证明:一个实二次型可以分解成两个实系数的一次齐次多项式的乘积的充分必要条件是,它的秩等于2和符号差等于0,或者秩等于1. 7. t 取什么值时,下列二次型是正定的:(1)3231212222214223x x x x x tx x x x f +-+++=; (2)32312123222161024x x x x x tx x x x f +++++=.8. 证明:如果A 正定,则1-A 和*A 也都正定.9.已知m 阶实对称矩阵A 正定,B 是n m ⨯矩阵,证明:AB B T正定的充要条件是n B r =)(.10. 已知A 为实矩阵,证明:)()(A r A A r ='.第六章 线性空间[教学目的与要求] 通过本章学习,实现如下目的:(1)能熟练地判断所给非空集合在指定的运算下能否构成线性空间; (2)会判断所给非空子集能否构成子空间; (3)会判断子空间之间的和是否为直和; (4)会判断两个线性空间的同构;(5)能熟练掌握线性空间基和维数的求法;(6)能熟练求向量在基下的坐标、基到基的过渡矩阵; (7)能熟练地求和空间的维数;(7)能熟练地应用维数公式求交空间的基与维数.[教学重点] 线性空间的定义、子空间的直和、维数公式、线性空间的同构. [教学难点] 线性空间的定义 [教学内容]§6.1. 集合 映射一、集合的概念和运算二、映射的概念、映射的乘法、逆映射§6.2. 线性空间的定义与简单性质一、线性空间的定义 二、线性空间的简单性质§6.3. 维数 基与坐标一、线性表示、线性相关和线性无关、向量组的等价 二、线性空间的基、维数,向量的坐标§6.4. 基变换与坐标变换一、基到基的过渡矩阵 二、坐标变换公式§6.5. 线性子空间一、线性子空间的定义二、线性子空间的维数和基§6.6. 子空间的交与和一、子空间的交 二、子空间的和§6.7. 子空间的直和一、两个子空间的直和 二、多个子空间的直和§6.8. 线性空间的同构一、线性空间同构的定义 二、同构映射的性质思考题1.检验下列集合对于所规定的运算是否构成给定数域上的线性空间:(1) 数域P 上的对角线元素的和为零的所有n 阶方阵所成的集合,对于矩阵的加法和数量乘法;(2) 设},|2{Q b a b a V ∈+=,Q 为有理数域,对于通常数的加法和乘法; (3) 设},|),{(R b a b a V ∈=,R 为实数域,定义加法和数乘如下:),(),(),(21212211b b a a b a b a +=+, ),(),(kb ka b a k = )(R k ∈.(4) 按照通常的数的运算,实数域R 是否构成实数域R 上的线性空间?是否构成复数域C 上的线性空间?(5) 按照通常的数的运算,复数域C 是否构成实数域R 上的线性空间?是否构成复数域C 上的线性空间? (6) +R 是全体正实数组成的集合,定义加法和数乘如下:ab b a =⊕, k a a k =⋅,这里+∈R b a ,,R k ∈.2.证明:在数域P 上的线性空间V 中,成立以下运算律:(1)βαβαk k k -=-)(;(2)αααl k l k -=-)(.这里P l k ∈,,V ∈βα,.3.实数域R 按照通常的乘法构成实数域R 上的线性空间.全体正实数集合+R 对1(6)题中定义的加法和数乘也构成实数域R 上的线性空间,能否据此说明+R 是线性空间R 的一个子空间?+R 是线性空间R 的子空间吗?4. 设)1,2,1(1-=α,)3,1,0(2-=α,)0,1,1(3-=α;)5,1,2(1=β,)1,3,2(2-=β,)2,3,1(3=β,(1) 证明:321,,ααα和321,,βββ都是3R 的基; (2) 求321,,ααα到321,,βββ的过渡矩阵; (3) 求向量)1,4,1(=α在两组基下的坐标.5. 在线性空间nR 中,判断下列哪些子集是子空间,(1)},|),0,,0,{(11R a a a a n n ∈ ;(2)}0|),,,{(121=∑=ni in aa a a ;(3)}1|),,,{(121=∑=ni in aa a a ;(4)},,2,1,|),,,{(21n i Z a a a a i n =∈.6. 举例说明线性空间的两个子空间的并一般不是子空间.两个子空间的并仍是子空间的充要条件是什么?7. 设线性空间V 含有非零向量,21,V V 是V 的任意两个真子空间,证明:V V V ≠⋃21. 8.在线性空间3][x P 中,求向量组21-=x α,x 22=α,x -=13α,24x =α 的一个极大无关组.9. 判断正误,并说明理由.(1)V 是n 维向量空间,V r ∈αα,,1 ,则r αα,,1 是子空间),,(1r L αα 的一组基;(2)n 个向量n αα,,1 是n 维向量空间V 的一组生成元,则n αα,,1 一定是V 的一组基;(3)向量空间V 的维数等于V 的任一生成组所含向量的个数; (4)任一向量空间都有基; (5)若向量空间V 的每一个向量都可以由n αα,,1 唯一的线性表示,则n αα,,1 是V 的一组基;(6)若s αα,,1 与t ββ,,1 的极大无关组分别是r i i αα,,1 与p j j ββ,,1 ,则),,(),,(11t s L L ββαα +的一组基为r i i αα,,1 p j j ββ,,1 .10. 下列向量组是否为3][x P 的基:(1)}22,,1,1{2322++++++x x x x x x x ; (2)},22,1,1{322x x x x x -+--. 11.求下列子空间的维数:(1)3))4,2,5(),2,4,1(),1,3,2((R L ⊆--; (2)][),1,1(22x P x x x x L ⊆---;(3)],[),,(32b a C e e e L x xx⊆,],[b a C 表示区间],[b a 上的全体连续函数空间.12.设⎪⎪⎪⎭⎫ ⎝⎛=000100010A ,求33⨯P 中所有与A 可交换的矩阵组成的子空间的维数和一组基.13.令},|{1A A P A A V n n ='∈=⨯,},|{2A A P A A V n n -='∈=⨯,证明21V V P n n ⊕=⨯. 14.设n αα,,1 是P 上n 维线性空间V 的一组基,A 是P 上的一个s n ⨯矩阵,令A n s ),,(),,(11ααββ =,证明:)(),,(dim 1A r L s =ββ . 15.证明:线性空间][x P 可以和它的真子空间同构.第七章 线性变换[教学目的与要求] 通过本章学习,实现如下目的: (1) 能熟练掌握线性变换的运算; (2) 能理解线性变换与矩阵的关系;(3) 能熟练地求线性变换的特征值与特征向量;(4) 理解哈密尔顿—凯莱(Hamilton-Caylay )定理; (5) 能熟练地将矩阵对角化;(6) 能熟练地求出线性变换的值域与核; (7) 了解若尔当标准形理论.[教学重点] 线性变换与矩阵的关系;线性变换的特征值与特征向量;线性变换的值域与核;矩阵对角化.[教学难点] 矩阵的对角化 [教学内容]§7.1. 线性变换的定义一、线性变换的定义 二、线性变换的简单性质§7.2. 线性变换的运算一、线性变换的乘法 二、线性变换的加法三、线性变换的数量乘法 四、线性变换的逆§7.3. 线性变换的矩阵一、线性变换的矩阵 二、矩阵的相似§7.4. 特征值与特征向量一、线性变换特征值与特征向量的概念 二、线性变换特征值与特征向量的求法 三、哈密顿-凯莱定理§7.5. 对角矩阵一、特征向量的性质二、线性变换的矩阵可以是对角矩阵的条件§7.6. 线性变换的值域与核一、线性变换的值域 二、线性变换的核§7.7. 不变子空间一、不变子空间二、不变子空间与线性变换矩阵的化简§7.8. 若尔当(Jordan )标准形介绍若尔当标准形介绍§7.9. 最小多项式最小多项式概念和性质思考题1.线性空间V 到V 的同构映射称为线性空间V 的自同构.线性空间V 的线性变换和它的自同构有什么异同?2.A 是线性空间V 的线性变换,s αα,,1 是V 中一组线性无关的向量,问)(,),(1s ααA A 是否仍线性无关?试举例说明. 3.设A 是n 维线性空间V 的线性变换,证明:(1)A 是线性空间V 的自同构当且仅当A 把线性无关的向量组变成线性无关的向量组;(2)A 把线性空间V 中某一组线性无关的向量变成一组线性相关的向量的充要条件是A 把V 中某个非零向量变成零向量,即}0{)0(1≠-A ;(3)A 是线性空间V 的自同构当且仅当}0{)0(1=-A .4.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A ,定义4P 的变换为:ξξA =A ,4P∈ξ,证明A 为4P 的线性变换,并求A 的核和象空间以及它们的维数.5.为什么线性变换的问题可以转化为相应的矩阵的问题去研究?)(V L 与nn P ⨯有什么关系?求出线性空间)(V L 的维数.6.设⎪⎪⎭⎫ ⎝⎛=4321A ,求22⨯P 的如下线性变换A 在基⎪⎪⎭⎫ ⎝⎛=00011ε,⎪⎪⎭⎫⎝⎛=00102ε,⎪⎪⎭⎫ ⎝⎛=01003ε,⎪⎪⎭⎫⎝⎛=10004ε下的矩阵. (1)AX X =)(A ; (2)XA X =)(A .7.在3R 中,试求关于基)0,0,1(1=ε,)0,1,1(2=ε,)1,1,1(3=ε的矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=221101211A 的线性变换.8.设三维线性空间线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫⎝⎛---=6788152051115A ,求A 在基321,,βββ下的矩阵,其中321132αααβ++=,321243αααβ++=,321322αααβ++=.若3212αααξ-+=,求)(ξA 在基321,,βββ下的坐标.9.设三维线性空间线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A , 求(1)A 在基123,,ααα下的矩阵;(2)A 在基321,,αααk 下的矩阵;)0(≠k (3)A 在基3221,,αααα+下的矩阵.10.四维线性空间V 的线性变换A 在基4321,,,αααα下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3707011311013412A ,求:(1)A 的值域; (2)A 的核;(3)在A 的值域中选一组基,把它扩充成线性空间V 的基; (4)在A 的核中选一组基,把它扩充成线性空间V 的基.11.若矩阵A 与B 相似,证明:(1) 若A 与B 可逆,则1-A 与1-B 相似; (2) 对任意的常数k ,kA 与kB 相似;(3) 对任意的正整数m ,mA 与mB 相似;(4) 对于任意多项式)(x f ,)(A f 与)(B f 相似.12.若矩阵A 与B 相似,C 与D 相似,证明:⎪⎪⎭⎫⎝⎛C A 00与⎪⎪⎭⎫⎝⎛D B 00相似. 13.取定矩阵n n P A ⨯∈.对于任意的nn P X ⨯∈,定义变换A 为XA AX X -=)(A ,(1) 证明A 为线性空间nn P ⨯的线性变换;(2) 若⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n A λλλ00000021,求线性变换A 在基},1|{n j i E ij ≤≤下的矩阵. 14.在线性空间3P 中,定义线性变换A 为),,(),,(312321x x x x x x =A .令}2,1,|)0,,{(21=∈=i P x x x S i ,则S 是3P 的一个子空间,试问S 是否为线性变换A 的不变子空间.15.V 为数域P 上的一个线性空间,A 为V 的一个线性变换,][)(x P x f ∈,如果S 为线性变换A 的不变子空间,则S 线性变换)(A f 的不变子空间.16.若S 为线性空间V 的线性变换A 和B 的不变子空间,则S 也是B A +和AB 的不变子空间.17.若21,S S 为线性空间V 的线性变换A 的不变子空间,则21S S ⋂,21S S +也是A 的不变子空间. 18.若S 为线性空间V 的线性变换A 的不变子空间,当线性变换A 可逆时,则S 也是1-A的不变子空间. 19.若A 是线性空间V 的线性变换,且满足A A=2,证明:(1)}|)({)0(1V ∈-=-ξξξA A; (2))Im()0(1A A ⊕=-V .20.n 阶矩阵A 和B 相似时,它们有相同的特征多项式.反过来对吗?即n 阶矩阵A 和B 有相同的特征多项式时,哪它们相似吗?试举例说明.21.A 是线性空间V 的线性变换,证明A 可逆的充分必要条件是A 的特征值都非零. 22.证明线性变换A 的一个特征向量不能同时属于两个不同的特征值.23.证明:对角形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021和⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n b b b 0021 相似的充分必要条件是n b b b ,,,21 是n a a a ,,,21 的一个排列.24.设A 是复数域C 上的一个n 阶矩阵,n λλλ,,,21 是A 的全部特征值(按重数计算),证明:(1)如果][)(x C x f ∈是次数大于0的多项式,则)(,),(),(21n f f f λλλ 是)(A f 的全部特征值;(2)如果A 可逆,则n λλλ,,,21 全部不等于零; (3)如果A 可逆,则nλλλ1,,1,121 为1-A 的全部特征值.25.设三维线性空间V 的线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=533242111A , 求:(1)A 的特征值和特征向量;(2)是否存在V 的基321,,βββ使得线性变换A 在其下的矩阵为对角形.若这样的基321,,βββ存在,试写出由基321,,ααα到321,,βββ的过渡矩阵T .以及A 在321,,βββ下的矩阵;(3)计算AT T 1-.第八章 -λ矩阵[教学目的与要求] 通过本章学习,实现如下目的: (1)会求-λ矩阵的标准形 (2)会求-λ矩阵的行列式因子(3)会求矩阵A 的初等因子,并能写出A 若尔当标准形 (4)会求矩阵A 的有理标准形[教学重点] 矩阵A 的初等因子,矩阵的A 若尔当标准形 [教学难点] 矩阵相似的条件 [教学内容]§8.1. -λ矩阵一、-λ矩阵的秩 二、-λ矩阵的可逆§8.2. -λ矩阵在初等变换下的标准形一、-λ矩阵的初等变换 二、-λ矩阵的标准形§8.3. 不变因子一、-λ矩阵的行列式因子 二、-λ矩阵的不变因子§8.4. 相似矩阵的条件两个矩阵相似的充要条件§8.5. 初等因子一、初等因子的概念 二、初等因子的求法§8.6. 若尔当(Jordan )标准形理论推导一、若尔当矩阵的概念二、矩阵的若尔当标准形的求法§8.7. 矩阵的有理标准形一、有理形矩阵的概念 二、有理标准形的求法思考题1.求下列矩阵的初等因子、不变因子、行列式因子,并写出若当标准形.(1)⎪⎪⎪⎭⎫ ⎝⎛-----222333111, (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0167121700140013, (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10021*********1. 2. 已知nn P A ⨯∈,证明A 与A '相似.3. 设复矩阵⎪⎪⎪⎭⎫ ⎝⎛-=102002c b a A ,(1)求出A 的一切可能的若当标准形;(2)给出A 可对角化的条件.第九章 欧几里得空间[教学目的与要求] 通过本章学习,实现如下目的:(1) 掌握求标准正交基的施密特(Schmidt )正交化方法;(2) 会判断两个欧氏空间的同构; (3) 理解正交变换与正交矩阵的关系; (4) 会求欧氏空间子空间的正交补;(5) 能熟练地把实对称矩阵正交相似于对角矩阵; (6) 能掌握最小二乘法.[教学重点] 求标准正交基的施密特(Schmidt )正交化方法;欧氏空间的同构;正交变换;对乘变换;实对称矩阵正交相似于对角矩阵的方法.[教学难点] 最小二乘法[教学内容] §9.1. 定义与基本性质一、内积与欧氏空间的定义 二、向量的长度 三、向量的正交四、欧氏空间基的度量矩阵§9.2. 标准正交基一、标准正交基的概念 二、标准正交基的求法§9.3. 同构一、欧氏空间同构的概念 二、欧氏空间同构的充要条件§9.4. 正交变换一、正交变换的定义 二、正交变换的性质§9.5. 子空间一、欧氏空间中子空间的正交 二、欧氏空间子空间的正交补§9.6. 实对称矩阵的标准形一、对称变换二、实对称矩阵的特征值特征向量的性质 三、实对称矩阵的对角化四、二次型化标准形的正交变换法§9.7. 向量到子空间的距离 最小二乘法一、向量到子空间的距离 二、最小二乘法§9.8. 酉空间介绍一、酉空间的概念二、酉空间中的一些重要结论思考题1.下列线性空间对给定的二元函数),(βα是否构成欧氏空间(1)在线性空间nR 中,对任意向量),,(1n a a =α,),,(1n b b =β,定义二元函数∑==ni i i b a 1||),(βα(2)在线性空间nn R ⨯中,对任意向量nn RB A ⨯∈,,定义二元函数)(),(A B tr B A '=2. 在欧氏空间4R 中求出两个单位向量使它们同时与下面三个向量正交.)0,4,1,2(1-=α,)2,2,1,1(2--=α,)4,5,2,3(3=α3. 称||),(βαβα-=d 为向量α和β间的距离.证明:),(),(),(βγγαβαd d d +≤. 4.设α,β是欧氏空间中任意两个非零向量,证明:(1))0(>=k k βα的充分必要条件是α和β间的夹角为零; (2))0(<=k k βα的充分必要条件是α和β间的夹角为π. 5. 已知)0,1,2,0(1=α,)0,0,1,1(2-=α,)1,0,2,1(3-=α,)1,0,0,1(4=α是4R 的一个基,对这个基正交化,求出4R 的一个标准正交基.6. 在欧氏空间]1,1[-C 里,对基32,,,1x x x 正交化,求出]1,1[-C 的一个标准正交基. 7. 已知))0,2,0(),0,0,1((L W =是3R 的一个子空间,求⊥W . 8.设21,,W W W 为欧氏空间V 的子空间,则(1)W W =⊥⊥)(;(2)如果21W W ⊂,则⊥⊥⊂12W W ; (3)⊥⊥⊥⋂=+2121)(W W W W . 9.求正交矩阵T 使得AT T '成对角形.其中A 为(1)⎪⎪⎪⎭⎫ ⎝⎛--510810228211; (2)⎪⎪⎪⎭⎫ ⎝⎛----114441784817. 10.用正交的线性替换化下列二次型为标准形(1)322322214332x x x x x f +++=;(2)43324121242322212222x x x x x x x x x x x x f +--++++=; (3)434232413121222222x x x x x x x x x x x x f ++--+=.第十章 双线性函数与辛空间 *[教学目的与要求] 通过本章学习,实现如下目的:(1)理解线性函数的定义,熟悉线性函数的简单性质 (2)理解线性空间与其对偶空间的同构关系(3)理解双线性度量空间、正交空间、准欧氏空间、辛空间等概念 [教学重点] 对偶空间和对偶基、双线性函数、双线性度量空间、正交空间、准欧氏空间、辛空间等概念。
精品文档高等代数( 1)课程教学大纲第一部分前言一、课程基本信息1.课程类别:专业基础课2.开课单位:数学与财经系3.适用专业:数学与应用数学专业4. 备选教材:《高等代数(第三版)》,北京大学数学系几何与代数教研室前代数组编.高等教育出版社,2003.二、课程性质和目标高等代数是数学与应用数学专业的一门重要基础课程。
本课程的主要内容是多项式理论和线性代数理论。
通过本课程的教学,使学生掌握代数基本理论和基本方法,培养学生代数方面的科学的思维、抽象的思维,逻辑推理、提高运算以及解决实际应用的能力,为进一步学习专业后续课程奠定坚实的代数基础。
本课程的教学目的是使学生获得一元多项式,行列式,线性方程组,矩阵等方面的系统知识 , 为进一步学习近世代数,复变函数、等后续课程打下坚实的基础,也为深入理解初等数学、指导中学数学教学提供了高等的专业知识与重要的方法论。
通过本门课程系统的学习与严格的训练,全面掌握高等代数的基本理论知识;培养抽象的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用代数学的理论知识解决实际应用问题的能力。
三、课程学时与学分教学时数:96 学时,其中理论教学81 学时,实践教学15 学时学分数: 6 学分教学时数具体分配:教学内容理论教学实践教学合计(学时)(学时)(学时)第一章多项式26632第二章行列式16319第三章线性方程组22325第四章矩阵17320合计811596第二部分教学内容及其要求第一章多项式1.教学目标:要求学生理解数域的概念;掌握一元多项式的概念、运算及基本性质;掌握带余除法与整除性的关系,会进行相关运算;会求多项式的最大公因式;理解不可约多项式的概念,掌握求重因式的方法;理解多项式在不同的数域的因式分解形式;掌握Eisenstein判别法,会求有理系数多项式的根。
2.教学重点:整除概念,带余除法及整除的性质,最大公因式、互素、辗转相除法、不可约多项式概念、性质,k 重因式与 k 重根的关系。
线性相关性定理在高等代数中的应用探究 目录 一、内容概述................................................2 1.1 研究背景与意义.......................................2 1.2 国内外研究现状综述...................................4 1.3 研究目的与方法.......................................5 二、线性相关性的基本概念....................................6 2.1 向量空间的基本定义...................................7 2.2 线性组合与线性相关性.................................8 2.3 基与维数的概念.......................................9 三、线性相关性定理的理论基础...............................10 3.1 线性相关性定理概述..................................11 3.2 线性无关向量组的性质................................12 3.3 线性相关性与矩阵秩的关系............................13 四、线性相关性定理的应用实例...............................14 4.1 在解线性方程组中的应用..............................14 4.1.1 齐次线性方程组解的性质..........................15 4.1.2 非齐次线性方程组解的存在性......................16 4.2 在矩阵分解中的应用..................................18 4.2.1 行列式与特征值..................................19 4.2.2 矩阵的LU分解....................................20 4.3 在向量空间变换中的应用..............................20 五、线性相关性定理在其他领域的拓展应用.....................21 5.1 在计算机科学中的应用................................23 5.2 在经济学中的应用....................................24 5.3 在工程学中的应用....................................26 六、结论...................................................27 6.1 主要发现总结........................................28 6.2 对未来研究的建议....................................29 一、内容概述 线性相关性不仅是向量空间理论的基石,也是理解线性方程组解的存在性与唯一性的关键。本文首先从定义出发,明确线性相关与线性无关的概念,并通过具体示例阐述其直观意义。随后,文章将分析线性相关性定理的基本形式及其证明方法,包括但不限于线性组合、基底与坐标表示等核心概念。在此基础上,进一步讨论该定理在线性变换、矩阵论以及特征值问题中的具体应用,揭示其在解决实际数学问题中的作用与地位。此外,还将结合最新研究进展,探索线性相关性定理在数值分析、数据科学等领域的新应用,展现其跨学科的重要影响。文章提出未来研究方向,鼓励学者们继续深化对线性相关性定理的理解,以期促进相关领域的发展。
《解析几何》课程教学大纲课程编号:07010课程名称:解析几何英文名称:Analytical Geometry课程类型:学科平台课课程要求:必修学时/学分:6皱(讲课学时:64,实验学时:0:上机学时:0 )开课学期:1适用专业:数学与应用数学授课语言:中文课程网站:超星泛雅平台一、课程性质与任务解析几何是高等院校数学类专业的一门基础理论课。
通过本门课程的教学,使学生较系统的、完整的了解三维欧氏空间的解析儿何,学会运用矢量和坐标两种方法处理曲线、曲面(包括直线、平面)的有关问题。
通过对二次曲线与二次曲面分类与不变量的理论学习,了解代数理论与方法在几何中的应用。
二、课程与其他课程的联系《解析儿何》课程作为数学专业的专业基础课程之一,对其他专业课程的学习提供重要的基础知识,其中《高等代数》课程中的向量理论可通过《解析儿何》中的向量理论得到直观的解释,后续《微分儿何》是《解析凡何》课程的延续,而《解析儿何》这门课程所提供的数形结合思想为儿乎所有的数学课程提供了一共重要的思想方法。
三、课程教学目标1.通过《解析几何》的学习,使学生获得向量、空间曲面、直线与平面、二次曲线等方面的基本概念、基本理论和基本运算技能,为学习后继课程及进一步获取其它学科的知识奠定必要的数学基础。
学会使用向量理论解答中学阶段的很多几何难题,并将向量理论深入理解,增强对该理论的运用能力,还要通过二次曲线理论和二次曲面理论的学习,将高中阶段所学到的相关理论适当加深和拓宽,适当把握本学科前沿知识。
(支撑毕业要求指标点1.1)2.通过课程内容的学习,是学生牢固掌握数形结合思想,并将该思想运用到学科的学习当中。
通过把握数学专业基础课知识,努力使学生融会贯通,把《解析儿何》作为理解《高等代数》及《数学分析》等课程的重要工具。
利用向量理论理解代数学中的抽象向量,通过几何中二次曲线、空间曲面、空间直角坐标系等内容为分析理论中的微分和积分提供学习支撑。
高等代数思想高等代数是数学专业的一门重要的专业基础课,是深入研究数学以及从事高等数学相关工作的必要保障,高等代数内容丰富体系庞杂,高等代数的学习历来是数学专业学生的难点;主要表现在解决高等代数问题时感觉束手无策,无从下手,最终原因归根结底是学生对数学思1引言1.1研究高等代数数学思想的目的及意义首先高等代数课程是数学专业以及其他一些理工科专业所必修的基础课程,也是后续课程和近代数学的基础,此外高等代数的学习对于学生数学思维的培养至关重要,通过高等代数的学习对学生的抽象思维和逻辑推理有很大帮助,并对数学创新思维以及科研潜力的发展具有重要意义.而学好高等代数这门基础课程就离不开对数学思想方法的研究;此外从数学的发展历史分析,不难发现其实数学的重要发展和重大创新都体现着一定的数学思想方法,数学思想方法在数学领域内随处可见,没有数学思想方法的数学就不是真正的数学;比如早在16世纪之前,关于方程求解的问题中,期初数学家们很容易得到了一次、二次方程的根式解,然后类似地找到了三次、四次以及某些特殊的五次代数方程的根式解法,事实上,在这个艰辛的求解历程中,而且这些解法中都有类比的方法,也有同构、分类讨论、函数与方程的数学思想,此后也有许多数学家探究一般五次方程的解得存在性问题,包括当时著名数学家卡当、伟达、笛卡尔、牛顿、莱布尼茨、拉格朗日等,他们都是利用各种各样的数学思想方法,虽然经过了无数次的失败,但最终是阿贝尔等人从逆问题出发,严格证明了五次及五次以上的代数方程不存在根式解法,还有许许多多实例,都在说明着数学思想方法在数学发展中的积极推动作用,所以说数学思想方法对于数学的发展至关重要.1.2高等代数数学思想方法的研究现状由于高等代数数学思想方法的重要意义,近年来关于数学思想方法的研究层出不穷,有关数学思想方法的名称和应用的文献举不胜举,这些有关高等代数数学思想方法的研究在一定程度上推动着高等代数教学研究的发展和完善,对高等代数的学习以及数学其他分支的学习具有重要的指导意义和参考价值;其中比较典型的比如布合力且木·阿不都热合木在文献[1]中主要结合高等代数在解决相关问题以及发展思维工具方面的功能进行了探究,充分展示了高等代数的数学思想的丰富、深刻,以及其理论内容的严密和抽象。
龙源期刊网 解析几何中的Cramer法则作者:蔡红艳来源:《知识文库》2016年第08期《高等代数》和《空间解析几何》是数学专业的重要基础课程,其中《高等代数》的核心内容为行列式、矩阵、线性方程组和向量空间;而《空间解析几何》讲述的内容有向量与坐标、空间平面和直线、曲线与曲面、坐标变换等。
然而,这两门学科密切联系,解析几何中的问题需要高等代数中的知识来解决,高等代数中抽象概念需要从几何上得到直观地解释。
从某种程度上说,解析几何的产生,就实现了几何与代数的结合,这种思想极大地推动了几何的发展,也为代数的发展提供了强大的动力。
本文主要从解析几何的观点解释Cramer法则,剖析两门学科之间的紧密联系。
一、线性方程组和Cramer法则事实上,这就是解析几何中的Cramer法则,即当时,方程组(2)的唯一解为,其中表示用向量的转置替代矩阵中第列得到的矩阵。
三、总结《高等代数》与《解析几何》的开设,旨在建构完整的知识体系。
从解析几何的观点来解析代数中的知识点,如Cramer法则,对《高等代数》和《空间解析几何》的学科融合,实现一体化教学对于学生数学结构体系的构建以及重要思维方法的培养方面具有重要意义。
其一,《高等代数》中的理论在《解析几何》中寻找模型,例如线性方程组的建立,可以理解为求解平面的交点集合的问题。
高等代数的中心问题是向量空间,主要是由解析几何推广抽象而来,解析几何为抽象的向量提供了一个具体的模型与背景。
其二,《解析几何》中的内容依靠《高等代数》中的理论来解决。
实现高等代数与解析几何的学科融合,使得代数方法在几何问题中得到应用,这样既可以轻松完成解析几何的教学和学习,更让学生也体会了抽象的代数知识的妙处和解决实际问题的强有力,加深对代数的理解。
基金项目:贵州大学引进人才科研项目(贵大人基合字(2014)01号).(作者单位:贵州大学理学院)。
从三个角度证明点到平面的距离公式咸伟志【摘要】数学分析、高等代数和解析几何是大学数学类专业的3门主干基础课程.主要从这3门课程的角度,分别利用拉格朗日乘数法、欧氏空间和离差的相关内容证明了点到平面的距离公式,并简要地做出了小结.【期刊名称】《重庆工商大学学报(自然科学版)》【年(卷),期】2014(031)009【总页数】4页(P27-30)【关键词】距离;拉格朗日乘数法;欧氏空间;离差【作者】咸伟志【作者单位】重庆师范大学数学学院,重庆401331【正文语种】中文【中图分类】O241.21 预备知识在证明点到平面的距离公式前,先引入以下预备知识.定义1[1](点到平面的距离) 一点与平面上的点之间的最短距离,叫做点到平面的距离.定理1[1](平面基本定理) 空间中任一平面π的一般方程为Ax+By+Cz+D=0(A,B,C不全为0),且向量{A,B,C}是平面π的一个法向量.下面将分别从数学分析、高等代数和解析几何这3门课程的角度围绕点到平面的距离问题展开证明.受篇幅所限,在证明过程中所涉及的学科内容均将其作为定理提出,不再赘以证明.2 数学分析的角度2.1 问题的表述与涉及的内容[2]问题的表述1 从数学分析的角度,点到平面的距离问题可叙述为:求平面π:Ax+By+Cz+D=0上的点到空间一点P(x0,y0,z0)的最短距离.问题实质上可以看成是求点与点的距离在某约束条件下的极值问题,即条件极值问题.在解决条件极值问题时,引入拉格朗日乘数法.定理2(拉格朗日乘数法) 可微函数y=f(x1,x2,…,xn)在约束条件φk(x1,x2,…,xn)=0,k=1,2,…,m且m<k(其中φk有连续的偏导数,且雅克比行列式的极值求法为① 引进拉格朗日函数其中λk(k=1,2,…,m)为函数因子.②求满足方程组的点和其对应的函数因子,则P0为可能达到极值的点. ③ 进行判断,若d2L>0,则f在P0处取得极小值;d2L<0则f在P0处取得极大值.特别的,至于实际问题,可由实际意义来判断是否是极值.2.2 证法一设点(x,y,z)是平面π:Ax+By+Cz+D=0上的任一点,则它与P(x0,y0,z0)的距离的平方d2=(x-x0)2+(y-y0)2+(z-z0)2(1)问题转化为了求d2在约束条件Ax+By+Cz+D=0下的极大值.令L(x,y,z,λ)=(x-x0)2+(y-y0)2+(z-z0)2+λ(Ax+By+Cz+D),解方程组得唯一驻点由于问题一定存在最小值,故所得驻点就是L的极小值点,将其带入式(1)中,得即3 高等代数的角度3.1 问题的表述与涉及的内容问题的表述2 从高等代数的角度,点到平面的距离问题可放入欧氏空间中解决.在欧式空间中,定点P可以用定向量ζ=(x0,y0,z0)表示,平面π可表示为W={(x,y,z)∈R3|Ax+By+Cz+D=0},但W不满足子空间的条件( 比如W中没有零元素),故W不是子空间.现任取W′中的元素(a,b,c),即Aa+Bb+Cc+D=0,然后对ζ和W做平移变换得ζ′=(x0-a,y0-b,z0-c)和W′={(x,y,z)∈R3|Ax+By+Cz=0},此时W′为一个子空间.由于平移变换是保距变换,则问题可表述为求R3中定向量ζ′ 到子空间W′的距离.在解决这一问题前,先给出定理.定理3[3](向量到子空间的距离) 设W是欧式空间V的一个子空间,对于V中的向量α,W中有向量α1是α在W上的正交投影的充分必要条件是|α-α1|≤|α-β|对所有的β∈W成立,称|α-α1|为向量α到子空间W的距离.定理3说明,一个固定向量和一个子空间中各向量间的距离总是以“垂线最短”.定理4[4](欧氏空间的几点性质):① 在n维欧氏空间V中,dim V1+dim V2=n;② (α,kβ)=k(α,β);③④ (α,β+γ)=(α,β)+(α,γ);⑤ V1⊥V2⟺∀α∈V1,∀β∈V2有(α,β)=0.3.2 证法二设α=(A,B,C),则α∈W′⊥.∵dim W′=2且R3=W′⊕W′⊥,∴dim W′⊥=1,∴W′⊥=L(α).设ζ′在W′上的正交投影为η,由定理3知|ζ′-η|即为所求.∵ζ′-η∈W′⊥,∴ζ′-η=kα,∴α与ζ′-η的内积(α,ζ′-η)=(α,kα)=k|α|2=k(A2+B2+C2),又∵(α,ζ′-η)=(α,ζ′)-(α,η)=(α,ζ′)-0=(α,ζ′)=A(x0-a)+B(y0-b)+C(z0-c)=Ax0+By0+Cz0-(Aa+Bb+Cc)=Ax0+By0+Cz0+D,∴∴即4 解析几何的角度根据定理3,首先明确,过一点引平面的垂足,那么点与垂足间的距离即为点与与平面间的距离.接着,引入法式方程和离差的概念.4.1 法式方程的概念图1 “法式方程”示意图定义2[1](平面的法式方程) 如图1,自原点O向平面π引垂线,垂足为P,设取与向量方向相同的单位法向量则把平面的普通方程Ax+By+Cz+D=0化为x cos α+y cos β+z cos γ-p=0,这一方程叫做平面π的法式方程.注:① 法式方程的一次项系数是单位法向量的坐标,其平方和等于1;② p是原点到平面的距离,从而常数项-p≤0;③ 方程Ax+By+Cz+D=0两边乘以或就能化为法式方程. ④ 若设是平面π上任意一点的向径,则法式方程的向量形式为4.2 离差的概念及问题的表述定义3[1](离差) 如图2、3,从M0到平面π作垂线,设垂足为Q,那么在平面π的单位法向量上的射影叫做M0与平面π间的离差,记做δ=射图2 “离差”示意图1图3 “离差”示意图2注:① 点M0位于平面π的所指向的一侧⟺δ>0;② 点M0位于平面π的所指向的另一侧⟺δ<0;③ 点M0位于平面π上⟺δ=0;④ 显然,点M0到平面π的距离d=|δ|.问题的表述3:从解析几何的角度,则点到平面的距离问题可表述为求M0与平面π间的离差δ的绝对值.4.3 证法三如图2、3,由定义3得δ=射其中而Q在因此所以(1)式(1)的右边是法式方程的向量形式,根据普通方程化为法式方程的方法,得点M0(x0,y0,z0)到平面Ax+By+Cz+D=0的距离即5 结语数学分析、高等代数和解析几何是大学数学类专业的3门主干基础课程,即通常所说的“三高”课程.数学分析研究的对象是函数,研究函数的性质、微分和积分等内容,它往往通过函数的模型解决问题.而高等代数所讨论的是代数系统,如多项式环、线性空间等,它的特点是概念的高度抽象性和定理的高度概括性.解析几何则是指借助坐标系用代数方法解决几何问题的学科.一般而言,高等代数与解析几何的关系显得较为紧密,他们本质是“数”与“形”的互动关系,高等代数中的理论可在解析几何中寻找模型,解析几何中的内容需依靠高等代数中的理论来解决. 事实上,虽然“三高”课程的理论和方法不同,处理问题的思想方法也不同,但他们也能相互联系,毕竟殊途同归.所举的关于点到平面的距离公式的3个证明便是一个典型的例子.再例如,最小二乘法公式的证明也可利用多元函数的极值及欧氏空间的距离分别加以证明.建议,在“三高”课程的学习过程中,应经常反思三者的联系渗透之处,找出相关的例子,并从三者不同的视角加以研究,以加深对其的理解.【相关文献】[1] 吕林根.解析几何[M].第四版.北京:高等教育出版社,2006[2] 欧阳光中.数学分析:下册[M].3版.北京:高等教育出版社,2007[3] 易忠.高等代数与解析几何:下册[M].北京:清华大学出版社,2007[4] 北京大学数学系几何与代数教研室前代数小组.高等代数[M].3版.北京:高等教育出版社,2003。
习题2.1
1.求下列排列的反序数(1)
24315;(2)
13(21)(2)(22)42n n n -- 解:(1)5,1,3,4,2分别与其前面的数所构成的反序个数为0,3,1,0,所以(24315)314π=+=.
(2)2,4,,22n - 分别与其前面的数所构成的反序为22n -个,24n -个, ,2个,而13(21)(2)n n - 未构成反序,所以所给排列的反序数为:(22)(24)2(1)n n n n -+-++=- .
2.试讨论,,i j k 取何值时,能使9级排列126739i j k 满足:(126739)(1)1i j k π-=.
解:显然,当126739i j k 为偶排列时,就能满足(126739)(1)1i j k π-=.而,,i j k 只能从4,5,8这三个数中选取,共有6种排法,即458,485,548,584,845,854ijk =.直接计算可知,当4,5,8i j k ===或5,8,4i j k ===或8,4,5i j k ===时,126739i j k 均为偶排列.
3.如果排列12n j j j 的逆序数为k ,问排列11n n j j j - 的逆序数是多少?
解:因为比k j 大的数有k n j -个,所以在12n j j j 与11n n j j j - 这两个排列中,由k j 与比它大的各数构成的逆序数的和为k n j -.从而,由所
有k j 构成的逆序总数为(1)12(1)2
n n n -+++-= 而12()n j j j k π= ,所以11(1)()2n n n n j j j k π--=-。