中考数学专题复习方案设计题含解析
- 格式:doc
- 大小:153.00 KB
- 文档页数:11
中考数学专题训练【方案设计型】能力提升训练与解析考点:一次方程、方程组、分式方程、不等式组、一次函数、二次函数、【例1】.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?解:(1)设购进甲种商品x 件,购进乙种商品y 件, 根据题意,得⎩⎪⎨⎪⎧x +y =100,15x +35y =2 700,解得:⎩⎪⎨⎪⎧x =40,y =60.答:商店购进甲种商品40件,购进乙种商品60件. (2)设商店购进甲种商品a 件,则购进乙种商品(100-a )件, 根据题意列,得⎩⎪⎨⎪⎧15a +35100-a ≤3 100,5a +10100-a ≥890,解得20≤a ≤22.∵总利润W =5a +10(100-a )=-5a +1 000,W 是关于x 的一次函数,W 随x 的增大而减小,∴当x =20时,W 有最大值,此时W =900,且100-20=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.【例2】.今年,号称“千湖之省”的正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:月用水量(单位:吨) 单价(单位:元/吨)不大于10吨部分1.5 大于10吨,且不大于m 吨部分(20≤m ≤50)2大于m 吨部分3(2)记该用户六月份的用水量为x 吨,缴纳水费y 元,试列出y 关于x 的函数式; (3)若该用户六月份的用水量为40吨,缴纳水费y 元的取值围为70≤y ≤90,试求m 的取值围.解:(1)应缴纳水费:10×1.5+(18-10)×2=31(元). (2)当0≤x ≤10时,y =1.5x ;当10<x ≤m 时,y =10×1.5+2(x -10)=2x -5; 当x >m 时,y =15+2(m -10)+3(x -m )=3x -m -5. ∴y =⎩⎪⎨⎪⎧1.5x 0≤x ≤10,2x -510<x ≤m ,3x -m -5 x >m .(3)当40≤m ≤50时,y =2×40-5=75(元),满足. 当20≤m <40时,y =3×40-m -5=115-m , 则70≤115-m ≤90,∴25≤m ≤45,即25≤m ≤40. 综上得,25≤m ≤50.【例3】.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A ,B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:种植户 种植A 类蔬菜面积(单位:亩) 种植B 类蔬菜面积(单位:亩) 总收入(单位:元) 甲 3 1 12 500 乙2316 500(1)求A ,B 两类蔬菜每亩的平均收入各是多少元;(2)某种植户准备租20亩地用来种植A ,B 两类蔬菜,为了使总收入不低于63 000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有的租地方案.解:(1)设A ,B 两类蔬菜每亩平均收入分别是x 元,y 元.由题意,得⎩⎪⎨⎪⎧3x +y =12 500,2x +3y =16 500.解得⎩⎪⎨⎪⎧x =3 000,y =3 500.答:A ,B 两类蔬菜每亩平均收入分别是3 000元,3 500元.(2)设用来种植A 类蔬菜的面积为a 亩,则用来种植B 类蔬菜的面积为(20-a )亩.由题意,得⎩⎪⎨⎪⎧3 000a +3 50020-a ≥63 000,a >20-a .解得10<a ≤14.∵a 取整数,为:11,12,13,14. ∴租地方案为:类别种植面积(亩) A 11 12 13 14 B9876【例4】.某学校计划将校园形状为锐角△ABC 的空地(如图)进行改造,将它分割成△AHG 、△BHE 、△CGF 和矩形EFGH 四部分,且矩形EFGH 作为停车场,经测量BC=120m ,高AD=80m , (1)若学校计划在△AHG 上种草,在△BHE 、△CGF 上都种花,如何设计矩形的长、宽,使得种草的面积与种花的面积相等?(2)若种草的投资是每平方米6元,种花的投资是每平方米10元,停车场铺地砖投资是每平方米4元,又如何设计矩形的长、宽,使得△ABC 空地改造投资最小?最小为多少? 解、(1)设FG=x 米,则AK=(80-x)米 由△AHG ∽△ABCBC=120,AD=80可得:8080120x HG -=∴ x HG 23120-= BE+FC=120-)(x 23120-=x 23∴x x x x ·232180·23120 · 21⨯=--)()(解得x=40 ∴当FG 的长为40米时,种草的面积和种花的面积相等。
2021年中考数学专题五方案与设计复习题及答案1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水需2分钟;②洗菜需3分钟;③预备面条及佐料需2分钟;④用锅把水烧开需7分钟;⑤用烧开的水煮面条和菜需3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用() A.14分钟B.13分钟C.12分钟D.11分钟2.某学校组织340名师生进行长途考察活动,带有行李170件,打算租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.请问可行的租车方案有()A.2种B.3种C.4种D.5种3.一宾馆有两人间、三人间,四人间三种客房供游客租住,某旅行团20人预备同时租用这三种客房共7间,且每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种4.某乳制品厂现有鲜牛奶10吨,若直截了当销售,每吨可获利500元;若制成酸奶销售,每吨可获利1 200元;若制成奶粉销售,每吨可获利2 000元.该工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时刻全部用来生产奶粉,其余直截了当销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.你认为哪种方案获利最多,什么缘故?5.(2020年四川泸州)某商店预备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件?(2)若该商店预备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利许多于890元,问应该如何样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?6.(2011年贵州安顺)某班到毕业时共结余班费1 800元,班委会决定拿出许多于270元,但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好能够买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格;(2)有几种购买T恤和影集的方案?7.(2020年四川内江)某市为创建省卫生都市,有关部门决定利用现有的4 200盆甲种花卉和3 090盆乙种花卉,搭配A,B两种园艺造型共60个,摆放于入城大道两侧,搭配每个造型所需花卉数量的情形如下表所示:花卉甲乙造型A 8040B 5070(1)符合题意的搭配方案有哪几种?(2)假如搭配一个A种造型的成本为1 000元,搭配一个B种造型的成本为1 500元,试说明选用哪种方案成本最低?最低成本为多少元?8.(2011年湖北黄石)今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了爱护水资源,某市制定一套节水的治理措月用水量(单位:吨)单价(单位:元/吨)不大于10吨部分 1.5大于10吨,且不大于m吨部分(20≤m≤50) 2大于m吨部分 3(1)(2)记该用户六月份的用水量为x吨,缴纳水费y元,试列出y关于x的函数式;(3)若该用户六月份的用水量为40吨,缴纳水费y元的取值范畴为70≤y≤90,试求m的取值范畴.9.(2020年四川达州)大学生王强积极响应“自主创业”的号召,预备投资销售一种进价为每件40元的小家电.通过试营销发觉,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(单位:件)与销售单价x(单位:元)之间的关系可近似地看作一次函数,其图象如图Z5-2.图Z5-2(1)求y与x的函数关系式;(2)设王强每月获得的利润为p (单位:元),求p 与x 之间的函数关系式;假如王强想要每月获得2 400元的利润,那么销售单价应定为多少元?10.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A ,B 两类蔬菜,两种植户(1)求A ,B 两类蔬菜每亩的平均收入各是多少元;(2)某种植户预备租20亩地用来种植A ,B 两类蔬菜,为了使总收入不低于63 000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有的租地点案.专题五 方案与设计【专题演练】1.C 2.C3.C 解析:设租两人间x 间,三人间y 间,则四人间(7-x -y )间,由题意,得⎩⎪⎨⎪⎧ 2x +3y +4(7-x -y )=20,7-x -y >0,x >0,y >0.解得2x +y =8,x >0,y >0,7-x -y >0.∴x =2,y =4,7-x -y =1;x =3,y =2,7-x -y =2.故有2种租房方案.故选C.4.解:方案一获利:4×2 000+6×500=11 000(元).方案二:设制奶粉x 天,则1×x +(4-x )×3=10,解得x =1天.故1×1×2 000+3×3×1 200=12 800(元).故选方案二.5.解:(1)设购进甲种商品x 件,购进乙种商品y 件,依照题意,得⎩⎪⎨⎪⎧x +y =100,15x +35y =2 700, 解得:⎩⎪⎨⎪⎧x =40,y =60. 答:商店购进甲种商品40件,购进乙种商品60件.(2)设商店购进甲种商品a 件,则购进乙种商品(100-a )件,依照题意列,得⎩⎪⎨⎪⎧15a +35(100-a )≤3 100,5a +10(100-a )≥890,解得20≤a ≤22.∵总利润W =5a +10(100-a )=-5a +1 000,W 是关于x 的一次函数,W 随x 的增大而减小,∴当x =20时,W 有最大值,现在W =900,且100-20=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.6.解:(1)设T 恤和影集的价格分别为x 元和y 元,则⎩⎪⎨⎪⎧ x -y =9,2x +5y =200.解得⎩⎪⎨⎪⎧ x =35,y =26. 答:T 恤和影集的价格分别为35元和26元.(2)设购买T 恤t 件,则购买影集(50-t )本.依题意,得1 500≤35t +26(50-t )≤1 530.解得2009≤t ≤2309. ∵t 为正整数,∴t =23,24,25.即有三种方案.第一种方案:购T 恤23件,影集27本;第二种方案:购T 恤24件,影集26本;第三种方案:购T 恤25件,影集25本.7.解:(1)设搭配A 种造型x 个,则搭配B 种造型(60-x )个.由题意,得⎩⎪⎨⎪⎧80x +50(60-x )≤4 20040x +70(60-x )≤3 090,解得37≤x ≤40. ∵x 为正整数,∴x 1=37,x 2=38,x 3=39,x 4=40.∴符合题意的搭配方案有4种:①A 种造型37个,B 种造型23个;②A 种造型38个,B 种造型22个;③A 种造型39个,B 种造型21个;④A 种造型40个,B 种造型20个.(2)设总成本为W 元,则W =1 000x +1 500(60-x )=-500x +90 000.∵W 随x 的增大而减小,∴当x =40时,W 最小=70 000元.即选用A 种造型40个,B 种造型20个时,成本最低为70 000元.8.解:(1)应缴纳水费:10×1.5+(18-10)×2=31(元).(2)当0≤x ≤10时,y =1.5x ;当10<x ≤m 时,y =10×1.5+2(x -10)=2x -5;当x >m 时,y =15+2(m -10)+3(x -m )=3x -m -5. ∴y =⎩⎪⎨⎪⎧ 1.5x (0≤x ≤10),2x -5 (10<x ≤m ),3x -m -5 (x >m ).(3)当40≤m ≤50时,y =2×40-5=75(元),满足.当20≤m <40时,y =3×40-m -5=115-m ,则70≤115-m ≤90,∴25≤m ≤45,即25≤m ≤40.综上得,25≤m ≤50.9.解:(1)y =-4x +360(40≤x ≤90).(2)由题意,得p 与x 的函数关系式为:p =(x -40)(-4x +360)=-4x 2+520x -14 400,当p =2 400时,-4x 2+520x -14 400=2 400,解得x 1=60,x 2=70.故销售单价应定为60元或70元.10.解:(1)设A ,B 两类蔬菜每亩平均收入分别是x 元,y 元.由题意,得⎩⎪⎨⎪⎧3x +y =12 500,2x +3y =16 500. 解得⎩⎪⎨⎪⎧x =3 000,y =3 500. 答:A ,B 两类蔬菜每亩平均收入分别是3 000元,3 500元.(2)设用来种植A 类蔬菜的面积为a 亩,则用来种植B 类蔬菜的面积为(20-a )亩.由题意,得⎩⎪⎨⎪⎧3 000a +3 500(20-a )≥63 000,a >20-a .解得10<a ≤14.∵a 取整数,为:11,12,13,14.∴租地点案为:。
方案设计一.解答题1.( ·河北石家庄·一模) 某校实行学案式教学, 需印制若干份数学学案, 印刷厂有甲、乙两种收费方式, 除按印数收取印刷费外, 甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y( 元) 与印刷份数x( 份) 之间的关系如图所示:( 1) 填空: 甲种收费的函数关系式是y1=0.1x+6( x≥0) .乙种收费的函数关系式是y2=0.12x( x≥0) .( 2) 该校某年级每次需印制100~450( 含100和450) 份学案, 选择哪种印刷方式较合算?第1题【考点】待定系数法求一次函数解析式; 一次函数的应用.【专题】优选方案问题; 待定系数法.【分析】( 1) 设甲种收费的函数关系式y1=kx+b, 乙种收费的函数关系式是y2=k1x, 直接运用待定系数法就能够求出结论;( 2) 由( 1) 的解析式分三种情况进行讨论, 当y1>y2时, 当y1=y2时, 当y1<y2时分别求出x的取值范围就能够得出选择方式.【解答】解: ( 1) 设甲种收费的函数关系式y1=kx+b, 乙种收费的函数关系式是y2=k1x, 由题意, 得, 12=100k1,解得: , k1=0.12,∴y1=0.1x+6( x≥0) , y2=0.12x( x≥0) ;( 2) 由题意, 得当y1>y2时, 0.1x+6>0.12x, 得x<300;当y1=y2时, 0.1x+6=0.12x, 得x=300;当y1<y2时, 0.1x+6<0.12x, 得x>300;∴当100≤x<300时, 选择乙种方式合算;当x=300时, 甲、乙两种方式一样合算;当300<x≤450时, 选择甲种方式合算.答: 印制100~300( 含100) 份学案, 选择乙种印刷方式较合算, 印制300份学案, 甲、乙两种印刷方式都一样合算, 印制300~450( 含450) 份学案, 选择甲种印刷方式较合算.【点评】本题考查待定系数法求一次函数的解析式的运用, 运用函数的解析式解答方案设计的运用, 解答时求出函数解析式是关键, 分类讨论设计方案是难点.2. ( ·河大附中·一模) ( 10分) 某家电销售商城电冰箱的销售价为每台2100元, 空调的销售价为每台1750元, 每台电冰箱的进价比每台空调的进价多400元, 商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台, 设购进电冰箱x台, 这100台家电的销售总利润y元, 要求购进空调数量不超过电冰箱数量的2倍, 且购进电冰箱少于40台, 请确定获利最大的方案以及最大利润.(3)实际进货时, 厂家对电冰箱出厂价下调k元, 若商店保持这两种家电的售价不变, 请你根据以上信息及(2)中条件, 设计出使这100台家电销售总利润最大的进货方案。
方案设计专题复习课程标准要求“人人学有价值的数学”.根据这一理念,中考命题者精心编拟了一类中考题—“方案设计型”试题.“方案设计型”试题是指通过阅读、观察、探索等方法,从题目提供的相关材料中发现有用的解题信息,并综合运用所学知识加以分析、计算、比较和判断,在题目所提供的或隐含的多种方案中得到最优方案的一种试题.这种试题的特点是:解决问题的方案不是惟一的,具有多样性和选择性,因而又具有开放型试题的特点.“方案设计型”试题有时会给出设计要求,让考生自己设计方案;有时需要学生通过阅读、观察、归纳、探索和比较等手段寻找解决实际问题的方法,得出最佳方案.这种试题命题的背景广泛,考生自由施展才华的空间大,是近年来中考试题的一个新的亮点,而且所占试题的比分比较多.一、利用概率知识进行方案设计【例1】小明与小华在玩一个掷飞镖游戏,如图甲是一个把两个同心圆平均分成8份的靶,当飞镖掷中阴影部分时,小明胜,否则小华胜(没有掷中靶或掷到边界线时重掷). (1)不考虑其他因素,你认为这个游戏公平吗?说明理由. (2)请你在图乙中,设计一个不同于图甲的方案,使游戏双方公平.【解析】(1)这个游戏公平.根据图甲的对称性,阴影部分的面积等于圆面积的一半,这个游戏公平.(2)把图乙中的同心圆平均分成偶数等分,再把其中的一半作为阴影部分即可.(图略)【点悟】此题注意到了选题的趣味性,联系学生生活实际,易于引起学生的解题兴趣,使学生体会数学与现实的联系.这类题目根据阴影部分面积在圆中所占的百分比来确定概率从而作出合理的判断.【例2】某公司现有甲、乙两种品牌的计算器,甲品牌计算器有A B C ,,三种不同的型号,乙品牌计算器有D E ,两种不同的型号,新华中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器. (1)写出所有的选购方案(利用树状图或列表方法表示);图甲图乙(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号计算器被选中的概率是多少? (3)现知新华中学购买甲、乙两种品牌计算器共40个(价格如图所示),恰好用了1000元人民币,其中甲品牌计算器为A 型号计算器,求购买的A 型号计算器有多少个?【解析】(1)树状图表示如下:列表表示如下:有6种可能结果:()()()()()()AD AE B D B E C D C E ,,,,,,,,,,,. 说明:此题答案不惟一,也可用其它方式表达选购方案.(2)因为选中A 型号计算器有2种方案,即()()A D A E ,,,,所以A 型号计算器被选中的概率是2163=. (3)由(2)可知,当选用方案()A D ,时,设购买A 型号,D 型号计算器分别为x y ,个, 根据题意,得4060501000.x y x y +=⎧⎨+=⎩,解得100140.x y =-⎧⎨=⎩,经检验不符合题意,舍去;A BCDE DE DE甲品牌乙品牌当选用方案()A E,时,设购买A型号、E型号计算器分别为x y,个,根据题意,得4060201000.x yx y+=⎧⎨+=⎩,解得535.xy=⎧⎨=⎩,所以新华中学购买了5个A型号计算器.【点悟】本题注意到了选题的现实性,以计算器的选用为命题背景,对大多数学生来说都是熟悉的,因而试题公平性得以保证.这类题目往往通过树状图或列表法来计算可能的选用方案,进而求出A型计算器被选中的概率.第(3)小问较好地综合了方程组的知识,而且要求学生有分类讨论意识,并根据应用问题的实际进行方程组解的取舍.二、利用不等式进行方案设计【例3】我市某生态果园今年收获了15吨李子和8吨桃子,要租用甲、乙两种货车共6辆,及时运往外地,甲种货车可装李子4吨和桃子1吨,乙种货车可装李子1吨和桃子3吨.(1)共有几种租车方案?(2)若甲种货车每辆需付运费1000元,乙种货车每辆需付运费700元,请选出最佳方案,此方案运费是多少.【解析】(1)设安排甲种货车x辆,乙种货车(6)x-辆,根据题意,得:4(6)1533(6)85x x xx x x+-⎧⎧⇒⎨⎨+-⎩⎩≥≥≥≤35x∴≤≤x取整数有:3,4,5,共有三种方案.(2)租车方案及其运费计算如下表.(说明:不列表,用其他形式也可)答:共有三种租车方案,其中第一种方案最佳,运费是5100元.【点悟】本题以农村运输水果发展经济的问题为背景,具有现实意义.不同运送方法会产生不同的经费开支,方案选择正确可大大节约开支,对快速发展经济很有帮助.这样的考题可以不断提高同学们的应用意识和实践能力.近年来许多考题都取自学生熟悉的生活环境,这样的题目背景自然真实、内容丰富、情境多样,充分体现时代气息,给数学知识及数学教学赋予生机与活力.因此,设置这样的处理现实问题的考题对培养同学们的应用意识和分析、解决问题的能力很有帮助,值得提倡.【例4】随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A B ,两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈利情况如下表:有两种配货方案(整箱配货):方案一:甲、乙两店各配货10箱,其中A 种水果两店各5箱,B 种水果两店各5箱;方案二:按照甲、乙两店盈利相同配货,其中A 种水果甲店 箱,乙店 箱;B 种水果甲店 箱,乙店 箱.(1)如果按照方案一配货,请你计算出经销商能盈利多少元;(2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?(3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?【解析】(1)按照方案一配货,经销商盈利:51159517513250⨯+⨯+⨯+⨯=(元)(2)只要求学生填写一种情况.第一种情况:2,8,6,4;第二种情况5,5,4,6;第三种情况:8,2,2,8. 按第一种情况计算:(211176)2248⨯+⨯⨯=(元); 按第二种情况计算:(511417)2246⨯+⨯⨯=(元); 按第三种情况计算:(811217)2244⨯+⨯⨯=(元). 方案一比方案二盈利较多.(3)设甲店配A 种水果x 箱.则甲店配B 种水果(10)x -箱, 乙店配A 种水果(10)x -箱,乙店配B 种水果10(10)x x --=箱.9(10)13100x x ⨯-+≥,122x ∴≥.经销商盈利为1117(10)9(10)13y x x x x =+⨯-+⨯-+ 2260x =-+. 当3x =时,y 值最大.方案:甲店配A 种水果3箱,B 种水果7箱.乙店配A 种水果7箱,B 种水果3箱.最大盈利:23260254-⨯+=(元).【点悟】以上两题的背景都来自现实生活中的实际问题,生活气息浓厚.这类题目需要学生先根据题意信息所表达的数量关系得到关系式,然后求出未知数的取值范围或特殊值,进而得到多种不同的方案,再通过计算、判断和比较得出最优的方案.这类题目主要考查学生的阅读理解能力,知识迁移能力以及解决实际问题的能力,很好的体现了新课程的理念.三、利用函数进行方案设计【例5】某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg ;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg (每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元.设每天安排x 名工人进行蔬菜精加工.(1)求每天蔬菜精加工后再出售所得利润y (元)与x (人)的函数关系式;(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w 元,求w 与x 的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少? 【解析】(1)332y x =⨯,96y x ∴=.(2)96[48(100)32]1w x x x =+--⨯,164800w x ∴=+ 由题意知:48(100)32x x -≥ 解得60x ≤164800160w x K =+=>,w ∴随x 的增大而增大∴当60x =时,w 有最大值,166048005760w =⨯+=最大(元)∴安排60人进行精加工,40人采摘蔬菜,一天所获利润最大,最大利润5760元.【点悟】本题从知识角度看,将一次函数与不等式有机结合起来,着重考查学生分析问题、求函数解析式、求不等式的特殊解、求函数的最值等解题能力.解这类问题时要求学生熟练掌握一次函数的增减性质,还要有一定的生活常识.【例6】荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元.(1)基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元),写出y 关于x 的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.【解析】(1)()227.5 2.70.90.30.9 4.5y x x x x x x =-++=-+.(2)当20.9 4.55x x -+=时,即2945500x x -+=,153x =,2103x =从投入、占地与当年收益三方面权衡,应建议修建53公顷大棚. (3)设3年内每年的平均收益为Z (万元)()()2227.50.90.30.30.3 6.30.310.533.075Z x x x x x x x =-++=-+=--+不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益. 建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益. ②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当20.3 6.30x x -+=时,10x =,221x =.大棚面积超过21公顷时,不但不能收益,反而会亏本. 【点悟】本题从知识角度看,考察了二次函数获取最值的知识.这类题目既考察学生对基础知识的掌握情况,又考查学生的思维能力和分析判断能力.四、利用几何知识进行方案设计【例7】高为12米的教学楼ED 前有一棵大树AB ,如图(a ).(1)某一时刻测得大树AB 、教学楼ED 在阳光下的投影长分别是 2.5BC =米,7.5DF =米,求大树AB 的高度;(2)现有皮尺和高为h 米的测角仪,请你设计另一种测量大树AB 高度的方案,要求:①在图11(b )中,画出你设计的测量方案示意图,并将应测量的数据标记在图上(长度用字母m n ,表示,角度用希腊字母αβ,表示);②根据你所画出的示意图和标注的数据,求出大树的高度(用字母表示).【解析】(1)连结AC ,EF ,则ABC EDF △∽△2.5127.5AB =∴4AB =∴即大树AB 高是4米 (2)解法一:①如图1(b )(标注m ,α,画草图也可给相同的分) ②在Rt CMA △中,tan tan AM CM m αα==tan AB m h α=+∴ABC D FEAB图(a )图(b )BA CEDFAABBM MC C DDhααβhmm图1(a )图1(b ) 图1(c )解法二:①如图1(c )(标注m αβ,,,也可画草图) ②cot cot AM AM m αβ-=cot cot mAM αβ=-∴cot cot mAB h αβ=+-∴【点悟】这是一道与现实生活联系紧密的测量问题,试题具有开放性,要求学生既动脑思考又动手画图,它着重考查学生应用数学知识解决问题的能力.对于参加中考的同学们来说,解题的方法并不惟一.同学们可以利用多种几何性质设计出多种测量方案.【例8】在一次科学探究实验中,小明将半径为5cm 的圆形滤纸片按图1所示的步骤进行折叠,并围成圆锥形.(1)取一漏斗,上部的圆锥形内壁(忽略漏斗管口处)的母线OB 长为6cm ,开口圆的直径为6cm .当滤纸片重叠部分三层......,且每层为14圆时,滤纸围成的圆锥形放入该漏斗中,能否紧贴..此漏斗的内壁(忽略漏斗管口处),请你用所学的数学知识说明;(2)假设有一特殊规格的漏斗,其母线长为6cm ,开口圆直径为7.2cm ,现将同样大小的滤纸围成重叠部...分为三层....的圆锥形,放入此漏斗中,且能紧贴..漏斗内壁.问重叠部分每层的面积为多少?【解析】(1)解法一:表面紧贴的两圆锥形的侧面展开图为圆心角相同的两扇形,∴表面是否紧贴只需考虑展开图的圆心角是否相等.图1图2由于滤纸围成的圆锥形只有最外层侧面紧贴漏斗内壁,故只考虑该滤纸圆锥最外层的侧面和漏斗内壁圆锥侧面的关系.将圆形滤纸片按图示的步骤折成四层且每层为14圆,则围成的圆锥形的侧面积11(12)42S S =-⨯=滤纸圆滤纸圆·. ∴它的侧面展开图是半圆,其圆心角为180. 如将漏斗内壁构成的圆锥侧面也抽象地展开, 展开的扇形弧长为π66π(cm)⨯=.该侧面展开图的圆心角为1806π6180π÷⨯=. 由此可以看出两圆锥的侧面展开得到的扇形,它们的圆心角相等. ∴该滤纸围成的圆锥形必能紧贴漏斗内壁.解法二:圆锥可以看作是等腰三角形围绕其对称轴旋转而成的几何图 形,其正视图和侧视图皆为全等的等腰三角形,∴如滤纸片能紧贴漏斗内壁,由其两母线和开口圆的直径构成的等腰三角形必与漏斗两母线和开口圆的直径构成的等腰三角 形相似或顶角相同.根据题意可得,滤纸围成的圆锥形开口圆的圆周长应为1122π55π4⎛⎫-⨯⨯⨯= ⎪⎝⎭(cm ). 由此可得其开口圆的直径为5cm .滤纸圆锥的两母线长和开口圆的直径都是5cm ;漏斗两母线长和开口圆的直径都 是6cm .∴两三角形皆为等边三角形.故两等边三角形相似且角相等,所以滤纸片能紧贴漏斗内壁.(2)如果抽象地将母线长为6cm ,开口圆直径为7.2cm 的特殊规格的漏斗内壁圆锥侧面展开,得到的扇形弧长为7.2πcm ,圆心角为1807.2π6216π÷⨯=. 滤纸片如紧贴漏斗壁,其围成圆锥的最外层侧面展开图的圆心角也应为216, 又重叠部分每层面积为圆形滤纸片的面积减去围成圆锥的最外层侧面展开图的面积的差的一半,∴滤纸重叠部分每层面积2216(25π25π)25π(cm )360=-⨯÷=. 【点悟】本题是今年中考最出彩的一道题.作为一道实验操作与几何说理题,主要考查圆锥图形及其侧面展开图的认识、变换、计算与说明.其中包含深刻的图形变换思想,需要学生具有丰富的空间想象能力.相当一部分学生感到题目新颖、生动有趣,但运用数学基础知识解答此问题时有一定的困难,平时基础扎实且头脑灵活的学生回答该题情况良好,而读死书做成套题的学生虽感到题目背景熟悉,但却不知用什么数学知识来解释“紧贴”这一数学模型及事实.由于本题源于化学中的简单实验操作,背景简单且设计非常新颖,所以在命题时设计了一定的铺垫.通过考后调查分析,该题确实重点考查了学生的观察图形能力、抽象思维能力、空间想像能力、运算能力和解决实际问题的能力,对引导学生注意学习生活中所包含的朴素的数思想,激发他们开拓思维、增强创新能力大有裨益.如果学生没有透彻理解圆锥及其侧面展开图和圆心角之间的关系,或不具备灵活运用数学知识的能力,是较难答全本题的.通过本题可提醒学生,平时多注意灵活运用数学基础知识解决身边的数学问题. 备用例题1.如图甲,李叔叔想要检测雕塑底座正面四边形ABCD 是否为矩形,但他随身只带了有刻度的卷尺,请你设计一种方案,帮助李叔叔检测四边形ABCD 是否为矩形(图乙供设计备用).答案:解:方案如下:①用卷尺分别比较AB 与CD AD ,与BC 的长度,当AB CD =,且AD BC =时,四边形ABCD 为平行四边形;否则四边形ABCD 不是平行四边形,从而不是矩形.DA C BBCAD(图甲)(图乙)②当四边形ABCD 是平行四边形时,用卷尺比较对角线AC 与BD 的长度.当AC BD 时,四边形ABCD 是矩形;否则四边形ABCD 不是矩形.说明:(1)考生设计以下方案,请参照给分.方案一:先用勾股定理逆定理测量一个角是否为直角,然后用同样的方法再测量另外两个角是否也为直角,并给出判断;方案二:先测量四边形ABCD 是否为平行四边形,再用勾股定理逆定理测量其中一个角是否为直角,并给出判断.2.操作与探究:(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A 与点C 重合,DE 为折痕.试证明△CBE 等腰三角形;(2)再将图①中的△CBE 沿对称轴EF 折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC 折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件是,一定能折成组合矩形?【解析】(1)∵∠ECB =90°-∠DCE ,∠B =90°-∠A ,又由对称性知,∠A =∠DCE ,∴∠ECB =∠B ,∴△BCE 是等腰三角形.B CA AB C答图1 答图2(第28题图) A A B C C F 图① 图② 图③图④(2)如答图1所示(共有三种折法,折痕画对均可)(3)如答图2所示(答案不唯一,只要体现出一条边与该边上的高相等即可)(4)当一个四边形的两条对角线互相垂直时,可以折成一个组合矩形.。
中考数学专题之方案设计问题含练习答案方案设计型题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求判断哪个方案较优.它包括测量方案设计、作图方案设计和经济类方案设计等.题型之一 利用方程、不等式进行方案设计例1 (2014·益阳)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5 400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1 400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.【思路点拨】(1)根据“3台A 型+5台B 型”的销售收入=1 800以及“4台A 型+10台B 型”的销售收入=3 100,列方程组得各自售价;(2)设购进A 型a 台,则B 型(30-a )台,利用金额不超过5 400建立不等式求解; (3)根据(2)中30台得利润为为1 400,建立方程,求解.【解答】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元.依题意,得35 1 800,410 3 100x y x y +=+=⎧⎨⎩.解得250,210.x y ==⎧⎨⎩答:A 、B 两种型号电风扇的销售单价分别为250元、210元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台.依题意,得 200a +170(30-a )≤5 400,解得a ≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5 400元.(3)依题意有:(250-200)a+(210-170)(30-a)=1 400,解得a=20,此时,a>10.即在(2)的条件下超市不能实现利润1 400元的目标.方法归纳:列方程(组)或不等式组设计方案问题的关键是找到题目中的等量关系或者不等关系,然后根据结果设计方案.1.(2013·自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?2.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.3.(2014·衡阳)某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买一件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.题型之二利用函数进行方案设计例2 (2013·桂林)在“美丽广西,清洁乡村”活动中,李家村村长提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3 000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1 000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,设方案2的购买费和每月垃圾处理费共为y2元,交费时间为x 个月.(1)直接写出y1、y2与x的函数关系式;(2)在同一坐标系内,画出函数y1、y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?【思路点拨】(1)根据题意可直接写出y与x的函数关系式;(2)分别过两点画图象;(3)根据图象得到方案.【解答】(1)y1=250x+3 000,y2=500x+1 000.(2)如图:(3)由(2)得当x>8时,方案1省钱;当x=8时,两种方案一样;当x<8时,方案2省钱.方法归纳:运用一次函数判断何种方式更合算,通常用分类讨论的方法列出方程和不等式,求自变量取值范围,但如果题目中有画好的函数图象,也可以直接观察图象解决.1.我市某医药公司把一批药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元.(1)请分别写出邮车、火车运输的总费用y1,y2(元)与运输路程x(公里)之间的函数关系;(2)你认为选用哪种运输方式较好,为什么?2.(2014·凉山)我州某校计划购买甲、乙两种树苗共1 000株用以绿化校园.甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲、乙两种树苗的成活率分别是90%和95%.(1)若购买这两种树苗共用去28 000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.3.某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案:甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?4.(2014·丽水)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.题型之三图形问题中的方案设计例3 (2014·济宁)在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.【思路点拨】方案二:由题意得分割成的一部分面积为9π,故在圆心O处以3个单位长度为半径作圆,然后将圆环三等分即可;方案三:作出圆的直径AB,分别画两个半径为3个单位长度的小圆即可.【解答】方法归纳:图形方案设计问题通常先给出一个图形(可能是规则的也可能是不规则的),然后让你用直线或弧线将图形分成形状或面积相等的几部分.解决这类问题可借助对称的性质、角度的大小、面积公式等进行分割.1.某市要在一块平行四边形ABCD 的空地上建造一个四边形花园,要求花园所占面积是□ABCD 面积的一半,并且四边形花园的四个顶点作为出入口,要求四点顶点分别在□ABCD 的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E ,F 已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;方案(2):如图2所示,一个出入口M 已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.2.(2014·拱墅模拟)请用直尺和圆规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上,面积相同的图形视为同一种.(保留作图痕迹).题型之四测量问题中的方案设计例4 如图,EF是一条笔直的河岸,A村与B村相距4千米,A,B两村到河岸EF的距离分别是5千米,3千米,现要在河岸EF上选一地址C建一个自来水厂,并铺设水管把水引至A,B两村.问:如图1,图2,图3所示的三条铺设水管的路径(图中实线部分)哪条最短?并说明理由. 【思路点拨】图1,图2中铺设水管路径长都可以一眼看出,在图3中由对称性可得:BC=B′C,AB′=BC+AC,以AB′为斜边构造一个直角三角形(要求直角边平行EF或垂直EF),若再能求出A,B两村的垂直距离,问题就不难解决了.【解答】图1:4+5=9(千米);图2:3+4=7(千米);图3:BC=B′C,过B′作B′M∥EF,过A作AN∥BB′交B′M于D,则构成Rt△ADB′.B′D,∴AB.∵7<9,∴图2的路径最短.方法归纳:这是一道判断方案题,题中给出了三种不同方案,由同学们根据所学图形与空间的知识按题中要求选择方案.1.某高速铁路即将动工,工程需要测量长江某一段的宽度.如图1,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.48);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图2中画出图形.2.恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路x同侧,AB=50 km,A、B到直线x的距离分别为10 km和40 km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小明设计了两种方案,图1是方案一的示意图(AP与直线x垂直,垂足为P),P到A、B 的距离之和s1=P A+PB,图2是方案二的示意图(点A关于直线x的对称点是A′,连接BA′交直线x于点P),P到A、B的距离之和s2=P A+P B.(1)求s1、s2,并比较它们的大小;(2)请你说明s2=P A+PB的值为最小;(3)恩施到张家界高速公路y与沪渝高速公路垂直,建立如图3所示的直角坐标系,B到直线y的距离为30 km,请你在x旁和y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.参考答案题型之一 利用方程、不等式进行方案设计1.(1)设该校大寝室每间住x 人,小寝室每间住y 人,则5550740,5055730x y x y +=⎧⎨+=⎩.解得8,6.x y =⎧⎨=⎩ 答:该校大寝室每间住8人,小寝室每间住6人. (2)设应安排小寝室z 间,则有 6z +8(80-z )≥630,解得z ≤5. ∵z 为自然数,∴z =0,1,2,3,4,5. 答:共有6种安排住宿方案.2.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨、y 吨,根据题意,得210,211.x y x y +=⎧⎨+=⎩解得3,4x y =⎧⎨=⎩. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨、4吨. (2)根据题意可得3a +4b =31.因为租车数a ,b 都是自然数,使a ,b 都为整数的情况共有a =1,b =7或a =5,b =4或a =9,b =1三种情况. 故租车方案分别为: ①A 型车1辆,B 型车7辆; ②A 型车5辆,B 型车4辆; ③A 型车9辆,B 型车1辆.(3)方案①花费为100×1+120×7=940(元); 方案②花费为100×5+120×4=980(元); 方案③花费为100×9+120×1=1 020(元).故方案①最省钱,即租用A 型车1辆,B 型车7辆. 3.(1)y =15-2x ;(2)设笔记本和中性笔两种奖品各a ,b 件, 则a ≥1,b ≥1,2a +b =15.当a =1时,b =13;当a =2时,b =11;当a =3时,b =9;当a =4时,b =7;当a =5时,b =5;当a =6时,b =3;当a =7时,b =1.故有7种购买方案;(3)买到的笔记本和中性笔数量相等的购买方案有1种,共有7种购买方案.∵1÷7=17,∴买到的笔记本和中性笔数量相等的概率为17. 题型之二 利用函数进行方案设计1.(1)由题意得,y 1=4x +400,y 2=2x +820.(2)当y 1=y 2时,4x +400=2x +820.解得x =210.∴当运输路程小于210 km 时,y 1<y 2,选择邮车运输较好;当运输路程等于210 km 时,y 1=y 2,选择两种方式一样;当运输路程大于210 km 时,y 1>y 2,选择火车运输较好.2.(1)设购甲种树苗x 株,乙种树苗y 株,则1 000,253028 000x y x y +=⎧⎨+=⎩.解得400,600x y =⎧⎨=⎩.答:购甲种树苗400株,乙种树苗600株.(2)设购买甲种树苗z 株,则乙种树苗(1 000-z )株,列不等式:90%z +95%(1 000-z )≥92%×1 000,解得z ≤600.答:甲种树苗至多购买600株.(3)设购买树苗的总费用为w 元,则w =25z +30(1 000-z )=-5z +30 000.∵-5<0,∴w 随z 的增大而减小.∵0<z ≤600,∴当z =600时,w 最小值为30 000-5×600=27 000(元).答:当购甲种树苗600株,乙种树苗400株时,总费用最低,最低费用是27 000元.3.设有x (x >0)名教师到外地进行学习,甲宾馆费用为y 甲,乙宾馆费用为y 乙,当x >45时,由题意,得y 甲=120×35+(x -35)×120×90%=108x +420;y 乙=120×45+(x -45)×120×80%=96x +1 080.分三种情况:①当y 甲>y 乙时,108x +420>96x +1 080.解得x >55;②当y 甲=y 乙时,108x +420=96x +1 080.解得x =55;③当y 甲<y 乙时,108x +420<96x +1 080.解得45<x <55.当x≤45时,又分两种情况:①当0<x≤35时,y甲=y乙=120x;②当35<x≤45时,y甲=108x+420,y乙=120x.此时y甲<y乙.综上所述当人数大于55人时选乙宾馆,当人数大于0小于等于35人或等于55人时甲乙宾馆均可,当人数大于35人小于55人时选甲宾馆.4.(1)根据题意,得90 m =753m,解得m=18.经检验,m=18是所列方程的解,且符合题意.答:m的值为18.(2)由(1)可知,A型号的污水处理设备每台18万元,B型号的污水处理设备每台15万元. 设购买A型号的污水处理设备x台,则18x+15(10-x)≤165,解得x≤5.又∵0<x<10,且x为整数,∴x可取0,1,2,3,4,5,即共有6种购买方案.设某种方案每月能处理的污水量为w吨,则w=220x+180(10-x)=40x+1 800.∵w随x的增大而增大,∴当x=5时,w有最大值,其最大值为2 000.即购买A型号、B型号的污水处理设备分别为5台、5台时,月处理的污水量最多,为2 000吨.题型之三图形问题中的方案设计1.方案(1):画法1(如图甲):①过F作FH∥AB交AD于点H.②在DC上任取一点G,连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形.画法2(如图乙):①过F作FH∥AB交AD于点H.②过E作EG∥AD交DC于点G,连接EF、FG、GH、HE,则四边形EFGH就是所要画的四边形.画法3(如图丙):①在AD上取一点H,使DH=CF.②在CD上任取一点G,连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形.方案(2):画法(如图2):①过M点作MP∥AB交AD于点P.②在CD上取一点N,连接MN.③过点P作PQ∥MN交AB于点Q,连接QM,PN.则四边形QMNP就是所要画的四边形.2.所作菱形如图1,图2所示.说明:作法相同的图形视为同一种.例如:类似图3,4的图形视为与图2是同一种.题型之四测量问题中的方案设计1.(1)在Rt△BAC中,∠ACB=68°,AC=100米,∴AB=AC·tan68°≈100×2.48=248(米).答:所测之处江的宽度约为248米.(2)可以利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可. 如:方案2,如图2,测量员从A点开始沿岸边向正东方向前进到E处,再从E点开始向点E的正南方向上插上标杆F,并在线段AE的中点C处插上标杆C,当标杆B,C,F在同一直线上时,直接测出EF的长也就是江的宽度.2.(1)图1中过B作BC⊥x于C,过A作AD⊥BC于D,则BC=40.又∵AP=10,∴BD=BC-CD=40-10=30.由勾股定理可得AD=40.在Rt△PBC中,BPs1km.图2中,过B作BC⊥AA′,垂足为C,AA′与直线x交于点N,则A′C=NC+NA′=NC+AN=50,又AC=CN-AN=40-10=30,AB=50,则在Rt△BCA中,BC=40,∴BA由轴对称知:P A=P A′,∴s2=P A+PB=P A′+PB=BA km.∴s1>s2.(2)如图2,在公路上任找一点M,连接MA,MB,MA′,由轴对称知MA=MA′,∴MB+MA=MB+MA′>A′B,∴s2=BA′=P A+P A为最小.(3)如图3过A作关于x轴的对称点A′,过B作关于y轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,则P,Q即为所求.过A′、B′分别作x轴、y轴的平行线交于点G,B′G=40+10=50,A′G=30+30+40=100,A′B∴AB+AP+BQ+QP=AB+A′P+PQ+B′Q,∴所求四边形的周长为(km.。
中考数学专项复习方案设计2019.2三、解答题1.(12分)(2015福建龙岩23,12分)某公交公司有A,B型两种客车,它们的载客量和会实践活动,设租用A型客车x辆,根据要求回答下列问题:(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.考点:一元一次不等式的应用.分析:(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.解答:解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.点评:此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.2.(2015•吉林,第19题7分)图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.考点:作图—应用与设计作图.分析:(1)根据勾股定理,结合网格结构,作出两边分别为的等腰三角形即可;(2)根据勾股定理逆定理,结合网格结构,作出边长为的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.解答:解:(1)如图①,符合条件的C点有5个:;(2)如图②,正方形ABCD即为满足条件的图形:;(3)如图③,边长为的正方形ABCD的面积最大..点评:本题考查了作图﹣应用与设计作图.熟记勾股定理,等腰三角形的性质以及正方形的性质是解题的关键所在.3. (2015•黑龙江哈尔滨,第22题7分)(2015•哈尔滨)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).考点:作图—应用与设计作图.分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.解答:解:(1)如图1所示;(2)如图2、3所示;点评:本题考查的是作图﹣应用与设计作图,熟知勾股定理是解答此题的关键.4. (2015•青海,第25题8分)某玩具商计划生产A、B两种型号的玩具投入市场,初期计划生产100件,生产投入资金不少于22400元,但不超过22500元,且资金要全部投入到生产这两种型号的玩具.假设生产的这两种型号玩具能全部售出,这两种玩具的生产成本和(2)该玩具商如何生产,就能获得最大利润?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设该厂生产A型挖掘机x台,则生产B型挖掘机100﹣x台,由题意可得:22400≤200x+240(100﹣x)≤22500,求解即得;(2)计算出各种生产方案所获得的利润即得最大利润方案.解答:解:(1)设该厂生产A型挖掘机x台,则生产B型挖掘机(100﹣x)台,由“该厂所筹生产资金不少于22400万元,但不超过22500万元”和表中生产成本可得:22400≤200x+240(100﹣x)≤22500,37.5≤x≤40,∵x为整数,∴x取值为38、39、40.故有三种生产方案.即:第一种方案:生产A型挖掘机38台,生产B型挖掘机62台;第二种方案:生产A型挖掘机39台,生产B型挖掘机61台;第三种方案:生产A型挖掘机40台,生产B型挖掘机60台.(2)三种方案获得的利润分别为:第一种方案:38×(250﹣200)+62×(300﹣240)=5620;第二种方案:39×(250﹣200)+61×(300﹣240)=5610;第三种方案:40×(250﹣200)+60×(300﹣240)=5600.故生产A型挖掘机38台,生产B型挖掘机62台的方案获得利润最大.点评:本题考查了一次函数的应用一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.4. (2015•贵州省贵阳,第25题9分)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)考点:几何变换综合题.专题:综合题.分析:(1)根据折叠的性质和矩形性质以得PD=PH=3,CD=MH=4,∠H=∠D=90°,然后利用勾股定理可计算出MP=5;(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,利用两点之间线段最短可得点F即为所求,过点E作EN⊥AD,垂足为N,则AM=AD﹣MP﹣PD=4,所以AM=AM′=4,再证明ME=MP=5,接着利用勾股定理计算出MN=3,所以NM′=11,然后证明△AFM′∽△NEM′,则可利用相似比计算出AF;(3)如图2,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,易得QE=GR,而GM=GM′,于是MG+QE=M′R,利用两点之间线段最短可得此时MG+EQ最小,于是四边形MEQG的周长最小,在Rt△M′R N 中,利用勾股定理计算出M′R=5,易得四边形MEQG的最小周长值是7+5.解答:解:(1)∵四边形ABCD为矩形,∴CD=AB=4,∠D=90°,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴PD=PH=3,CD=MH=4,∠H=∠D=90°,∴MP==5;(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,则点F即为所求,过点E作EN⊥AD,垂足为N,∵AM=AD﹣MP﹣PD=12﹣5﹣3=4,∴AM=AM′=4,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴∠CEP=∠MEP,而∠CEP=∠MPE,∴∠MEP=∠MPE,∴ME=MP=5,在Rt△ENM中,MN===3,∴NM′=11,∵AF∥ME,∴△AFM′∽△NEM′,∴=,即=,解得AF=,即AF=时,△MEF的周长最小;(3)如图2,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,∵GM=GM′,∴MG+QE=GM′+GR=M′R,此时MG+EQ最小,四边形MEQG的周长最小,在Rt△M′RN中,NR=4﹣2=2,M′R==5,∵ME=5,GQ=2,∴四边形MEQG的最小周长值是7+5.点评:本题考查了几何变换综合题:熟练掌握折叠的性质和矩形的性质;会利用轴对称解决最短路径问题;会运用相似比和勾股定理计算线段的长.。
中考数学专题复习:方案设计问题【知识梳理】方案设计问题特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又具有开放型题的特点,此种题型考查考生的数学应用意识,命题的背景广泛,考生自由施展才华的空间大,因此倍受命题者的青睐。
【课前预习】1.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .2.某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1000米,A 处有30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( )A .A 点处B .线段A B 的中点处C .线段A B 上,距A 点10003米处D .线段A B 上,距A 点400米处3.如图,是由一些大小相同的小正方体组成的几何体的主视图和 俯视图,则组成这个几何体的小正方体最多块数是( )A. 9B. 10C. 11D. 124.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( ) A .2种 B .3种 C .4种 D .5种 5.某饮料厂为了开发新产品,用A 种果汁原料和B 种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.(2)若用19千克A 种果汁原料和17.2千克B 种果汁原料试制甲、乙两种新型饮料,下表是请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少? 35° A B 主视图俯视图【例题精讲】【例1】如图,甲转盘被分成3个面积相等的扇形、乙转盘被分成2个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转).(1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜”.按小夏设计的规则,请你写出两人获胜的可能性分别是多少? (2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图,列表)说明其公平性.【例2】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用y 1(元)和蔬菜加工厂自己加工制作纸箱的费用y 2(元)关于x (个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【例3】某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?甲 乙【巩固练习】1.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个2.从2、3、4、5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对C.5对D.3对3.某工厂现有甲种原料226kg,乙种原料250kg,计划利用这两种原料生产A、B两种产品共40件,生产A、B两种产品用料情况如下表,设生产A产品x件,请解答下列问题:(1)求x的值,并说明有哪几种符合题意的生产方案。
总复习专题训练(四):方案设计 1、某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价) (1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件? (2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.
2.和谐商场销售甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元. (1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件? (2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.
3.某校伙食长期以面粉和大米为主食,面食每两..
(50g)含蛋白质3个单位、淀粉2个单位,
售价0.35元;米食每两含蛋白质1.5个单位、淀粉3.5个单位,售价0.3元.学校要求给学生配制4两的盒饭,每盒盒饭至少有9个单位的蛋白质和9个单位的淀粉.设每盒盒饭配制的面食为x两(x为整数...). (1)每盒盒饭的售价是 元(用含..x的代数式表示......); (2)求出符合题意的盒饭配制方案,并说明选择哪种配制方案售价较少?
甲 乙 进价(元/件) 15 35
售价(元/件) 20 45 4.某服装销售店到生产厂家选购A、B两种品牌的服装,若购进A品牌服装3套,B品牌服
装4套,共需600元;若购进A品牌服装2套,B品牌服装3套,共需425元. (1)求A、B两种品牌的服装每套进价分别为多少元? (2)若A品牌服装每套售价为130元,B品牌服装每套售价为100元,根据市场的需求,现决定购进B品牌服装数量比A品牌服装数量的2倍还多3套.如果购进B品牌服装数量不多于...39套,这样服装全部售出后,就能使获利总额不少于...1355元,问共有几种进货方案?如何进货?(注:利润=售价—进价)
2016年中考数学专题复习:方案设计题
1.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品
每件进价35元,售价45元.
(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两
种商品各多少件?
(2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部
售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=
售价-进价)?
解:(1)设购进甲种商品x件,购进乙种商品y件,
根据题意,得
x+y=100,15x+35y=2 700,解得:
x
=40,
y
=60.
答:商店购进甲种商品40件,购进乙种商品60件.
(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,
根据题意列,得
15a+-a,
5a+-a,
解得20≤a≤22.
∵总利润W=5a+10(100-a)=-5a+1 000,W是关于x的一次函数,W随x的增大而
减小,
∴当x=20时,W有最大值,此时W=900,且100-20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
2.今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某
校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居
民生活用水收费作如下规定:
月用水量(单位:吨) 单价(单位:元/吨)
不大于10吨部分 1.5
大于10吨,且不大于m吨部分(20≤m≤50) 2
大于m吨部分 3
(1)若某用户六月份的用水量为18吨,求其应缴纳的水费;
(2)记该用户六月份的用水量为x吨,缴纳水费y元,试列出y关于x的函数式;
(3)若该用户六月份的用水量为40吨,缴纳水费y元的取值范围为70≤y≤90,试求
m
的取值范围.
解:(1)应缴纳水费:10×1.5+(18-10)×2=31(元).
(2)当0≤x≤10时,y=1.5x;
当10
∴y= 1.5x x,2x-5 x≤m,3x-m-5 x>m
(3)当40≤m≤50时,y=2×40-5=75(元),满足.
当20≤m<40时,y=3×40-m-5=115-m,
则70≤115-m≤90,∴25≤m≤45,即25≤m≤40.
综上得,25≤m≤50.
3.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A,B两类蔬菜,两种植
户种植的两类蔬菜的种植面积与总收入如下表:
种植户 种植A类蔬菜面积(单位:亩) 种植B类蔬菜面积(单位:亩) 总收入(单位:元)
甲 3 1 12 500
乙 2 3 16 500
说明:不同种植户种植的同类蔬菜每亩的平均收入相等;亩为土地面积单位.
(1)求A,B两类蔬菜每亩的平均收入各是多少元;
(2)某种植户准备租20亩地用来种植A,B两类蔬菜,为了使总收入不低于63 000元,
且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植
户所有的租地方案.
解:(1)设A,B两类蔬菜每亩平均收入分别是x元,y元.
由题意,得 3x+y=12 500,2x+3y=16 500.解得 x=3 000,y=3 500.
答:A,B两类蔬菜每亩平均收入分别是3 000元,3 500元.
(2)设用来种植A类蔬菜的面积为a亩,则用来种植B类蔬菜的面积为(20-a)亩.
由题意,得 3 000a+-a 000,a>20-a.解得10<a≤14.
∵a取整数,为:11,12,13,14.
∴租地方案为:
类别 种植面积(亩)
A 11 12 13
14
B 9 8 7
6
4.某学校计划将校园内形状为锐角△ABC的空地(如图)进行改造,将它分割成△AHG、△
BHE、△CGF和矩形EFGH四部分,且矩形EFGH作为停车场,经测量BC=120m,高AD=80m,
(1)若学校计划在△AHG上种草,在△BHE、△CGF上都种花,如何设计矩形的长、宽,
使得种草的面积与种花的面积相等?
(2)若种草的投资是每平方米6元,种花的投资是每平方米10元,停车场铺地砖投资
是每平方米4元,又如何设计矩形的长、宽,使得△ABC空地改造投资最小?最小为多少?
解、(1)设FG=x米,则AK=(80-x)米
由△AHG∽△ABCBC=120,AD=80可得:8080120xHG ∴ xHG23120
BE+FC=120-)(x23120=x23 ∴xxxx·232180·23120 · 21)()( 解得x=40
∴当FG的长为40米时,种草的面积和种花的面积相等。
(2)设改造后的总投资为W元
W=2880024064·)23120(10··23216·80·23120 · 212xxxxxxxx)()(=6(x-
20)2+26400
∴当x=20时,W最小=36400
答:当矩形EFGH的边FG长为20米时,空地改造的总投资最小,最小值为26400元。
5.我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组
织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三
种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信
息,解答问题.
苦荞茶 青花椒 野生蘑菇
每辆汽车运载量(吨) A型 2 2 B型 4 2
C型 1 6
车型 A B C
每辆车运费(元) 1500 1800 2000
特产
车型
(1)设A型汽车安排x辆,B 型汽车安排y辆,求y与x之间的函数关系式.
(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案.
(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.
解:(1)法①根据题意得46721120xyxy化简得:327yx
(2)由44214xyxy 得 43274213274xxxx,解得 2573x.
∵x为正整数,∴5,6,7x.故车辆安排有三种方案,即:
方案一:A型车5辆,B型车12辆,C型车4辆
方案二:A型车6辆,B型车9辆,C型车6辆
方案三:A型车7辆,B型车6辆,C型车8辆
(3)设总运费为W元,则15001800327200021327Wxxxx
10036600x
∵W随x的增大而增大,且5,6,7x
∴当5x时,37100W最小元
答:为节约运费,应采用 ⑵中方案一,最少运费为37100元。
6.为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人
行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内
完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工
程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程
费用2500元,乙队每天的工程费用2000元.
(1)甲、乙两个工程队单独完成各需多少天?
(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.
解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需(x+25)天.
根据题意得:303015xx++2.