组合逻辑电路器件
- 格式:doc
- 大小:336.00 KB
- 文档页数:24
1.设计一个两位二进制数平方器,并画出逻辑图。
输入变量AB 表示一个两位二进制数,输出WXYZ2.根据给定的逻辑图写出输出逻辑表达式Y(A,B,C)(不用化简),列出真值表。
()C A AB Y +⊕=3.一个逻辑电路,有三个输入(A ,B ,C )和一个输出F 。
当三个输入的和为奇数时,输出F 为1,列出该电路的真值表,写出F 的表达式,并画出实现电路图。
A BZ W X YBAB B A Z Y B A X AB W =+====0()ABC C B A C B A C B A F +++==∑7,4,2,1&&&&&1FABCCAB CB AABC4.分析下列逻辑电路,写出输出函数F 的表达式,abc 有哪些组合使F 为1。
a bcbc a cb a c a F =++=)(abc 取值0115.设计一个组合逻辑电路,输入为A 、B 、C ,输出为Y 。
当C=0,实现Y=AB ;当C=1时,实现Y=A+B 。
要求: (1)列出真值表;(2)求输出Y 的最简与表达式; (3)画逻辑图。
1 1 0 1 1 1 1 1()BC AC AB F ++==∑7,6,5,3A B6.写出图示电路的输出逻辑函数表达式并化简。
ACFBC B A C B B A F ++=+⋅⋅=)7.设计一个组合逻辑电路,该电路输入两个二位无符号二进制数A (A=A 1A 0)和B (B=B 1B 0)。
当A=B 时,输出F=1,否则F=0。
写出设计过程,画出逻辑电路图。
))((000011110101010101010101B A B A B A B A B B A A B B A A B B A A B B A A F ++=+++=&A 0A 1B 0B 1A F≥1≥11A 0B 1B8.逻辑门电路及输入端A 、B 、C 的波形如图所示,请画出相应的输出端G 、H 的波形。
分别简述组合逻辑电路和时序逻辑电路的
特点
组合逻辑电路和时序逻辑电路是两种不同的电路,它们都在电子技术领域有着重要的作用。
组合逻辑电路是一种电子电路,可以根据输入号的状态来决定输出号的状态。
它以逻辑关系的形式来表示,例如“与”或“或”,通过组合各种元件,如电阻、电容、晶体管和可编程逻辑器件,使用组合逻辑电路可以实现复杂的系统控制功能,如计算机、自动控制系统等。
时序逻辑电路是一种可以根据时间序列控制号的电路,它由一系列的时序触发器组成,当满足特定时序条件时,触发器就会产生号,这些号可以控制其他电路的开关,从而实现号的同步控制。
时序逻辑电路除了可以控制其他电路的开关外,还可以控制各种计算机系统中的时序事件,如中断、定时器等。
组合逻辑电路和时序逻辑电路都是电子技术中重要的电路,它们各自具有不同的特点。
组合逻辑电路的特点在于,它可以根据输入号的状态来决定输出号的状态,可以实现复杂的系统控制功能。
而时序逻辑电路的特点是可以根据时间序列控制号,可以控制其他电路的开关,也可以控制计算机系统中的各种时序事件,如中断、定时器等。
组合逻辑电路和时序逻辑电路都是电子技术中重要的电路,它们各自具有不同的特点,并发挥了重要的作用。
组合逻辑电路可以根据输入号的状态来决定输出号的状态,可以实现复杂的系统控制功能;而时序逻辑电路则可以根据时间序列控制号,可以控制其他电路的开关,也可以控制计算机系统中的各种时序事件。
由此可见,组合逻辑电路和时序逻辑电路是电子技术中不可或缺的组成部分,它们在实现复杂功能和控制时序事件方面都发挥了重要的作用。
组合逻辑电路实验(半加器全加器及逻辑运算)一、实验目的1、掌握组合逻辑电路的功能测试。
2、验证半加器和全加器的逻辑功能。
3、学会二进制数的运算规律。
二、实验原理数字电路分为组合逻辑电路和时序逻辑电路两类。
任意时刻电路的输出信号仅取决于该时刻的输入信号,而与信号输入前电路所处的状态无关,这种电路叫做组合逻辑电路。
分析一个组合电路,一般从输出开始,逐级写出逻辑表达式,然后利用公式或卡诺图等方法进行化简,得到仅含有输入信号的最简输出逻辑函数表达式,由此得到该电路的逻辑功能。
两个一位二进制数相加,叫做半加,实现半加操作的电路称为半加器。
两个一位二进制数相加的真值表见表5-1,表中Si表示半加和,Ci表示向高位的进位,Ai、Bi表示两个加数。
表5-1 半加器真值表从二进制数加法的角度看,表中只考虑了两个加数本身,没有考虑低位来的进位,这也就是半加一词的由来。
由表5-1可直接写出半加器的逻辑表达式: 、Ci=AiBi由逻辑表达式可知,半加器的半加和Si是Ai、Bi的异或,而进Si=AiBi AiBi位Ci 是Ai 、Bi 相与,故半加器可用一个集成异或门和一个与门组成。
两个同位的加数和来自低位的进位三者相加,这种加法运算就是全加,实现全加运算的电路叫做全加器。
如果用Ai 、Bi 分别表示A 、B 两个多位二进制数的第i 位,1i C -表示低位(第i-1位)来的进位,则根据全加运算的规则可列出真值表如表5-2。
表5-2 全加器的真值表利用卡诺图可求出Si 、Ci 的简化函数表达式:i i i i-1i i i i i i S =A B C C =(A B )C +A B ⊕⊕⊕可见,全加器可用两个异或门和一个与或门组成。
如果将数据表达式进行一些变换,半加器还可以用异或门、与非门等元器件组成多种形式的电路(见图5-2,图5-3)。
三、实验仪器及材料 器件:74LS00 二输入端四与非门 3片 74LA86 二输入端四异或门 1片 74LS54 四组输入与或非门 1片四、预习要求1、预习组合逻辑电路的分析方法。
班级姓名学号实验二组合电路设计一、实验目的(1)验证组合逻辑电路的功能(2)掌握组合逻辑电路的分析方法(3)掌握用SSI小规模集成器件设计组合逻辑电路的方法(4)了解组合逻辑电路集中竞争冒险的分析和消除方法二、实验设备数字电路实验箱,数字万用表,74LS00,74LS86三、实验原理1.组合逻辑概念通常逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路的过去状态无关。
因此,组合电路的特点是无“记忆性”。
在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。
所以各种功能的门电路就是简单的组合逻辑电路。
组合电路的输入信号和输出信号往往不只一个,其功能描述方法通常有函数表达式、真值表,卡诺图和逻辑图等几种。
实验中用到的74LS00和74LS86的引脚图如图所示。
00 四2输入与非门Vcc4B4A4Y3B3A3Y Array 1A1B1Y2A2B2Y GND2.组合电路的分析方法。
组合逻辑电路分析的任务是:对给定的电路求其逻辑功能,即求出该电路的输出与输入之间的关系,通常是用逻辑式或真值表来描述,有时也加上必须的文字说明。
分析一般分为一下几个步骤:(1)由逻辑图写出输出端的逻辑表达式,简历输入和输出之间的关系。
(2)列出真值表。
(3)根据对真值表的分析,确定电路功能。
3.组合逻辑电路的设计方法。
组合逻辑电路设计的任务是:由给定的功能要求,设计出相应的逻辑电路。
一般设计的逻辑电路的过程如图:(1)通过对给定问题的分心,获得真值表。
在分析中要特别注意实际问题如何抽象为几个输入变量和几个输出变量直接的逻辑关系问题,其输出变量之间是否存在约束关系,从而过得真值表或简化真值表。
(2)通过卡诺图化简或逻辑代数化简得出最简与或表达式,必要时进行逻辑式的变更,最后画出逻辑图。
(3)根据最简逻辑表达式得到逻辑电路图。
四.实验内容。
1.分析,测试半加器的逻辑功能。
第三章组合逻辑电路基本知识点*组合逻辑电路的特点*组合逻辑电路功能的表示方法及相互转换*组合逻辑电路的分析方法和设计方法*常用集成组合逻辑电路的逻辑功能、使用方法和应用举例*组合逻辑电路中的竞争–冒险现象及消除竞争–冒险现象的常用方法3.1概述在数字电路中根据逻辑功能的不同特点,可将其分为两大类:一类是组合逻辑电路,另一类是时序逻辑电路。
组合逻辑电路在逻辑功能上的共同特点是:任意时刻的输出状态仅取决于该时刻的输入状态,与电路原来的状态无关。
在电路结构上的特点是:它是由各种门电路组成的,而且只有从输入到输出的通路,没有从输出到输入的反馈回路。
由于组合逻辑电路的输出状态与电路的原来状态无关,所以组合逻辑电路是一种无记忆功能的电路。
由此可知第二章中介绍的各种门电路都属于组合逻辑电路。
描述一个组合逻辑电路逻辑功能的方法很多,通常有:逻辑函数表达式、真值表、逻辑图、卡诺图、波形图五种。
它们各有特点,又相互联系,还可以相互转换。
3. 2逻辑功能各种表示方法的特点及其相互转换一、逻辑功能各种表示方法的特点1、逻辑函数表达式逻辑表达式是用与、或、非等基本运算来表示输入变量和输出函数因果关系的逻辑代数式。
其特点是形式简单、书写方便,便于进行运算和转换。
但表达式形式不唯一。
2、真值表真值表是根据给定的逻辑问题,把输入变量的各种取值的组合和对应的输出函数值排列成表格。
其特点是:直观、明了,可直接看出输入变量与输出函数各种取值之间的一一对应关系。
真值表具有唯一性。
3、逻辑图逻辑图是用若干基本逻辑符号连接成的电路图。
其特点是:与实际使用的器件有着对应关系,比较接近于实际的电路,但它只反映电路的逻辑功能而不反映电气参数和性能。
同一种逻辑功能可以用多种逻辑图实现,它不具备唯一性。
4、卡诺图卡诺图是按相邻性原则排列的最小项的方格图。
它实际上是真值表的特定的图示形式。
其特点是在化简逻辑函数时比较直观容易掌握。
卡诺图具有唯一性,但化简后的逻辑表达式不是唯一的。
实验二组合逻辑电路一、实验目的1.掌握数据选择器的功能和应用方法;2.掌握显示译码器的功能和使用方法;3.掌握组合数字电路的设计和实现方法。
二、预习要求1.复习译码器和数据选择器的工作原理;2.复习有关组合电路设计方法的知识;3.阅读74LS138和74LS151的引脚排列图及功能表;4. 设计实验内容所要求的数据记录表格。
三、理论准备1.概述组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路过去状态无关。
因此,组合电路的特点是无“记忆性”。
在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。
所以各种功能的门电路就是简单组合逻辑电路。
组合逻辑电路的输入信号和输出信号往往不止一个,其功能描述方法通常有函数表达式、真值表、卡诺图和逻辑图等几种。
组合逻辑电路的分析与设计方法,是立足于小规模集成电路分析和设计基本方法之一。
2.组合逻辑电路的分析方法分析的任务是:对给定的电路求解其逻辑功能,即求出该电路的输出与输入之间的逻辑关系,通常是用逻辑式或真值表来描述,有时也加上必须的文字说明。
分析的步骤:(1)逐级写出逻辑表达式,最后得到输出逻辑变量与输入逻辑变量之间的逻辑函数式。
(2)化简。
(3)列出真值表。
(4)文字说明上述四个步骤不是一成不变的。
除第一步外,其它三步根据实际情况的要求而采用。
3.组合逻辑电路的设计方法设计的任务是:使用中、小规模集成电路来设计组合电路是最常见的逻辑电路,由给定的功能要求,设计出相应的逻辑电路。
设计的一般步骤如图3-1所示:根据设计任务的要求建立输入、输出变量,并列出真值表。
然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。
并按实际选用逻辑门的类型修改逻辑表达式。
根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。
最后,用实验来验证设计的正确性。
需要注意的是,在使用中规模集成的组合逻辑电路设计时,需要把函数式变换成适当的形式(而不一定是最简式)。
《数字电子技术B》实验报告班级:姓名学号:实验二组合逻辑电路(半加器、全加器)一、实验目的1.掌握组合逻辑电路的功能测试。
2.验证半加器和全加器的逻辑功能。
3.学会二进制数的运算规律。
二、实验仪器及材料74LS00 二输入端四与非门 3片74LS86 二输入端四异或门 1 片74LS54 四组输入与或非门 1片三、实验内容(如果有可能,附上仿真图)1.组合逻辑电路功能测试。
(1).用2片74LS00组成图2.1所示逻辑电路。
为便于接线和检查,在图中要注明芯片编号及各引脚对应的编号。
(2).图中A、B、C接电平开关,Y1,Y2接发光管电平显示。
(3).接表2.1要求,改变A、B、C的状态填表并写出Y1,Y2逻辑表达式。
(4).将运算结果与实验比较。
表2.1Y1=A+B Y2=(A’*B)+(B’*C)2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。
根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位Z是A、B相与,故半加器可有一个集成异或门和二个与非门组成如图2.2。
图2.2(1).在实验仪上用异或门和与门接成以上电路。
A、B接电平开关K,Y,Z接电平显示。
(2).按表2.2要求改变A、B状态,填表。
表2.23.(1).写出图2.3电路的逻辑表达式。
(2).根据逻辑表达式列真值表。
表2.3(5)按原理图选择与非门并接线进行测试,将测试结果记入表2.4,并与上表进行比较看逻辑功能是否一致。
4. 测试用异或、与或和非门组成的全加器的逻辑功能。
全加器可以用两个半加器和两个与门一个或门组成,在实验中,常用一块双异或门、一个与或非门和一个与非门实现。
(1).画出用异或门、与或非门和非门实现全加器的逻辑电路图,写出逻辑表达式。
(2).找出异或门、与或非门和与门器件按自己画出的图接线。
接线时注意与或非门中不用的与门输入端接地。
(3).当输入端A i、B i及C i-1为下列情况时,用万用表测量S i和C i的电位并将其转为逻辑状态填入下表。
实验二组合逻辑电路实验分析一、实验目的1.掌握组合逻辑电路的分析方法与测试方法。
2.了解组合电路的冒险现象及其消除方法。
二、实验设备与器材1.数字电路实验箱2.双踪示波器3.万用表4.CD4011×25.CD4030 CD4071各一个三、实验内容组合逻辑电路的分析是根据所给的逻辑电路,按逻辑门的连接方式,逐一写出相应的逻辑表达式,列出真值表,并画出卡诺图,判断能否简化。
1、分析测试半加器的逻辑表达式(1)写出测试半加器的逻辑表达式图1 与非门组合成的半加器电路(2)根据表达式列出真值表,并画出卡诺图判断能否简化(3)根据图1,在实验箱选定两个14P插座,插好两片CD4011并接好联机,A、B两输入接至逻辑开关的输出插口。
S、C分别接至逻辑电平显示输入插口。
按下表2的要求进行逻辑状态的测试并将结果填入表中,同时与上面真值表进行比较,两者是否一致。
2、分析、测试用异或门和非门组成的半加器逻辑电路异或门CD4030和与非门CD4011组成的半加器逻辑电路如图2所示,根据半加器的逻辑表达式可知,半加器的和S是A、B的异或,而进位C是A、B的相与,故半加器可用一个集成异或门和二个与非门组成。
测试方法同上述3项,将测试结果填入自拟表格中,并验证逻辑功能。
图2 异或门组成的半加器逻辑电路3、观察冒险现象按图3接线,当B=1,C=1时,A输入矩形波(f=20KHZ以上),用示波器观察Z输出波形。
然后,用添加校正项的方法消除险象。
图3 逻辑电路图四、实验报告五、按要求准备好组合逻辑电路的设计与测试按组合逻辑电路设计的步骤要求,选择实验内容中的其中一个进行设计(1)根据设计任务的要求,画出真值表;(2)用卡诺图或代数化简法求出最简的逻辑表达式;(3)根据逻辑表达式,画出逻辑图,用标准器件构成电路;(4)用实验来验证设计的正确性。
. Word 资料 第四章 组合逻辑模块及其应用 上一章介绍了组合逻辑电路的分析与设计方法。随着微电子技术的发展,现在许多常用的组合逻辑电路都有现成的集成模块,不需要我们用门电路设计。本章将介绍编码器、译码器、数据选择器、数值比较器、加法器等常用组合逻辑集成器件,重点分析这些器件的逻辑功能、实现原理及应用方法。
4.1 编码器 一. 编码器的基本概念及工作原理 编码——将字母、数字、符号等信息编成一组二进制代码。
例:键控8421BCD码编码器。 左端的十个按键S0~S9代表输入的十个十进制数符号0~9,输入为低电平有效,即某一按键按下,对应的输入信号为0。输出对应的8421码,为4位码,所以有4个输出端A、B、C、D。
SSSS
SSS
SS
S0123456789
ABCDGS
&&&&
&
≥1VCC
1kΩ×10
图4.1.1 键控8421BCD码编码器 由真值表写出各输出的逻辑表达式为:
9898SSSSA
76547654SSSSSSSSB 2 76327632SSSSSSSSC 9753197531SSSSSSSSSSD
表4.1.1 键控8421BCD码编码器真值表 输 入 输 出 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 A B C D GS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1
画出逻辑图,如图4.1.1所示。 其中GS为控制使能标志,当按下S0~S9任意一个键时,GS=1,表示有信号输入;当S0~S9均没按下时,GS=0,表示没有信号输入,此时的输出代码0000为无效代码。
二. 二进制编码器 用n位二进制代码对2n个信号进行编码的电路称为二进制编码器。 3位二进制编码器有8个输入端3个输出端,所以常称为8线—3线编码器,其功能真值表见表4.1.2,输入为高电平有效。
表4.1.2 编码器真值表 输 入 输 出 I0 I1 I2 I3 I4 I5 I6 I7 A2 A1 A0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 3 由真值表写出各输出的逻辑表达式为: 76542IIIIA
76321IIIIA
75310IIIIA 用门电路实现逻辑电路。 A
&1
&&
A0A
2
1I3I1II1117I41I16I02I511 图4.1.2 3位二进制编码器 三. 优先编码器 优先编码器——允许同时输入两个以上的编码信号,编码器给所有的输入信号规定了优先顺序,当多个输入信号同时出现时,只对其中优先级最高的一个进行编码。 74148是一种常用的8线-3线优先编码器。其功能如表4.1.3 所示,其中I0~I7为编码输入端,低电平有效。A0~A2为编码输出端,也为低电平有效,即反码输出。其他功能: (1)EI为使能输入端,低电平有效。 (2)优先顺序为I7→I0,即I7的优先级最高,然后是I6、I5、…、I0。 (3)GS为编码器的工作标志,低电平有效。 (4)EO为使能输出端,高电平有效。
表4.1.3 74148优先编码器真值表 输 入 输 出 EI I0 I1 I2 I3 I4 I5 I6 I7 A2 A1 A0 GS EO 1 × × × × × × × × 0 1 1 1 1 1 1 1 1 0 × × × × × × × 0 0 × × × × × × 0 1 0 × × × × × 0 1 1 0 × × × × 0 1 1 1 0 × × × 0 1 1 1 1 0 × × 0 1 1 1 1 1 0 × 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 4 0 0 1 1 1 1 1 1 1 1 1 1 0 1
其逻辑图如图所示。
7IEII1I2I543I6IIA01A2AEOGS
0I1111
11111111
≥1≥1≥1≥1&&&&
(a) 图4.1.3 74148优先编码器的逻辑图 四. 编码器的应用 1.编码器的扩展 集成编码器的输入输出端的数目都是一定的,利用编码器的输入使能端EI、输出使能端EO和优先编码工作标志GS,可以扩展编码器的输入输出端。 图4.1.4所示为用两片74148优先编码器串行扩展实现的16线—4线优先编码器。
0I1I2I3I4I5I6I7IA2A1A0GSEOEI74148(2)I01I2II3I4I56I7IA21A0
AGS
EOEI74148(1)
1X2XX560X7XX3XX4X14915X813XX10XX1112
XX
GSY0Y1Y
2Y
3
EOEI0
&&&&
图4.1.4 串行扩展实现的16线—4线优先编码器 5 它共有16个编码输入端,用X0~X15表示;有4个编码输出端,用Y0~Y3表示。片1为低位片,其输入端I0~I7作为总输入端X0~X7;片2为高位片,其输入端I0~I7作为总输入端X8~X15。两片的输出端A0、A1、A2分别相与,作为总输出端Y0、Y1、Y2,片2的GS端作为
总输出端Y3。片1的输出使能端EO作为电路总的输出使能端;片2的输入使能端EI作为电路总的输入使能端,在本电路中接0,处于允许编码状态。片2的输出使能端EO接片的输入使能端EI,控制片1工作。两片的工作标志GS相与,作为总的工作标志GS端。 电路的工作原理为:当片2的输入端没有信号输入,即X8~X15全为1时,GS2=1(即Y3=1),EO2=0(即EI1=0),片1处于允许编码状态。设此时X5=0,则片1的输出为A2A1A0=010,
由于片2输出A2A1A0=111,所以总输出Y3Y2Y1Y0=1010。 当片2有信号输入,EO2=1(即EI1=1),片1处于禁止编码状态。设此时X12=0(即片2的I4=0),则片2的输出为A2A1A0=011,且GS2=0。由于片1输出A2A1A0=111,所以总输出Y3Y2Y1Y0=0011。
2.组成8421BCD 编码器 图4.1.5所示是用74148和门电路组成的8421BCD编码器,输入仍为低电平有效,输出为8421DCD码。工作原理为: 当I9、I8无输入(即I9、I8均为高平)时,与非门G4的输出Y3=0,同时使74148的EI=0,允许74148工作,74148对输入I0~I7进行编码。如I5=0,则A2A1A0=010,经门G1、G2、G3
处理后,Y2Y1Y0=101,所以总输出Y3Y2Y1Y0=0101。这正好是5的842lBCD码。
当I9或I8有输入(低电平)时,与非门G4的输出Y3=1,同时使74148的EI=1,禁止74148工作,使A2A1A0=111。如果此时I9=0,总输出Y3Y2Y1Y0=1001。如果I8=0,总输出Y3Y2Y1Y0=1000。正好是9和8的842lBCD码。
72I0I1A6I5I4II3I0I74148AEIEOGS21AII457I162III03II11I98I
Y0Y1Y2Y
3
&&GGG
G123
4 图4.1.5 74148组成8421BCD编码器 4.2 译码器 一. 译码器的基本概念及工作原理 译码器——将输入代码转换成特定的输出信号。