第四章 纳米粉体的表面改性
- 格式:ppt
- 大小:5.75 MB
- 文档页数:73
试述纳米粉体制备过程中粒子的团聚及控制方法1. 纳米粉体制备过程中粒子的团聚现象是指纳米粉体在制备过程中粒子之间相互吸引而形成的团块或聚集体。
2. 粒子团聚的主要原因是静电作用、范德华力、表面能及溶剂挥发等因素的影响,使粒子间发生相互吸引。
3. 粒子团聚对纳米材料性能的均匀性和稳定性产生不良影响,因此需要进行控制和消除。
4. 控制粒子团聚的方法之一是通过表面改性,如采用表面修饰剂对粒子进行包覆以增加粒子间的排斥力,从而减少团聚现象的发生。
5. 表面改性剂可以选择有机物、无机物等多种材料,通过吸附在粒子表面形成稳定的层以增加粒子间的隔离。
6. 表面改性剂的选择应考虑其与纳米粉体相容性的问题,以及对纳米粉体性能的影响。
7. 另一种控制纳米粉体团聚的方法是通过超声处理,超声波的作用力可以破坏粒子团聚,使之重新分散。
8. 超声波通过其高频振动和剪切力对粒子进行分散,从而有效地消除团聚现象。
9. 超声波处理时间和功率的选择需要根据具体纳米粉体的特性和制备条件来确定。
10. 在纳米粉体制备中,还可以通过添加稳定剂来控制粒子团聚。
11. 稳定剂的作用是通过与粒子表面发生相互作用,减少粒子间的吸引力。
12. 稳定剂可以选择阳离子型、阴离子型或非离子型等多种类型,具体选择需要根据纳米粉体的性质和要求来确定。
13. 在纳米粉体制备过程中,可以采用液固分离的方法来分离粒子团聚。
14. 液固分离是通过减小溶液中的中间质量浓度,使团聚体流失到液相中,从而实现团聚的去除。
15. 液固分离的方法主要包括离心、过滤和沉淀等,具体选择需要根据纳米粉体的性质和要求来确定。
16. 控制纳米粉体团聚还可以采用电场和磁场等外界力场的作用。
17. 电场作用可以通过施加外电压或使用电磁场来实现,在外电场的作用下,粒子间的相互作用力会发生变化,从而减少团聚现象。
18. 磁场作用可以通过外加磁场的作用下,使纳米粒子带上磁性,利用磁场的作用力来分散和控制纳米粉体的团聚。
无机粉体表面改性的目的、原理及方法及改性剂的选择
虽然无机粉体表面改性的目的因应用领域的不同而异,但总的目的是通过粉体改性剂改善或提高粉体材料的应用性能或赋予其新的功能以满足新材料、新技术发展或者新产品开发的需要。
无机粉体改性的目的是什么呢
1.使无机矿物填料由一般增量填料变为功能性填料;
2.提高涂料或油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性和保色性等;
3.在无机/无机复合粉料中,提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料;
4.通过对层状粉体进行插层改性,制备新型的层间插层矿物材料;
5.对于吸附和催化材料,提高其吸附和催化活性以及选择性、稳定性、机械强度等性能
6.超细和纳米粉体制备中的抗团聚;
粉体表面改性的原理和方法
1.表面或界面性质与其应用性能的关系
2.表面或界面与表面改性剂或者处理剂的作用机理和作用模型
3.各种表面改性方法的基本原理或者理论基础,包括表面改性处理过程中的热力学和动力学,模拟和化学计算等。
ZnO纳米粉体制备与表征一实验目的1. 了解氧化锌的结构及应用2. 掌握“共沉淀和成核/生长隔离、水热法和微波水热、溶胶-凝胶法、反相微乳液”技术制备纳米材料的的方法与原理。
3. 了解同步热分析仪、X-射线衍射仪、扫描电子显微镜(SEM )与比表面测定仪等表征手段和原理二基本原理2.1氧化锌的结构氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。
氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为 3.37eV.女口图1-1、图1-2所示:图1-1 ZnO晶体结构在 C (00001)面的投影图1-2 ZnO纤锌矿晶格图2.2氧化锌的性能和应用纳米氧化锌(ZnO)粒径介于1- 100nm之间,由于粒子尺寸小,比表面积大,因而,纳米ZnO表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。
同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。
纳米氧化锌的制备是所有研究的基础。
合成纳米氧化锌的方法很多,一般可分为固相法、气相法和液相法。
本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。
2.3氧化锌纳米材料的制备原理不同方法制备的ZnO晶形不同,如:2.3.1共沉淀和成核/生长隔离法借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。
常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。
纳米材料:指在三维空间中至少有一维处于纳米尺度( 1nm 100 nm)范围或由它们作为基本单位构成的材料纳米科学技术的三大支柱是:纳米材料,纳米加工技术,纳米测试技术量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象表面效应:是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大,而表面原子由于配位数不足和高的表面能使这些原子有很高的活性,从而引起的性质上的变化。
原子分子团簇(团簇):是由几个乃至上千个原子,分子或离子通过物理和化学结合力组成相对稳定的聚集体,其物理和化学性质随着所含原子数目的不同而变化。
团簇的分类:一元原子团簇,二元原子团簇,多元原子团簇,原子簇化合物幻数:在团簇质谱分析中,含有某些特殊原子数的团簇的强度呈现峰值,表明这些团簇特别稳定,所含的原子数称为“幻数”团簇的基本研究问题:1,揭示团簇产生机理,即团簇如何由原子分子逐步发展而成的,以及随着这种发展,团簇的结构和性质的变化规律。
包括团簇发展成宏观固体的临界尺寸和过程变化规律。
2,固体的电子能带是如何形成和发展的。
团簇的研究意义:1,构成物理学和化学的学科交汇点,是材料科学一个新的生长点。
2,团簇是有限粒子构成的集合,其所含的粒子数可多可少,这就为量子和经典理论研究多体问题提供了合适的体系。
3,团簇的微观结构特点和奇异的物理化学性能为制造和发展特殊性能的新材料开辟了全新的技术途径。
团簇的制备方法:真空合成法,气相合成,凝聚相合成法模拟计算理论方法:从头计算法,密度泛函方法,分子动力学模拟方法,第四章纳米颗粒纳米颗粒:通常是指颗粒尺寸介于原子与物质之间的一类粉末,它的尺寸大于原子簇,小于通常的微粉,一般在1~100nm之间。
纳米颗粒与微细颗粒和原子团簇的区别:1尺寸方面的区别,一般烟尘颗粒尺寸为数微米,纳米颗粒的尺寸比可见光波长还短,与细菌的尺寸相当。
纳米复合材料总复习思考题第一章:纳米材料与复合材料1、何为纳米材料和纳米技术?答:纳米材料:任一维度的尺寸在1~100nm之间的材料。
纳米技术:在分子水平控制单个原子,创造分子结构完全不同的新物质的技术。
2、纳米材料有哪些基本性质和特性?答:基本性质:小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应。
特性:光学特性、磁学特性、催化特性、增强增韧特性、储氢性质、润滑性质。
3、根据制备过程的物态,简述纳米材料的制备方法和工艺。
答:按制备过程的物态分类:气相制备方法——金属纳米材料(Au、Ag、Cu 等)液相制备方法——以水和有机溶剂为介质制备各种纳米材料和复合材料固相制备方法——机械合金化制造技术4、晶相纳米材料的形成包括哪些过程?答:晶体纳米材料的形成原理:成核、晶核生长。
5、液相法制备纳米材料有哪些优点和缺点?答:优点:颗粒表面活性好,工业化生产成本低,产物组成易控。
缺点:硬团聚,颗粒大小不均匀,纯度低,性能不够稳定6、简述用溶胶凝胶法制备纳米材料的过程。
答:溶胶凝胶法——采用特定的纳米材料前驱体在一定条件下水解,形成溶胶然后经溶剂挥发及加热等处理,使溶胶转变成网状结构的凝胶,再经过适当的后处理工艺形成纳米材料的一种方法。
7、纳米材料可应用在哪些领域?答:应用于以下方面:催化剂、陶瓷材料、医用材料、磁性材料、防护材料、光电转换材料、传感器。
8、常用的纳米粉体材料有哪4种?答:常见的4种:纳米CaCO3、纳米TiO2、白碳黑、炭黑。
9、典型的纳米结构材料有哪些(至少3种)?答:常见纳米结构材料:C60 与 C70,碳纳米管、石墨烯家族、TiO2纳米管、纳米生物管、纳米棒、线、丝。
10、简述纳米TiO2光催化反应机理。
答:半导体TiO2粉体吸收紫外光后,价电子被激发到导带上。
在导带上产生光生电子(e-),在价带上产生空穴(h+)。
这种光生电子和空穴具有极高的能量,后者有极强的氧化性,前者有极强的还原性,在常温常压下,就可以将几乎所有的有机物和臭气、细菌和病毒、及部分无机物完全分解和矿化。
纳米二氧化硅表面改性条件优化【摘要】引入微波有机合成技术对纳米sio2进行表面改性,考察了偶联剂、微波功率和辐照时间、浓硫酸用量等对纳米sio2表面处理的影响,并通过红外光谱和热失重测试考察了粉体表面化学结构及改性情况。
实验得出的纳米sio2表面处理的最佳工艺条件为:偶联剂的用量为6%(质量百分含量),微波功率为320w,硫酸用量为1.25%(质量百分含量),微波辐射反应时间为15min。
【关键词】纳米二氧化硅;表面处理;微波对于用熔融共混法制备的纳米复合材料而言,无机粒子能在聚合物中作纳米级的原生粒子分散是决定材料性能改善的最重要因素之一。
粒子在塑料中分散粒径大小及分散均匀性对填充改性塑料的性能及其均匀性影响很大。
因此解决自身团聚很强的纳米粒子在材料中的分散性问题,成为制备性能优良复合材料的关键点,也是难点之所在。
纳米sio2为无定形白色粉末,是一种无毒、无味、无污染的无机非金属材料,其呈现出絮状和网状的准颗粒结构。
由于纳米sio2表面能大,易于团聚,通常以二次聚集体的形式存在,限制了其超细效应的充分发挥,在有机相中难以浸润和分散。
目前,对纳米sio2的改性方法有多种,通常采用的是硅烷偶联剂法。
硅烷偶联剂由于具有双反应功能团[1],能使填料与聚合物的结合界面以化学键相连,从而提高填料的补强性能[2~4]。
微波是一种波长从1mm到1m左右的超高频电磁波,具有物理、化学、生物学效应。
在电磁场中,体系介质产生极化取向,相邻分子间由于分子热运动产生强烈的相互作用,极性分子产生“变极”效应,由此产生了类似摩擦作用,使极性分子瞬间获得能量,以热量形式表现出来,介质整体温度同时随之升高。
微波还存在一种不是由温度引起的非热效应,微波作用下的有机反应,改变了反应动力学,降低了反应活化能。
以上特性使得微波加热有机反应具有传统加热法所无法具备的优点,反应速度快,效率高。
本文作者采用微波法对纳米sio2进行表面改性,考察了偶联剂用量、微波功率、硫酸用量对改性效果的影响,探讨了最佳表面改性条件,并对改性后的纳米sio2进行了表征。