国内外破裂压力计算方法
- 格式:doc
- 大小:629.00 KB
- 文档页数:17
地层压力公式1.静液压力Pm(1)静液压力是由静止液柱的重量产生的压力,其大小只取决于液体密度和液柱垂直高度。
在钻井中钻井液环空上返速度较低,动压力可忽略不计,而按静液压力计算钻井液环空液柱压力。
(2)静液压力Pm计算公式:Pm=0.0098ρmHm (2—1)式中 Pm——静液压力,MPa;ρm——钻井液密度,g/cm3;Hm——液柱垂直高度,m。
(3)静液压力梯度Gm计算公式:Gm=Pm/Hm=0.0098ρm(2—2)式中 Gm——静液压力梯度,MPa/m。
2.地层压力Pp(1)地层压力是指地层孔隙中流体具有的压力,也称地层孔隙压力。
(2)地层压力Pp计算公式:Pp=0.0098ρpHp(2—3)式中 Pp——地层压力,MPa;ρp——地层压力当量密度,g/cm3;Hm——地层垂直高度,m。
(3)地层压力梯度Gp计算公式:Gp=Pp/Hp=0.0098ρp(2—4)式中 Gp——静液压力梯度,MPa/m。
(4)地层压力当量密度ρp计算公式:ρp=Pp/0.0098Hm=102Gp(2-5)在钻井过程中遇到的地层压力可分为三类:a.正常地层压力:ρp=1.0~1.07g/cm3;b.异常高压:ρp>1.07g/cm3;c.异常低压:ρp<1.0g/cm3。
3.地层破裂压力Pf地层破裂压力是指某一深度处地层抵抗水力压裂的能力。
当达到地层破裂压力时,使地层原有的裂缝扩大延伸或使无裂缝的地层产生裂缝。
从钻井安全方面讲,地层破裂压力越大越好,地层抗破裂强度就越大,越不容易被压漏,钻井越安全。
一般情况下,地层破裂压力随着井深的增加而增加。
所以,上部地层(套管鞋处)的强度最低,易于压漏,最不安全。
(1)地层破裂压力Pf计算公式:Pf=0.0098ρfHf(2-6)式中 Pf——地层破裂压力,MPa;ρf——地层破裂压力当量密度,g/cm3;Hf——漏失层垂直高度,m。
(2)地层破裂压力梯度Gf计算公式:Gf=Pf/Hf=0.0098ρf(2-7)式中 Gf——地层破裂压力梯度,MPa/m。
地层压力公式1.静液压力Pm(1)静液压力是由静止液柱的重量产生的压力,其大小只取决于液体密度和液柱垂直高度。
在钻井中钻井液环空上返速度较低,动压力可忽略不计,而按静液压力计算钻井液环空液柱压力。
(2)静液压力 Pm 计算公式:Pm= 0.0098ρ mHm(2 —1)式中 Pm ——静液压力, MPa ;ρ m——钻井液密度, g/cm3 ;Hm ——液柱垂直高度,m。
(3)静液压力梯度 Gm 计算公式:Gm= Pm/ Hm = 0.0098ρm(2 —2)式中 Gm ——静液压力梯度,MPa/m 。
2.地层压力Pp(1)地层压力是指地层孔隙中流体具有的压力,也称地层孔隙压力。
(2)地层压力 Pp 计算公式:Pp= 0.0098ρ pHp(2 —3)式中 Pp——地层压力, MPa;ρ p ——地层压力当量密度,g/ cm3 ;Hm ——地层垂直高度,m。
(3)地层压力梯度 Gp 计算公式:Gp= Pp/ Hp = 0.0098ρp(2 —4)式中 Gp——静液压力梯度,MPa/ m。
(4) 地层压力当量密度ρp计算公式:ρp= Pp/ 0.0098Hm =102Gp(2 -5)在钻井过程中遇到的地层压力可分为三类:a.正常地层压力:ρp=1.0~1.07g/cm3;b.异常高压:ρ p>1.07g/ cm3 ;c.异常低压:ρ p<1.0g/ cm3 。
3.地层破裂压力Pf地层破裂压力是指某一深度处地层抵抗水力压裂的能力。
当达到地层破裂压力时,使地层原有的裂缝扩大延伸或使无裂缝的地层产生裂缝。
从钻井安全方面讲,地层破裂压力越大越好,地层抗破裂强度就越大,越不容易被压漏,钻井越安全。
一般情况下,地层破裂压力随着井深的增加而增加。
所以,上部地层 ( 套管鞋处 ) 的强度最低,易于压漏,最不安全。
(1)地层破裂压力 Pf 计算公式:Pf= 0.0098ρ fHf(2 - 6)式中 Pf ——地层破裂压力,MPa;ρ f ——地层破裂压力当量密度,g/ cm3 ;Hf ——漏失层垂直高度,m 。
电大理工2006年8月 Dianda Ligong 第3期 总第228期地层破裂压力的预测方法探讨史晓飞辽河石油勘探局钻井一公司( 盘锦 124010 )摘 要 地层破裂压力的确定是地层压力监测的一个重要组成部分,准确的掌握地层破裂压力对于钻井来说具有非常重要的意义。
因此地层破裂压力的预测一直受国内外油田的关注。
关键词 破裂压力 预测方法 模型 破裂梯度1 预测的意义地层破裂压力的确定是地层压力监测的一个重要组成部分。
对于钻井来说,梯度可以预防漏、喷、塌、卡等事故的发生,同时也是制定泥浆方案和设计套管程序、确定套管下入深度及油气并压裂增产措施的重要依据[2]。
预测地层破裂压力的意义:(1)地层破裂压力是确定井下管柱、井下工具、井口装置压力极限的主要依据。
(2)根据破裂压力可以确定破裂施工时的最高地面泵压、泵注排量以及需用设备的功率。
(3)根据破裂压力梯度可以大致推断水力裂缝的形态。
一般认为压出水平裂缝所需要的破裂压力梯度值应等于或大于上覆岩层的梯度值,而垂直裂缝则要小得多。
2 产生的机理及影响因素地层中孔隙压力的大小对其破裂压力有很大影响。
一般来说,地层的孔隙压力越大,其破裂压力也越高。
2.1 产生的机理目前对于地层破裂压力的起因有2种基本不同的看法。
一种观点认为地下岩层充满着层理、节理和裂缝,井内流体压力只是沿着这些薄弱面侵入,使其张开。
因此,使裂缝张开的流体压力只需克服垂直于裂缝面的地应力。
另一种观点认为地层的破裂压力取决于井壁上各应力集中现象。
增大井内的流体压力会改变井壁上的应力状态,此应力超过井壁岩石强度时,地层便被压裂。
但是井壁上的应力是和地应力密切相关的,地层的破裂压力和所产生的裂缝的方向都受到地应力的影响和控制。
此外如果需要知道裂缝延伸的方位,还应了解水平地应力的主方向。
2.2 影响因素地层破裂压力首先取决于其自身的特性。
这些特性主要包括地层中天然裂缝的发育情况、地层的强度(主要是抗拉强度)及其弹性常数(主要是泊松比)的大小。
井控公式1.静液压力:P=ρ H MPa ρ-密度g/cm3;H-井深 m;例:井深3000米,钻井液密度1.3 g/cm3,求:井底静液压力;解:P=3000= MPa2,压力梯度: G=P/H=ρ kPa/m =ρMPa;例:井深3600米处,密度1.5 g/cm3,计算井内静液压力梯度;解:G===kPa/m3.最大允许关井套压 Pamax =ρ破密度-ρm MPa H—地层破裂压力试验层套管鞋垂深,m;Ρm—井内密度 g/cm3例;已知密度1.27 g/cm3,套管鞋深度1067米,压力当量密度1.71 g/cm3,求:最大允许关井套压解; Pamax =-1067= MPa4.压井时极限关井套压 Pamax =ρ破密度-ρ压 MPa Ρ压—压井密度 g/cm3 例题略5.溢流在环空中占据的高度 hw=ΔV/Va mΔV—钻井液增量溢流,m3;Va—溢流所在位置井眼环空容积,m3/m;6.计算溢流物种类的密度ρw=ρm- Pa-Pd/ hw g/cm3;ρm—当前井内泥浆密度,g/cm3;Pa —关井套压,MPa;Pd —关井立压,MPa;如果ρw在~0.36g/cm3之间,则为天然气溢流;如果ρw在~1.07g/cm3之间,则为油溢流或混合流体溢流;如果ρw在~1.20g/cm3之间,则为盐水溢流;7.地层压力 Pp =Pd+ρm gHPd —关井立压,MPa;ρm—钻具内钻井液密度,g/cm38.压井密度ρ压=ρm+Pd/gH9、1初始循环压力 =低泵速泵压+关井立压注:在知道关井套压,不清楚低泵速泵压和关井立压情况下,求初始循环压力方法:1缓慢开节流阀开泵,控制套压=关井套压2排量达到压井排量时,保持套压=关井套压,此时立管压力=初始循环压力;2求低泵速泵压:Q/Q L2=P/P L例:已知正常排量=60冲/分,正常泵压=,求:30冲/分时小泵压为多少解:低泵速泵压P L=60/302= MPa10.终了循环压力= 压井密度/原密度X低泵速泵压一注:不知低泵速泵压,求终了循环压力方法:1用压井排量计算出重浆到达钻头的时间,此时立管压力=终了循环压力;边循环边加重压井法边循环边加重法压井是指发现溢流关井求压后,一边加重钻井液,一边随即把加重的钻井液泵入井内,在一个或多个循环周内完成压井的方法;这种方法常用于现场,当储备的高密度钻井液与所需压井钻井液密度相差较大,需加重调整,且井下情况复杂需及时压井时,多采用此方法压井;此法在现场施工中,由于钻柱中的压井钻井液密度不同,给控制立管压力以维持稳定的井底压力带来困难;若压井钻井液密度等差递增,并均按钻具内容积配制每种密度的钻井液量,则立管压力也就等差递减,这样控制起来相对容易一些;二终了立管压力,——第一次调整后的钻井液密度,g/cm30——压井钻井液密度,g/cm3 ——原钻井液密度,g/cm3; H ——井深,m ;PL ——低泵速泵压,MPa;11.压井液到达钻头时时间分Vd ——钻具内容积,m3;Q ——压井排量,l/s; 12、压井液从钻头返至地面的时间分Va —环空容积,m3; ()001ρρρρρ--=s s G QV t d d 601000=Q V t a a 601000=()gH P P K L m Tf 111ρρρρ-+=1ρKρmρQ—压井排量,l/s;思考题为例:钻进时发生溢流关井,已知井深3200米,密度;关井10分钟测得关井立压5 MPa,关井套压 MPa,溢流增量方;钻头直径215.6mm,技套内径224mm,下深2400,钻杆外径 127mm,内径108.6mm,假设无钻铤,低泵冲排量10升/秒,泵压 MPa.计算压井数据,简述工程师压井步骤.解:计算压井数据:1溢流在环空中占据的高度hw=ΔV/Va=106米溢流种类的密度ρw=ρm- Pa-Pd/ hw ρw=/106=0.868 g/cm3判定溢流为油水混合溢流.3 地层压力 Pp =Pd+ρm gHPp=5+3200= MPa4压井密度ρ压=ρm+Pd/gHρ压=+5/3200=1.41 g/cm3,施工中可考虑附加系数初始循环压力=低泵速泵压+关井立压=+5= MPa6终了循环压力= 压井密度/原密度X低泵速泵压== MPa7 压井液到达钻头时时间分=10003200/6010=分钟.8 压井液从钻头返至地面的时间分先计算V a=800方QV t d d601000=QV t a a601000=t a=1000/6010=138分钟9最大允许关井套压Pamax =ρ破密度-ρm=工程师压井施工步骤:录资料、计算压井数据、填写压井施工单、配好压井液1缓慢开泵泵入压井液,逐渐打开、调节节流阀,使套压=关井套压,排量到达压井排量;2保持压井排量不变,压井液由地面—钻头这段时间内,调节节流阀,使立管压力由初始循环立压逐渐下降到终了循环压力,3压井液由钻头—地面上返过程中,调节节流阀,保持终了循环压力不变,直到压井液返出井口,停泵关井,检查关井套压、立压是否为零,如为零,开井无外溢压井成功;司钻法压井施工步骤:录资料、计算压井数据、填写压井施工单、配好压井液第一循环周用原浆循环排除溢流1缓慢开泵,逐渐打开、调节节流阀,使套压=关井套压,排量到达压井排量;2保持压井排量不变,调节节流阀使立管压力=初始循环立压,在整个循环周保持不变,调节流阀时注意压力传递迟滞现象,液柱压力传递速度为300米/秒,.3溢流排除,停泵关井,则关井立压=关井套压.第二循环周泵入压井液1缓慢开泵,迅速打开、调节节流阀,使关井套压不变,2排量到达压井排量并保持不变,压井液由地面—钻头过程中,调节节流阀,控制套压==关井套压,并保持不变,也可以控制立压由初始循环压力逐渐下降到终了循环压力3压井液由钻头—地面上返过程中,调节节流阀,控制立压=终了循环压力不变,直到压井液返出井口,停泵关井,检查关井套压、立压是否为零,如为零,开井无外溢压井成功;13.配制1 m3加重钻井液所需加重材料计算式中G —需要的加重材料重量,吨;ρs—加重剂密度,g/cm3;ρ1—加重后的钻井液密度,g/cm3;ρo—原钻井液密度,g/cm3;例:已知原密度ρo=1.2 g/cm3,求加重到ρ1=1.35 g/cm3.;配置新浆191 m3.求1需重晶石的代数;2重晶石占的体积原浆需排掉的体积3最终体积解:1配置1 m3新浆需重晶石的重量G=/吨配置191 m3密度的新浆,故需重晶石=191=吨=33922 Kg每袋重晶石50 Kg, 故需重晶石代数为=33922/50=799袋2重晶石占的体积V==7.982 m33最终体积,原浆去掉7.982 m3,因为加重后增加了7.982 m3,最终体积为191 m3.14.油气上窜速度V=H油--H钻头/t迟.t/t静H油:油气层深度米H钻头:循环泥浆时钻头所在的井深米T迟:H钻头时的迟到时间分t—开泵至见到油气时间分t静—上次停泵至本次开泵总时间分15.地层破裂压力:P破=P漏+ρH16. 地层破裂压力当量密度:ρ破= P漏压力/H+ρ原密例:17.气体的运移计算1气体运移的高度米:H=P终关井压力-P初关井压力/ρ原密.2 气体运移速度:V=H/ t终关井时刻- t初关井时刻例:气体运移:已知在01:43溢流关井, 初关井压力;在02:25压力增到;井内密度.求:1气体运移的高度=154.5米2气体运移速度:V= 42分钟/60=221米/时18.非常规压井方法:不具备常规压井方法的条件而采用的压井方法,如空井井喷、钻井液喷空的压井等;一、平衡点法1.适用于井内钻井液喷空后的天然气井压井,2.要求防喷器完好并且关闭,钻柱在井底,3.这种压井方法是一次循环法在特殊情况下的具体应用;4.原理:设钻井液喷空后,环空存在一“平衡点”;所谓平衡点,即压井钻井液返至该点时,井口控制的套压与平衡点以下压井钻井液静液柱压力之和能够平衡地层压力;5.压井时,保持套压等于最大允许套压;当压井钻井液返至平衡点后,可采用压井排量循环,控制立管总压力等于终了循环压力,直至压井钻井液返出井口,套压降至零;平衡点按下式求出 式中H B ——平衡点深度,m ;PaB ——最大允许控制套压,MPa ;根据上式,压井过程中控制的最大套压等于“平衡点”以上至井口压井钻井液静液柱压力;当压井钻井液返至“平衡点”以后,随着液柱压力的增加,控制套压减小直至零,压井钻井液返至井口,井底压力始终维持一常数,且略大于地层压力;因此,压井钻井液密度的确定尤其要慎重;二、置换法1.当井内钻井液已大部分喷空,同时井内无钻具或仅有少量钻具,不能进行循环压井,KaBB P H ρ0098.0=2.压井钻井液可以通过压井管汇注入井内,这种条件下可以采用置换法压井;通常情况下,由于起钻抽汲,钻井液不够或不及时,电测时井内静止时间过长导致气侵严重引起的溢流,经常采用此方法压井;3.具体作法:向井内泵入定量钻井液,关井一段时间,使泵入的钻井液下落,然后放掉一定量的套压;套压降低值与泵入的钻井液产生的液柱压力相等,即: ΔPa ——套压每次降低值,MPa ;ΔV ——每次泵入钻井液量,m3;ΔVh ——井眼单位内容积,m3/m4.重复上述过程就可以逐步降低套压;一旦泵入的钻井液量等于井喷关井时钻井液罐增量,溢流就全部排除了;5.置换法进行到一定程度后,置换的速度将因释放套压、泵入钻井液的间隔时间变长而变慢,此时若条件具备下钻到井底,采用常规压井方法压并;下钻时,钻具应装有回压阀,灌满钻井液;当钻具进入井筒钻井液中时,还应排掉与进入钻具之体积相等的钻井液量;置换法压井时,泵入的加重钻井液的性能应有助于天然气滑脱;三、压回法1.所谓压回法,就是从环空泵入钻井液把进井筒的溢流压回地层;此法适用于空井溢流,天然气溢流滑脱上升不很高、套管下得较深、裸眼短,具有渗透性好的产层或一定渗透性的非产层;特别是含硫化氢的溢流;hK a V V P ∆=∆ρ0098.02. 具体施工方法:以最大允许关井套压作为施工的最高工作压力,挤入压井钻井液;挤入的钻井液可以是钻进用钻井液或稍重一点的钻井液,挤入的量至少等于关井时钻井液罐增量,直到井内压力平衡得到恢复;使用压回法要慎重,不具备上述条件的溢流最好不要采用;四、低节流压井方法1.指发生溢流后不能关井,关井套压超过最大允许关井套压,因此只能控制在接近最大允许关井套压的情况下节流放喷;1不能关井的原因:1高压浅气层发生溢流;2表层或技术套管下得太浅;3发现溢流太晚;2压井原理低节流压井就是在井不完全关闭的情况下,通过节流阀控制套压,使套压在不超过最大允许关井套压的条件下进行压井;当高密度钻井液在环空上返到一定高度后,可在最大允许关井套压范围内试行关井,关井后,求得关井立管压力和压井钻井液密度,然后再用常规法压井; 3减少地层流体的措施:低节流压井过程中,由于井底压力不能平衡地层压力,地层流体仍会继续侵入井内,从而增加了压井的复杂性,为减少地层流体的继续侵入;则可以:1增大压井排量,可以使环空流动阻力增加,有助于增大井底压力;2提高第一次循环的压井液密度,高密度压井液进入环空后,能较快地增加环空的液柱压力,抑制地层流体地侵入;3如果地层破裂压力是最小极限压力时,当溢流被顶替到套管内以后,可适当提高井口套压值;这种方法实际上就是工程师法的具体应用,只是将钻头处当成“井底”;根据关井立压确定暂时压井液密度和压井循环立管压力的方法同工程师法类似,但是要注意此时的低泵速泵压需要重新测定;压井循环时,在压井液进入环空前,保持压井排量不变,调节节流阀控制套压为关井套压并保持不变;压井液进入环空后,调节节流阀控制立压为终了循环压力并保持不变;直到压井液返至地面,至此替压井液结束;此时关井套压应为零;井口压力为零后,开井抢下钻杆,力争下钻到底,下钻到底后,则用司钻法排除溢流,即可恢复正常;如下钻途中,再次发生井涌,则重复上述步骤,再次压井后下钻;2等候循环排溢流法这种方法是:关井后,控制套压在安全允许压力范围内,等候天然气溢流滑脱上升到钻头以上,然后用司钻法排除溢流,即可恢复正常;通常,天然气在井内钻井液中的滑脱上升速度大致为270~360米/小时;2、井内无钻具的空井压井溢流发生后,井内无钻具或只有少量的钻具,但能实现关井;这种情况通常是由于起钻时发生强烈的抽汲或起钻中未按规定灌够钻井液,使地层流体进入井内,或因进行电测等空井作业时,钻井液长期静止而被气侵,不能及时除气所造成;在空井情况下发生溢流后,不能再将钻具下入井内时,应迅速关井,记录关井压力;然后用体积法容积法进行处理体积法的基本原理是控制一定的井口压力以保持压稳地层的前提下,间歇放出钻井液,让天然气在井内膨胀上升,直至上升到井口;操作方法是:先确定允许的套压升高值,当套压上升到允许的套压值后,通过节流阀放出一定量的钻井液,然后关井,关井后气体又继续上升,套压再次升高,再放出一定量的钻井液,重复上述操作,直到气体上升到井口为止;气体上升到井口后,通过压井管线以小排量将压井液泵入井内,当套压升高到允许的关井套压后立即停泵;待钻井液沉落后,再释放气体,使套压降低值等于注入钻井液所产生的液柱压力;重复上述步骤,直到井内充满钻井液为止;根据实际情况,也可以采用压回法或置换法压井;3、又喷又漏的压井即井喷与漏失发生在同一裸眼井段中的压井;这种情况需首先解决漏失问题,否则,压井时因压井液的漏失而无法维持井底压力略大于地层压力;根据又喷又漏产生的不同原因,其表现形式可分为上喷下漏,下喷上漏和同层又喷又漏;1上喷下漏的处理上喷下漏俗称“上吐下泻”;这是因在高压层以下钻遇低压层裂缝、孔隙十分发育时,井漏将使在用钻井液和储备钻井液消耗殆尽,井内得不到钻井液补充,因液柱压力降低而导致上部高压层井喷;其处理步骤是:1在高压层以下发生井漏,应立即停止循环,定时定量间歇性反灌钻井液,尽可能维持一定液面来保持井内液柱压力略大于高压层的地层压力;确定反灌钻井液量和间隔时间有三种方法:第一种是通过对地区钻井资料的分析统计出的经验数据决定;第二种是测定漏速后决定;第三种是由建立的钻井液漏速计算公式决定;最简单的漏速计算公式是:Q=πD2h/4T式中Q——漏速,m3/h;h——时间T内井筒动液面下降高度,m;T——时间T,h;D——井眼平均直径,m;2反灌钻井液的密度应是产层压力当量钻井液密度与安全附加当量钻井液密度之和;3也可通过钻具注入加入堵漏材料的加重钻井液;4当漏速减小,井内液柱压力与地层压力呈现暂时动平衡状态后,可着手堵漏并检测漏层的承压能力,堵漏成功后就可实施压井;2下喷上漏的处理当钻遇高压地层发生溢流后,提高钻井液密度压井而将高压层上部某地层压漏后,就会出现所谓下喷上漏;处理方法是:立即停止循环,定时定量间歇性反灌钻井液;然后隔开喷层和漏层,再堵漏以提高漏层的承受能力,最后压井;在处理过程中,必须保证高压层以上的液柱压力大于高压层的底层压力,避免再次发生井喷;隔离喷层和漏层及堵漏压井的方法主要是:1通过环空灌入加有堵漏材料的加重钻井液,同时从钻具中注入加有堵漏材料的加重钻井液;加有堵漏材料的钻井液,即能保持或增加液柱压力,也可减小低压层漏失和堵漏;2在环空灌入加重钻井液,在保持或增加液柱压力的同时,注入胶质水泥,封堵漏层进行堵漏;3上述方法无效时,可采用重晶石塞—水泥—重晶石塞—胶质水泥或注入水泥隔离高低压层,堵漏成功后继续实施压井;3同层又喷又漏的处理同层又喷又漏多发生在裂缝、孔洞发育的地层,或压井时井底压力与井眼周围产层压力恢复速度不同步的产层;这种地层对井底压力变化十分敏感,井底压力稍大则漏、稍小则喷;处理方法是:通过环空或钻具注入加重后的钻井液,钻井液中加入堵漏材料;此法若不成功,可在维持喷漏层以上必需的液柱压力的同时,采用胶质水泥或水泥堵漏,堵漏成功后压井;4、浅井段溢流的处理浅层段溢流的处理,在有井口装置或允许最大关井套压很低的情况下,建议采用非常规压井方法中介绍的方法进行处理;在未安装防喷器,条件具备的情况下应抢下钻具,为处理溢流提供必需的通道,根据现场的具体情况进行处理,在处理过程中,因缺乏井口控制装置,要十分注意人员安全,防止井口着火;井控作业中的错误作法会带来不良后果,轻者会拖延井内压力系统实现动平衡的时间,重者会造成井喷失控,甚至井喷失控着火;七、井控作业中易出现的错误做法1、发现溢流后不及时关井、仍循环观察这只能使地层流体侵入井筒更多,尤其是天然气溢流,在气体向上运移的过程中因体积膨胀而排替出更多的钻井液;此时的关井立管压力就有可能包含圈闭压力,据此计算的压井钻井液密度就偏高,压井时立管循环总压力、套压、井底压力也就偏高;发现溢流后继续循环还可能诱发井喷,增加压井作业的难度;所以,发现溢流或疑似溢流,必须毫不犹豫地关井;2、发现溢流后把钻具起到套管内操作人员担心关井期间钻具处于静止状态而发生粘附卡钻,即使钻头离套管鞋很远也要将钻具起到套管内,从而延误了关井时机,让更多的地层流体进入了井筒,其后果是所计算的压井钻井液密度比实际需要的偏高;其实,处理溢流时防止钻具粘附卡钻的主要措施是尽可能地减少地层流体进入井筒;3、起下钻过程中发生溢流时仍企图起下钻完这种情况大多发生在起下钻后期发生溢流时,操作人员企图抢时间起完钻或下钻完;但往往适得其反,关井时间的延误会造成严重的溢流,增加井控的难度,甚至恶化为井喷失控;正确方法是关井后压井,压井成功后再起钻或下钻4、关井后长时间不进行压井作业对于天然气溢流,若长时间关井天然气会滑脱上升积聚在井口,使井口压力和井底压力显著升高,以致会超过井口装置的额定工作压力、套管抗内压强度或地层破裂压力;若长期关井又不活动钻具,还会造成卡钻事故;5、压井钻井液密度过大或过小时常会因为地层压力求算不准确,而使得压井钻井液密度偏高或便低;压井钻井液密度过大会造成过高的井口压力和井底压力,过小会使地层流体持续侵入而延长压井作业时间;6、排除天然气溢流时保持钻井液罐液面不变地层流体是否进一步侵入井筒,取决于井底压力的大小;排除天然气溢流时,判断井底压力是否能够平衡地层压力,天然气是否在继续侵入井内,不能根据钻井液罐液面升高来判断;若把保持井底压力大于地层压力等同于保持钻井液罐液面不变,唯一的办法是关小节流阀,不允许天然气在循环上升中膨胀,其后果是套压不断升高、地层被压漏、甚至套管断裂、卡钻,以致发生地下井喷和破坏井口装置;注:排除溢流保持钻井液罐液面不变的方法仅适于不含天然气的盐水溢流和油溢流;7、企图敞开井口使压井钻井液的泵入速度大于溢流速度当井内钻井液喷空后,因其它原因无法关井,在不控制一定的井口回压,企图在敞开井口的条件下,尽可能快地泵入压井液建立起液柱压力,把井压住往往是不可能的;尤其是天然气溢流,即使以中等速度侵入井筒,它从井筒中举出的钻井液也比泵入的多;该做法的实际后果是替喷,造成溢流以更大的量和速度进入井筒;8、关井后闸板刺漏仍不采取措施闸板刺漏将造成闸板胶芯不能密封钻具,若不及时处理则刺漏愈加严重,甚至会刺坏钻具,致使钻具断落;正确的作法是带压更换闸板,为压井提供保证;。
破裂压力试验下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!随着工程材料在各领域的广泛应用,对材料强度和稳定性的要求也越来越高。
破裂压力计算概述1引言1.1破裂压力概念地层破裂压力(PB)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。
实际生产中通常用破裂压力梯度GB (地层破裂压力PB与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值GB一般由压裂实践统计得出。
地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。
在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力1.2破裂压力的获取途径水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。
该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。
目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。
由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。
碳酸盐岩地层破裂压力与测井响应具有密切的关系。
利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。
1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。
到目前为止,国内外提出了许多预测地层破裂压力的方法。
比较常用的有Eaton法,Stephen法,黄荣樽法等。
1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。
现场应用表明,修正后的模型具有较高的精度。
以上方法需要确定地层的泊松比、地层的构造应力系数、抗拉强度、室内岩心三轴试验和现场典型的破裂压力试验。
1.3地层破裂力学模型压裂作业时,地层破裂力学模型如图1.1所示。
此时,地层裂隙受地应力与压裂液共同作用。
考虑深层水力压裂主要是形成垂直裂缝,且裂缝穿透整个油层。
地应力与压裂液应力的最终有效合应力在裂隙壁面上是拉应力,当其合成应力强度因子K达到临界值时,裂隙就开始失稳延伸。
图1.1 压裂施工地层破裂模型1.4破裂压力的应用破裂压力数据在油田上应用较为广泛,应用于钻井、修井、压裂、试油、井下测试等井下工艺技术,钻井大多数是在裸眼中进行的,所以破裂压力数据在钻井方面尤为重要,它是钻井之前的井身结构设计,套管强度计算、钻井液密度设计等钻井工程设计内容的关键参数,特别是在一个新的区块开发之前,破裂压力这一数据为就重中之重了。
它决定着在这一新的区域内的所有钻井方案是否正确,并能否顺利执行和能否顺利完成。
2 国外破裂压力计算模型总结地层的破裂压力对钻井液密度确定、井身结构和压裂设计施工等有着重要的指导作用。
从上世纪五六十年代,国外就开始对地层破裂压力进行了研究,并取得了一系列的成果。
主要如下:1967年马修斯和凯利(Matthew,Kelly)提出了一个预测模型(2.1)式中 P—地层破裂压力;f—地层空隙压力:PpS —上覆岩层压力:—随井深而变化的应力系数。
Ki由于马修斯和凯利认为上覆层压力梯度等于1.0磅/平方英尺•英尺,是不随深度变化的常数,因而不符合实际情况。
而且K值需要实际压裂资料来确定,i所以未得到推广应用。
1969年伊顿(Eaton)提出上覆岩层压力梯度不是常数而是深度的函数,可由密度测井曲线求得,并把(1)式中的K值具体化为μ/(1-μ),μ为地层的i泊松比。
提出预测破裂压力模式为(2.2)伊顿认为(2)式中的μ值应由地层破裂试验数据求得,提出西德克萨斯储积砂岩层的泊松比是不随深度变化的常数,其值等于0.25。
但又认为墨西哥湾沿海地区的砂岩泊松比是随深度变化的,其值大于0.25,并在约2000m是都达到或超过0.4。
由于伊顿的所谓泊松比是按(2)式反算的,其中包括了伊顿模式中未加考虑的经验周围的应力集中,地质构造应力和岩层的强度特性等在内的许多因素的影响,所以反算而得到的μ值不是岩层本身的真实泊松比,其数值明显偏大,有时超过不可压缩材料泊松比的上限值0.5,达到0.8以上。
1973年安德森(Anderson)等探索从测井资料中获得足以确定地层破裂压力的系数,考虑了井壁上应力集中的影响,并根据特查希(Terzadhi)的试验结果对比奥特(Biot)弹性多孔介质的应力、应变关系式进行简化后到处了预测地层破裂压力的模式为:(2.3)安德森提出用测井资料确定砂岩泥质含量和孔隙度并找出它们与岩层泊松比的关系后才能确定(3)式中的μ值,而对非砂岩地层的破裂压力仍无法预测。
由于导出(3)式时没有计入地下构造应力的影响,所以这个预测模式亦不具普遍意义。
1982年斯蒂芬(Stephen)提出了再预测破裂压力的模式中考虑构造应力的问题,但又做了均匀水平构造应力的假设,其预测模式为:(2.4)式中ξ—均匀构造应力系数可由实测破裂压力推算。
可见,斯蒂芬公式只是伊顿公式的改进,多了一项均匀构造应力系数,但是在水平方向均匀构造应力的假设是不符合全世界多数地区的地应力状况的。
斯蒂芬主张用在常压下测得的动弹模量推算的泊松比值而没有考虑地下岩层围压的作用以及动弹模量和静弹模量之间的差别所应进行的修正。
上述四个模式中,均采用了岩层抗张强度为零的假说,这也与实际情况不符,而岩层抗张强度对其破裂压力也是有明显影响的。
1997年Holbrook 发表了适于预测张性盆地裂缝扩展压力的一种方法:(2.5)(1-Ф)表示地层的压实程度,经现场验证该方法对于泥岩地层适用性较好,但对于砂岩地层预测值偏高。
1999年M.M.Hossain提出了新的破裂压力理论即裸眼斜井的破裂压力理论。
3 国内破裂压力计算模型总结1986年黄蓉樽考虑到一般地应力是不均匀的,在三向应力的影响下,考虑井眼周围处于平面应力状态,利用弹性理论中kursh关于无限平板中的小圆孔周围应力的解,推导出了地层破裂压力公式:(3.1)式中参数如下:——地层泊松比;——地层破裂压力;——地层上覆岩层压力;——地层孔隙压力;非均质地质构造应力系数;——水平两个主应力方向构造应力系数;——地层抗拉强度。
在不考虑岩石抗张强度的基础上,公式可归结为) (3.2)该公式没有考虑岩石中孔隙压力的作用和滤液侵入岩石的影响,而且假设了岩石满足特查希的有效应力条件(即作用于岩石固体骨架上的有效应力等于正应力减去孔隙压力)。
2000年李传亮、孔祥言提出了裸眼井完井条件下破裂压力的计算公式:图1 裸眼完井垂直裂缝示意图在裸眼完井条件下对油井进行压裂,垂直裂缝将沿着最大水平主应力的平行方向延伸,当裂缝开始形成时,井底流压即地层岩石的破裂压力计算公式为:(3.3)裸眼完井条件下地层产生垂直裂缝时的岩石破裂压力除了与岩石的性质参数Φ和η有关外,主要受水平地应力参数σh和σH 的影响。
按照上式的推导方法,推导出裸眼完井条件下地层产生水平裂缝时的岩石破裂压力计算公式:(3.4)2001年葛洪魁、林英松、马善洲等人提出了修正Holbrook地层破裂压力预测模型。
指出虽然Holb roo k的破裂压力与孔隙度的关系较好地解释了井漏容易在疏松砂岩地层中发生的现象,但对高孔隙度地层不适用。
基于“临界孔隙度”概念和岩石力学特性通用预测模型, 对Holbrook地层破裂压力预测模型进行了修正得出如下公式:(3.5)2002年邓金根、王金凤、周建良根据线性孔隙弹性理论,在考虑孔隙压力及库伦-摩尔准则有效应力的情况下,推导出了地层渗透和地层不渗透两种情况下的破裂压力计算公式:(3.6)(3.7)式中:为地层的静态泊松比;为地层的静态杨氏模量(MPa);,为构成应力系数。
2002年李传亮提出了射孔完井条件下破裂压力的计算方法:图2 油井射孔孔眼示意图图3 射孔孔眼垂直裂缝示意图对于射孔完井,情况则完全不同。
由于油层段下了套管,地层是通过射孔孔眼与井筒进行联系的。
高压液体首先从井筒流入射孔孔眼,然后通过孔眼把地层岩石压开。
每个孔眼就相当于裸眼完井条件下的1个井眼。
在所有的孔眼中,与最小水平主应力垂直或与最大水平主应力平行的孔眼中最容易产生垂直裂缝,在孔眼中产生垂直裂缝时的岩石破裂压力计算公式为:此公式的推导方法与裸眼井垂直裂缝破裂压力公式的推导方法类似。
由射孔井的破裂压力的公式可见:射孔完井条件下地层产生垂直裂缝时的岩石破裂压力除了与岩石的性质参数Φc 和η有关外, 还要受地应力条件参数σh 和P ob的影响,而与地层的最大水平主应力σH 没有关系。
射孔完井条件下地层产生水平裂缝时pb 为:由上式可以看出:射孔完井条件下地层产生水平裂缝时的岩石破裂压力除了与岩石的性质参数Φc和η有关外,主要受地应力条件参数σH 和pob的影响,而与地层的最小水平主应力σh 没有关系。
所以,射孔完井条件下产生水平裂缝时的岩石破裂压力计算公式与裸眼完井条件下产生水平裂缝时的岩石破裂压力计算公式完全不同。
2003年胡永全、赵金洲、曾庆坤等提出了计算射孔井水力压裂破裂压力的有限元方法(有限元分析方法是一种以能量原理和变分法为理论基础,以矩阵代数和计算方法为主要工具的近似数值分析方法。
广泛用于结构分析,以确定研究对象的应力与应变变化规律。
)。
他们将套管和岩石视为具有不同性能的两种材料,应用引进的CAD/ CA E/ CAM Pro/ E有限元软件在SGI工作站上计算得到了射孔孔眼周围的应力分布。
根据主应力方位确定了压裂裂缝方位,结合岩石破裂准则得到水力压裂施工的破裂压力为。
2004年边芳霞、林平、王力等考虑到地层岩石存在天然微裂隙这一客观事实,建立了地应力与压裂液共同作用时,地层裂隙的应力强度因子表达式;并根据断裂判据,推得了地层破裂压力计算模型如下:表1 不同完井方式破裂压力计算模型式中个参数如下:K1 —套管承载系数(通常取K1 = 4165) ;K2 —射孔套管系数;K3 —无孔套管系数;Ps —孔隙压力,kg/ cm2;Rw—井半径,cm ;St —岩石抗张强度,kg/ cm2;μ—岩石泊松比;z—压裂层深度,m ;σ—有效应力值,kg/ cm2;γ—岩石重度,kg/ cm3;ζ—侧压系数;K渗—渗透系数。
2004年郭凯俊、常培锋从地应力与岩石力学参数研究入手,分析井周应力场分布,根据起裂准则,建立了浅层破裂压力预测模型。
直井破裂压力预测模型:(1)垂直缝的破裂压力:若考虑地层低渗透,强度各向异性不明显,则(2)水平缝的破裂压力:若考虑地层低渗透,强度各向异性不明显,则为:破裂压力Pf为孔隙压力,v为泊松比,Ф为孔隙度。