第六讲高等数学习题课两个重要的公式
- 格式:ppt
- 大小:1.66 MB
- 文档页数:40
高等数学公式汇总高等数学公式汇总第一章一元函数的极限与连续1.一些初等函数公式:,2.极限Ø 常用极限:;; Ø Ø 两个重要极限Ø3.连续:定义:第二章导数与微分1.基本导数公式:2.高阶导数:² 牛顿-莱布尼兹公式:3.微分:第三章微分中值定理与微分的应用1.基本定理2. ² 常用初等函数的展式:3.第四章不定积分1.常用不定积分公式:2.常用凑微分公式:3.有特殊技巧的积分第五章定积分1.基本概念,2.常用定积分公式:;;;; Wallis公式:无穷限积分:瑕积分:; ,第六章定积分应用1.平面图形的面积:直角坐标情形:;;参数方程情形:极坐标情形:2.空间立体的体积:由截面面积:旋转体:绕x轴旋转:绕y轴旋转:3.平面曲线的弧长:变力做功:抽水做功:液体压力做功:第七章向量代数与空间解析几何两点间距离公式:,方向余弦:单位向量:数量积:,夹角余弦:向量积:,,空间位置关系:平面的方程:点法式:;一般式:截距式:两平面的夹角:点到平面的距离:两平行平面的距离:直线与平面的夹角:空间曲线,曲线的投影,空间立体,曲面,曲面的投影球面:椭圆柱面:;双曲柱面:;抛物柱面:旋转曲面:圆柱面:;圆锥面:;双叶双曲面:单叶双曲面:;旋转椭球面: ;旋转抛物面:二次曲面:椭球面:抛物面:椭圆抛物面:;双曲抛物面:单叶双曲面:;双叶双曲面:椭圆锥面:总结求极限方法:1.极限定义;2.函数的连续性;3.极限存在的充要条件;4.两个准则;5.两个重要极限;6.等价无穷小;7.导数定义;8利用微分中值定理;9.洛必达法则;10.麦克劳林公式展开;求导法:1.导数的定义(求极限);2.导数存在的充要条件;3.基本求导公式;4.导数四则运算及反函数求导;5.复合函数求导;6.参数方程确定的函数求导;7.隐函数求导法;8.高阶导数求导法(莱布尼茨公式/常用的高阶导数);等式与不等式的证明:1.利用微粉中值定理;2.利用泰勒公式展开;3.函数的单调性;4.最大最小值;5.曲线的凸凹性第八章多元函数微分法及其应用一. 定义:二. 微分:,,全微分:三.四.曲线的切线和法平面1.曲线方程,切线:,法平面:2.曲线方程,切线:,法平面:3.曲线方程,切向量,切线:四.曲面的切平面和法线,法向量:,切平面:,法线:2.,切平面,法线:五.方向导数:梯度:第九章:重积分一. 二重积分:二.三重积分:1.直角坐标系:2.柱面坐标系:3.球面坐标系:二.重积分的应用:1.体积:2.曲面面积:3.质量:或4.质心:或5. 转动惯量:或第章:曲线积分和曲面积分一.第一类曲线积分:(对弧长的曲线积分):二.第二类曲线积分(对坐标的曲线积分):1.计算公式:2.格林公式:3.Stokes公式:4.封闭曲线围城的面积:三.第一类曲面积分:四.第二类曲面积分:1.计算公式:2.投影转化法:3.高斯公式:4第一章无穷级数一.常数项级数二.幂级数:1.收敛半径:2.常用等式:,,,,3.泰勒展开:三.第二章微分方程第20 页共20 页。
考研高等数学高数公式在考研高等数学中,高数公式是非常重要的一部分,掌握了这些公式可以帮助我们更好地理解和解决数学问题。
下面是一些常见的高数公式。
1.导数相关公式:-基本导数公式:$\frac{d(c)}{dx}=0$ (常数导数为0)$\frac{d(x^n)}{dx}=nx^{n-1}$ (幂函数的导数)$\frac{d(\sin x)}{dx}=\cos x$ (正弦函数的导数)$\frac{d(\cos x)}{dx}=-\sin x$ (余弦函数的导数)$\frac{d(\tan x)}{dx}=\sec^2 x$ (正切函数的导数)-乘法法则:$\frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx}$ (两个函数的乘积的导数)-除法法则:$\frac{d(\frac{u}{v})}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$ (两个函数的商的导数)-复合函数求导法则:$\frac{d(u(v))}{dx}=\frac{du}{dv}\cdot\frac{dv}{dx}$ (复合函数的导数)2.积分相关公式:-不定积分公式:$\int kdx=kx+C$ (常数的积分)$\int x^ndx=\frac{1}{n+1}x^{n+1}+C$ (幂函数的不定积分,n不等于-1)$\int e^xdx=e^x+C$ (指数函数的不定积分)$\int \sin xdx=-\cos x+C$ (正弦函数的不定积分)$\int \cos xdx=\sin x+C$ (余弦函数的不定积分)$\int \tan xdx=-\ln,\cos x,+C$ (正切函数的不定积分)-定积分基本公式:$\int_{a}^{b}f(x)dx=F(b)-F(a)$ (定积分的基本公式)$\int_{a}^{b}kdx=k(b-a)$ (常数的定积分)-分部积分法则:$\int u dv=uv-\int v du$ (分部积分法则)3.极限相关公式:-基本极限:$\lim_{x\to 0}\frac{\sin x}{x}=1$ (正弦函数的极限)$\lim_{x\to 0}\frac{1-\cos x}{x}=0$ (余弦函数的极限)-洛必达法则:若$\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$,则$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}$ (洛必达法则)-泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+...$ (泰勒展开公式)以上只是一些高等数学中常用的公式,掌握了这些公式可以帮助我们更好地理解和解决数学问题。
关于高等数学公式大全几乎包含了所有一、微分学公式1. 线性函数的导数:(kx)' = k2. 幂函数的导数:(x^n)' = nx^(n-1)3.e^x的导数:(e^x)'=e^x4. sinx 的导数:(sinx)' = cosx5. cosx 的导数:(cosx)' = -sinx6. tanx 的导数:(tanx)' = sec^2x7. cotx 的导数:(cotx)' = -csc^2x8. ln(x) 的导数:(ln(x))' = 1/x9. a^x 的导数:(a^x)' = ln(a) * a^x二、积分学公式1. 线性函数的积分:∫(kx)dx = (k/2)x^2 + C2. 幂函数的积分:∫(x^n)dx = (1/(n+1))x^(n+1) + C, (n≠-1)3. e^x 的积分:∫e^xdx = e^x + C4. sinx 的积分:∫sinxdx = -cosx + C5. cosx 的积分:∫cosxdx = sinx + C6. tanx 的积分:∫tanxdx = -ln,cosx, + C7. cotx 的积分:∫cotxdx = l n,sinx, + C8. 1/(x+a) 的积分:∫(1/(x+a))dx = ln,x+a, + C9. 1/(x^2+a^2) 的积分:∫(1/(x^2+a^2))dx = (1/a)arctan(x/a) + C三、级数和序列的公式1.等差数列的前n项和:Sn = n(a1+an)/22.等比数列的前n项和:Sn=a1(1-q^n)/(1-q)3.等差级数的和:S = (n/2)(a1+an)4.等比级数的和:S=a1/(1-q),,q,<15.幂级数的和:S=a/(1-r),,r,<16.泰勒级数:f(x)=f(a)+(x-a)f'(a)/1!+(x-a)^2f''(a)/2!+...四、微分方程的公式1. 一阶常微分方程:dy/dx + P(x)y = Q(x), y = C∫(e^(-∫P(x)dx))Q(x)dx2. 二阶常系数非齐次线性微分方程:ay''+by'+cy=g(x),其中非齐次解为 y = yc + yp3. 欧拉方程:x^n*d^n(y)/dx^n + a_(n-1)*x^(n-1)*d^(n-1)(y)/dx^(n-1) +...+ a_1*x*d(y)/dx + a_0*y = 0以上只是高等数学公式的一部分,包括微分学、积分学、级数和序列以及微分方程等方面的公式。
高等数学公式大全1、导数公式:2、基本积分表:3、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
1− x 21− x 2∫ 大学高等数学公式汇总大全(珍藏版)高等数学(上册)常用导数公式:(tgx )′ = sec 2x (ctgx )′ = −csc 2x (sec x )′ = sec x ⋅tgx (arcsin x )′ =1(arccos x )′ = − 1(csc x )′ = −csc x ⋅ctgx (a x )′ = a x ln a (arctgx )′ =11+ x 2(log a x )′ =1 x ln a(arcctgx )′ = −11+ x 2常用基本积分表:∫tgxdx = −ln cos x + C ∫ctgxdx = ln sin x + Cdx=cos 2 x dx∫sec 2 x dx = t g x + C ∫sec xdx = ln sec x + tgx + C ∫ sin 2 = csc2xdx = −ctgx + Cx ∫ csc xdx = ln csc x − c tg x + C dx = 1 arctg x +C∫sec x ⋅tgxdx = sec x + C∫csc x ⋅ctgxdx = −csc x + C∫ a 2+ x2a dx =1a ln x − a+ C∫a xdx =a xCln a ∫ x 2 − a 2 dx a 2 − x 2 2a x + a= 1 ln a + x + C 2a a − x ∫shxdx = chx + C∫chxdx = shx + C ∫ d x = arcsin x + C ∫d x = ln(x + x 2 ± a 2 ) + Ca 2 − x2a x 2 ± a 2π2I n = ∫ sin 0 π 2xdx =∫ cos nxdx =n −1 nI n −22 2x 2 2 a 2 ∫ x ∫ x 22+ a dx = 2 − a 2 dx = 2 x + a + 2 − a 2 2 a 2ln(x + ln x + x ) + C+ C ∫ a − x dx = + arcsin + C2 a三角函数的有理式积分:x 2 + a 2x 2 x 2 − a 2 x 2 − a 2 x 2 a 2 − x 2 ∫ ∫ + nsin x = 2u 1+ u 2 , cos x =1− u 2 , 1+ u 2 u = tg x 2dx = 2du 1+ u 2一些初等函数:两个重要极限:e x − e −x双曲正弦: shx =lim sin x = 1 2 x →0 x双曲余弦:chx = e x + e−xlim(1+ 1)x = e = 2.718281828459045...双曲正切:thx =2 shx = chx e x − e −xe x + e −xx →∞ xarshx = ln(x +archx = ± ln(x + x 2 +1)x 2 −1)arthx = 1 ln 1+ x2 1− x三角函数公式:· 诱导公式:· 和差角公式: ·和差化积公式:sin(α± β) = sin αcos β± cos αsin βsin α+ sin β = 2 s inα+ β cos α− βcos(α± β) = cos αcos β∓ s in αsin β2 2tg α± tg βsin α− sin β = 2 cos α+ βsin α− βtg (α± β) = 1∓ t g α⋅t g βctg α⋅ctg β∓1cos α+ cos β = 2 cos 2 α+ β 2 cos 2α− β2ctg (α± β) =ctg β± ctg αcos α− cos β = 2sinα+ βsin α− β22,(uv )= ∑C u v· 倍角公式:sin 2α = 2 sin αcos αcos 2α = 2 cos 2 α−1 = 1− 2 sin 2 α= cos 2 α− sin 2 αc t g 2α−1sin 3α = 3sin α− 4sin 3 α cos3α = 4 cos 3 α− 3cos α ctg 2α =tg 2α=2ctg α2tg αtg 3α=3t g α−t g 3α1− 3tg 2α1− tg 2α· 半角公式:sin α = ± 2α 1− cos α2 1− cos α 1− cos αsin α cos α = ± 2α 1+ cos α2 1+ cos α 1+ cos αsin α tg = ± 21+ cos α = sin α =1+ cos α c t g = ± 21− cos α = sin α =1− cos α· 正弦定理:a = sin Ab = sin B csin C= 2R · 余弦定理: c2= a 2 + b 2 − 2ab cos C· 反三角函数性质: arcsin x = π 2− arccos xarctgx = π 2− arcctgx高阶导数公式——莱布尼兹(L e i b n i z )公式:n(n )k (n −k ) (k )nk =0= u (n )v + nu (n −1)v ′ +n (n −1) u (n −2)v ′′ + ⋯+ n (n −1)⋯(n − k +1) u (n −k )v (k )+ ⋯+ uv (n ) 2! k !中值定理与导数应用:拉格朗日中值定理:f (b ) − f (a ) = f ′(ξ)(b − a ) f (b ) − f (a ) f ′(ξ)柯西中值定理: F (b ) − F (a ) =F ′(ξ)当F(x ) = x 时,柯西中值定理就是拉格朗日中值定理。
高数常见公式整理1. 函数与极限公式1.1 极限运算法则- 基本极限运算法则$\lim_{x \to c}(f(x) \pm g(x)) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$$\lim_{x \to c}(f(x) \cdot g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$\lim_{x \to c}\left(\frac{f(x)}{g(x)}\right) = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$- 复合函数极限法则$\lim_{x \to c} g(f(x)) = g(\lim_{x \to c} f(x))$1.2 微分中的常见公式- 反函数导数公式若函数 $y=f(x)$ 在点$x=a$ 处可导,且 $f'(a) \neq 0$,则其反函数 $x=f^{-1}(y)$在点 $y=f(a)$ 处也可导,并且$(f^{-1})'(f(a))= \frac{1}{f'(a)}$- 高阶导数的运算公式- 连续函数 $f(x)$ 的 $n$ 阶导数与原函数 $f(x)$ 在可导性上是相同的。
- 复合函数 $(u \circ v)(x)$ 的高阶导数公式2. 一元函数微分学公式2.1 导数运算法则- 基本导数运算法则$\frac{d}{dx}(c) = 0$,其中 $c$ 为常数$\frac{d}{dx}(x^n) = nx^{n-1}$,其中 $n$ 为实数$\frac{d}{dx}(e^x) = e^x$- 三角函数导数公式$\frac{d}{dx}(\sin x) = \cos x$, $\frac{d}{dx}(\cos x) = -\sin x$ - 切线与法线方程函数 $y=f(x)$ 在 $x=a$ 处可导,则其切线与法线方程分别为 $y-f(a) = f'(a)(x-a)$ 和 $y - f(a) = -\frac{1}{f'(a)}(x-a)$2.2 高阶导数的运算公式- 高阶导数的定义函数 $y=f(x)$ 的 $n$ 阶导数定义为$f^{(n)}(x) = \frac{d^n}{dx^n}(f(x))$- 乘法法则若 $u = f(x)$ 和 $v = g(x)$ 都是可导函数,则 $(uv)^{(n)}$ 的通用公式为$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)}v^{(k)}$3. 多元函数微分学公式3.1 偏导数公式- 偏导数的定义函数 $z=f(x_1, x_2, ..., x_n)$ 关于变量 $x_i$ 的偏导数定义为$\frac{\partial z}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{f(x_1, x_2, ..., x_i + \Delta x_i, ..., x_n)-f(x_1, x_2, ..., x_n)}{\Delta x_i}$- 混合偏导数的次序如果函数 $z=f(x_1, x_2, ..., x_n)$ 的偏导数$\frac{\partial^2z}{\partial x \partial y}$ 与 $\frac{\partial^2z}{\partial y\partial x}$ 在某点连续,则$\frac{\partial^2z}{\partial x \partial y}=\frac{\partial^2z}{\partial y \partial x}$3.2 全微分公式- 全微分的定义函数 $z=f(x_1, x_2, ..., x_n)$ 在点 $(x_1, x_2, ..., x_n)$ 处可微分,当且仅当存在线性函数 $dz$,使得$\Delta z = dz + o(\|\Delta \boldsymbol{x}\|)$其中 $\Delta \boldsymbol{x} = (\Delta x_1, \Delta x_2, ..., \Delta x_n)$- 全微分的计算公式设函数 $z=f(x_1, x_2, ..., x_n)$ 在点 $(x_0, y_0)$ 处可微分,则其全微分 $dz$ 可用偏导数表示为$dz = \frac{\partial z}{\partial x_1} dx_1 + \frac{\partialz}{\partial x_2} dx_2 + ... + \frac{\partial z}{\partial x_n} dx_n$4. 积分学公式4.1 基本积分公式- 幂函数积分公式$\int x^n dx = \frac{x^{n+1}}{n+1} + C$,其中 $n \neq -1$- 指数函数与对数函数积分公式$\int e^x dx = e^x + C$$\int \ln x dx = x(\ln x - 1) + C$4.2 微元法与定积分公式- 微元法的基本思想设 $f(x)$ 在区间 $[a,b]$ 上连续,则可以将区间 $[a,b]$ 分成$n$ 个小区间,每个小区间 $[x_i, x_{i+1}]$ 上取一点 $\xi_i$,则有 $\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n}f(\xi_i)\Delta x$- 定积分的主要性质$\int_a^a f(x)dx = 0$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$$\int_a^b [f(x) \pm g(x)]dx = \int_a^b f(x)dx \pm \int_a^b g(x)dx$ $\int_a^b kf(x)dx = k \int_a^b f(x)dx$Conclusion:本文整理了高等数学中常见的公式,包括函数与极限公式、一元函数微分学公式、多元函数微分学公式以及积分学公式。