华师大版八年级数学上期末模拟考试卷
- 格式:doc
- 大小:232.00 KB
- 文档页数:5
一、选择题1.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N 2.计算233222()m n m n -⋅-的结果等于( ) A .2m n B .2n mC .2mnD .72mn 3.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5 B .-5 C .15 D .15- 4.下列分式中,最简分式是( )A .211x x +-B .2211x x -+ C .2222x xy y x xy -+- D .21628x x -+ 5.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7 B .18 C .5 D .96.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ 7.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .2108.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关 9.如图,已知60AOB ∠=︒, 点P 在OA 边上,8OP cm =,点M 、N 在边OB 上,PM PN =,若2MN cm =,则OM 为( )A .2cmB .3cmC .4cmD .1cm10.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .311.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30° 12.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( )A .4、5、6B .3、4、5C .2、3、4D .1、2、3 二、填空题13.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 14.对于两个不相等的实数a ,b ,我们规定符号Min{,}a b 表示a ,b 中的较小的值,如Min{3,4}3=,按照这个规定,方程135Min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_____________.15.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据 x0 1 1.5 2 mx +n -3 -1 01 若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________. 16.若210a a +-=,则43222016a a a a +--+的值为______.17.如图所示为一张三角形纸片,已知6cm AC =,8cm BC =,现将ABC 折叠,使△的周长为________cm.点B与点A重合,折痕为DE,则ACD18.若等腰三角形的一条边长为5cm,另一条边长为10cm,则此三角形第三条边长为__________cm.19.如图,△ABE≌△ADC≌△ABC,若∠1=130°,则∠α的度数为________.20.如图,将一副直角三角尺按图③放置,使三角尺①的长直角边与三角尺②的某直角边在同一条直线上,则图③中的∠1=______°.三、解答题21.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲、乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完工.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.22.先化简,再求值:22141244x x x x x ,其中3x =-23.利用乘法公式计算:(1)198×202(2)(2y +1)(﹣2y -1)24.(1)如图①,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC a ∠=∠=∠=,其中a 为任意锐角或钝角.请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF 和ACF 均为等边三角形,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状.(不需要说明理由)25.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =80°,试求:(1)∠EDC 的度数.(2)若∠BCD =n °,试求∠BED 的度数.(用含n 的式子表示)(3)类比探究:已知AB ∥CD ,BE 、DE 分别是∠ABC 、∠ADC 的n 等分线,ABE ∠=1ABC n ∠,1CDE ADC n∠=∠,∠BAD =α,∠BCD =β,请猜想∠BED = .26.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 2.A解析:A【分析】根据整数指数幂的运算法则进行运算即可.【详解】解:原式=43431222m m m n n m nn---=⋅=⋅= 故选:A .【点睛】本题考查了整数指数幂的运算,掌握运算法则是解题的关键 3.C解析:C【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解.【详解】 解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a, 根据题意,15a =, 解得,15a =, 经检验,15a =是原方程的解, 故选C【点睛】 本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.4.B解析:B【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;【详解】A 、()()21111111x x x x x x ++==-+-- ;B 、2211x x -+ 的分子分母不能再进行约分,是最简分式; C 、()()22222x y x xy y x y x xy x x y x--+-==-- ; D 、()()()24416428242x x x x x x +---==++ ; 故选:B .【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.5.C解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键. 6.C解析:C【分析】利用不同的方法表示出空白部分的面积:一种是利用公式2()a b -直接计算,另一种是割补法得222a ab b -+,根据面积相等即可建立等式,得出结论.【详解】解:空白部分的面积:2()a b -,还可以表示为:222a ab b -+,∴此等式是222()2a b a ab b -=-+.故选:C .【点睛】本题考查了完全平方公式的几何意义,注意图形的分割与拼合,会用不同的方法表示出空白部分的面积是解题的关键.7.B解析:B【分析】所求式子变形后,将已知等式变形代入计算即可求出值.【详解】25y x -=∴ 25x y -=-()2236x y x y --+ ()()2=322x y x y --- =()()2535--⨯-=25+15=40故选:B【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.8.C解析:C【分析】根据幂的乘方和积的乘方的运算法则求解即可.【详解】a 2x+3y =(a x )2(a y )3=32⨯23=9⨯8=72,故选:C【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答此题的关键. 9.B解析:B【分析】过P 作PC 垂直于MN ,由等腰三角形三线合一性质得到MC=CN ,求出MC 的长,在直角三角形OPC 中,利用30度角所对的直角边等于斜边的一半求出OC 的长,由OC-MC 求出OM 的长即可.【详解】解:过P 作PC ⊥MN ,∵PM=PN,∴C为MN中点,即MC=NC= 1MN=1,2在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC= 1OP=4,2则OM=OC-MC=4-1=3cm,故选:B.【点睛】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.10.B解析:B【分析】由已知可以写出∠B和∠C,再根据三角形内角和定理可以得解.【详解】解:由已知可得:∠B=∠C=k∠A=(36k)°,由三角形内角和定理可得:2×36k+36=180,∴k=2,故选B.【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键.11.B解析:B【分析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A、根据AB=3,BC=4,∠C=40°,不能画出唯一三角形,故本选项不合题意;B、∠A=60°,AB=4,∠B=45°,能画出唯一△ABC,故此选项符合题意;C、∠C=90°,AB=6,不能画出唯一三角形,故本选项不合题意;D、AB=4,BC=3,∠A=30°,不能画出唯一三角形,故本选项不合题意;故选:B.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.12.D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D、4+5>6,能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项错误;A、2+3>4,能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项正确;故选:D.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题13.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m值再根据分式方程无解的条件得出一个m值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m值,再根据分式方程无解的条件得出一个m值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键.14.【分析】根据题中的新定义化简求出分式方程的解检验即可【详解】当<时>2方程变形得:=−2去分母得:1=解得:(不符合题意舍去);当>即<2方程变形得:=−2去分母得:3=解得:经检验是分式方程的解综 解析:4x =-【分析】根据题中的新定义化简,求出分式方程的解,检验即可.【详解】 当12x -<32x -时,x >2,方程变形得:12x -=52x x --−2, 去分母得:1=()522x x ---,解得:=2x -(不符合题意,舍去);当12x ->32x -,即x <2,方程变形得:32x -=52x x --−2, 去分母得:3=()522x x ---,解得:4x =-,经检验4x =-是分式方程的解,综上,所求方程的解为4x =-.故填:4x =-.【点睛】 此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键. 15.20或30【分析】把表格中的前两对值代入求出m 与n 的值即可求出x 的值然后把x 的值代入求解即可【详解】解:由表格得x =0时m0+n =-3∴n =-3;x =1时m1+(-3)=-1∴m =2;∵mx +n 解析:20或30【分析】把表格中的前两对值代入求出m 与n 的值,即可求出x 的值,然后把x 的值代入求解即可.【详解】解:由表格得x =0时,m ⋅0+n =-3,∴n =-3;x =1时,m ⋅1+(-3)=-1,∴m =2;∵mx +n =17,∴2x -3=17,∴x =10,当点C 在线段AB 上时,∵BC =12AB ,∴BC =12×10=5, ∴AC +AB +BC =20;当点C 在点B 右侧时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键. 16.【分析】原式变形为由已知得到整体代入即可求解【详解】已知得:故答案为:【点睛】本题考查了代数式求值熟练掌握整体代入法是解题的关键 解析:2015【分析】原式变形为()22222016aa a a a +--+,由已知得到21a a +=,整体代入即可求解. 【详解】已知得:21a a +=, 43222016a a a a +--+()22222016a a a a a =+--+2222016a a a =--+ ()22016a a =-++ 12016=-+2015=.故答案为:2015.【点睛】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.17.14【分析】根据折叠的性质得到AD=BD 即可求出答案【详解】由折叠得:AD=BD ∵∴的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm 故答案为:14【点睛】此题考查折叠的性质:折叠前后对解析:14【分析】根据折叠的性质得到AD=BD ,即可求出答案.【详解】由折叠得:AD=BD ,∵6cm AC =,8cm BC =,∴ACD △的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm ,故答案为:14.【点睛】此题考查折叠的性质:折叠前后对应的线段相等,熟记性质是解题的关键.18.10【分析】因为等腰三角形的两边分别为5cm 和10cm 但没有明确哪是底边哪是腰所以有两种情况需要分类讨论【详解】当5cm 为底时其它两边都为10cm5cm10cm10cm 可以构成三角形;当5cm 为腰时解析:10【分析】因为等腰三角形的两边分别为5cm 和10cm ,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】当5cm 为底时,其它两边都为10cm ,5cm 、10cm 、10cm 可以构成三角形;当5cm 为腰时,其它两边为5cm 和10cm ,因为5+5=10,所以不能构成三角形,故舍去. 所以三角形三边长只能是5cm 、10cm 、10cm ,所以第三边是10cm .故答案为:10.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 19.100°【分析】根据全等三角形对应角相等可得然后根据周角等于求出再根据三角形的内角和定理求出从而得解【详解】解:(对顶角相等)故答案为:【点睛】本题考查了全等三角形对应角相等的性质三角形的内角和定理 解析:100°【分析】根据全等三角形对应角相等可得1BAE ∠=∠,ACB E ∠=∠,然后根据周角等于360︒求出2∠,再根据三角形的内角和定理求出2α∠=∠,从而得解.【详解】解:ABE ADC ABC ∆≅∆≅∆,1130BAE ∴∠=∠=︒,ACB E ∠=∠,23601360130130100BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,180DFE E α∴∠=︒-∠-∠,1802AFC ACD ∠=︒-∠-∠,DFE AFC ∠=∠(对顶角相等),1801802E ACD α∴︒-∠-∠=︒-∠-∠,2100α∴∠=∠=︒.故答案为:100︒.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,对顶角相等的性质,准确识图,找出对应角是解题的关键.20.105【分析】利用三角形外角性质求解【详解】如图∵∠2=∠3=∴∠4=∠2+∠3=∴∠1=故答案为:105【点睛】此题考查三角板的角度计算三角形外角的性质观察图形掌握各角度之间的位置关系是解题的关键 解析:105【分析】利用三角形外角性质求解.【详解】如图,∵∠2=30,∠3=45︒,∴∠4=∠2+∠3=75︒,∴∠1=1804105︒-∠=︒,故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键.三、解答题21.(1)完成这项工程的规定时间是20天;(2)选择方案三,理由见解析.【分析】(1)设完成这项工程的规定时间为x 天,则甲工程队需x 天完成这项工程,乙工程队需(x+5)天完成这项工程,根据由甲、乙两队合作做4天,剩下的工程由乙队单独做,即可得出关于x 的分式方程,解之并检验后即可得出结论.(2)根据总费用=每天需付费用×工作天数,分别求出方案一、三需付的工程款,比较后即可得出结论.【详解】(1)设完成这项工程的规定时间为x 天, 由题意得1144155x x x x -⎛⎫++=⎪++⎝⎭. 解得:20x .经检验,20x 是原方程的解,且符合题意.答:完成这项工程的规定时间是20天.(2)选择方案三,理由如下:方案一:所需工程款为20 2.142⨯=(万元);方案二:超过了规定时间,不符合题意;方案三:所需工程款为4 2.120 1.538.4⨯+⨯=(万元).∵42>38.4,∴ 选择方案三.【点睛】本题考查了分式方程的应用,解题的关键是:(1)由甲、乙两队合作做4天,剩下的工程由乙队单独做,列出关于x 的分式方程;(2)根据数量关系列式计算.22.32x +,3-. 【分析】 先算括号里面的,再算除法,最后将x 的值代入进行计算即可.【详解】 解:22141244x x x x x 22212=222x x x x x x x23=22x x x 23=22x x x 3=2x当3x =-时,原式3=332. 【点睛】本题考查的是分式的化简求值,熟悉相关运算法则是解题的关键.23.(1)39996;(2)2441y y ---.【分析】(1)将两个数化为200与2的和与差,用平方差公式计算即可;(2)第二个括号内提取一个负号可与第一个括号合成两数和的平方,利用完全平方公式展开即可.【详解】解:(1)原式=(2002)(2002)-+=222002-=400004-=39996;(2)原式=(21)(21)y y -++=2(21)y -+=2441y y ---.【点睛】本题考查利用完全平方公式和平方差公式计算.熟记公式是解题关键.24.(1)见解析;(2)成立,证明见解析;(3)DEF 为等边三角形【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD ,然后根据“AAS”可判断△ADB ≌△CEA ,则AE=BD ,AD=CE ,于是DE=AE+AD=BD+CE ;(2)由∠BDA=∠AEC=∠BAC ,就可以求出∠BAD=∠ACE ,进而由AAS 就可以得出△BAD ≌△ACE ,就可以得出BD=AE ,DA=CE ,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC=120°,就可以得出△BAD ≌△ACE ,就有BD=AE ,进而得出△BDF ≌△AEF ,得出DF=EF ,∠BFD=∠AFE ,而得出∠DFE=60°,即可推出△DEF 为等边三角形.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴90BDA CEA ∠=∠=︒∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.在ADB △和CEA 中:CAE ABD BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB CEA AAS ≌()△△. ∴AE BD =,AD CE =.∴DE AE AD BD CE =+=+.(2)成立.证明如下:∵∠BDA=∠BAC=α,又∵DBA ADB BAC CAE ∠+∠=∠+∠∴∠DBA=∠CAE ,在ADB △和CEA 中:DBA CAE BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ADB CEA AAS ≌△△. ∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+.(3)DEF 为等边三角形.证明:∵△ABF 和△ACF 均为等边三角形,∴AB=AF=AC ,∠ABF=∠CAF=60°,BF=AF,∴由(2)可知,△ADB ≌△CEA ,∴BD=AE ,∠DBA=∠CAE ,∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE ,∵在△DBF 和△EAF 中,BD AE DBF FAE BF AF ⎧⎪∠∠⎨⎪⎩=== ∴△DBF ≌△EAF (SAS ),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题属于三角形综合题,主要考查了全等三角形与等边三角形的综合应用,解题的关键是熟练掌握全等三角形的判定与性质以及等边三角形的判定与性质并灵活运用,属于中考常考题型.25.(1)40︒;(2)1402BED n ∠=︒+︒;(3)1()αβ+n【分析】(1)根据平行线的性质及角平分线的性质即可得解;(2)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,由AB ∥CD ,BE 平分∠ABC ,推出12BEF ABE n ∠=∠=︒,利用EF ∥CD ,求得∠FED =∠EDC =40°,即可得到 1402BED n ∠=︒+︒; (3)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,利用AB ∥CD 推出∠ABC =∠BCD =β,∠ADC =∠BAD =α,求得1ABE n β∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=,利用EF ∥AB ,求出1BEF ABE n β∠=∠=,即可得到1()BED nαβ∠=+.【详解】解:(1)∵AB ∥CD ,∴∠ADC =∠BAD =80°,又∵DE 平分∠ADC , ∴1402EDC ADC ∠=∠=︒;(2)如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =n °,又∵BE 平分∠ABC ,∴12ABE n ∠=︒, ∵EF ∥AB , ∴12BEF ABE n ∠=∠=︒, ∵EF ∥CD ,∴∠FED =∠EDC =40°,∴1402BED n ∠=︒+︒. (3)1()αβ+n.如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =β,∠ADC =∠BAD =α,∴1ABE nβ∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=, ∵EF ∥AB ,∴1BEF ABE nβ∠=∠=,∴1()BED nαβ∠=+. 故答案为:1()αβ+n .【点睛】此题考查平行线的性质,角平分线的性质,熟记平行线的性质并正确引出辅助线解决问题是解题的关键.26.(1)证明见解析;(2),,B ADE DEF ∠∠∠.【分析】(1)先根据角的和差、等量代换可得EFG ADG ∠=∠,再根据平行线的判定可得//EF AB ,然后根据平行线的性质可得ADE DEF ∠=∠,从而可得B ADE ∠=∠,最后根据平行线的判定即可得证;(2)根据直角三角形的两锐角互余、等量代换即可得.【详解】(1)180,180BDG EFG BDG ADG ∠+∠=︒∠+∠=︒,EFG ADG ∴∠=∠,//EF AB ∴,ADE DEF ∴∠=∠,B DEF ∠=∠,B ADE ∴∠=∠,//DE BC ∴;(2)90A ∠=︒,90B C ∴∠+∠=︒,B DEF ∠=∠,90DEF C ∴∠+∠=︒,由(1)可知,B ADE ∠=∠,90ADE C ∴∠+∠=︒,综上,与C ∠互余的角有,,B ADE DEF ∠∠∠.【点睛】本题考查了直角三角形的两锐角互余、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.。
华师大版八年级数学上册期末测试题【精品2套】八年级数学期末模拟测试一、填空题(每题2分,共22分)1、等边三角形是旋转对称图形,其最小旋转角为__________度。
2、不等式38x -≥的最大整数解为______________。
3、计算()()252x x -+=_______________。
4、分解因式22n n n n x x x x ++-=(______________)。
5、若24x -<<,则化简25x x +--=____________。
6、计算()2005200450.2⋅-=___________。
7、若()()2217,11a b a b +=-=,则22a b +=___________。
8、若3,1x y x y +=⋅=-,则()()33x y +-=___________。
9、抛掷两枚正四面体的骰子,同时出现两个“1”点的机会约为_________。
10、不透明的口袋中有白球和红球若干只,从中任取一球,然后放回袋中,搅匀再取出,以估计取出白球的机会的大小,已知共取了100次,其中27次取出的为红球,则取出白球的频率为_________。
11、直角梯形同一底上的两个角之比为2:3,则其最大内角为_________度。
二、选择题(每题3分,共24分)12、下列说法:①平行四边形的一组对边平行且另一组对边相等;②一组对边平行且另一组对边相等的四边形是平行四边形;③菱形的对角线互相垂直;④对角线互相垂直的四边形是菱形。
其中正确的说法有( )A 、1个B 、2个C 、3个D 、4个13、如图,在等腰△ABC 的底边BC 上任取一点D ,作DE ∥AC 、DF ∥AB ,分别交AB 、AC 于点E 、F ,若等腰△ABC 的腰长为m ,底边长为n ,则四边形AEDF的周长为( )A 、2mB 、2nC 、m+nD 、2m-n14、若0a b <<,则下列结论不正确的是( )A 、11a b <B 、1b a< C 、a b ->- D 、22a b > 15、不等式31323y y -->+的解集为( ) A 、5y <- B 、2y <- C 、35y <- D 、1y <- 16、计算122n n +-得( )A 、2nB 、-2nC 、2D 、-217、下列不等式组无解的是( )A 、20x x >->B 、 20x x <-<C 、20x x <->D 、20x x >-< 18、下列计算正确的是( )A 、()()2555a a a +-=- B 、()()2236x x x +-=- C 、()222224a b a ab b +=++ D 、()()22322349m n n m n m ---=- 19、如果226x x k ++恰好是另一个整式的平方,则k 的值为( )A 、9B 、3C 、-3D 、±3三、解答下列各题(共104分)20、(本题8分)先化简,再求值:()()()()224171131x x x x +--++-,其中12x =-21、(本题8分)因式分解:⑴()()222m n m n --- ⑵()()2414a b a b -++-22、(本题8分)解不等式组 5134211133x x x x ->--≤-,并在数轴上表示其解集。
一、选择题1.若关于x 的方程121mx-=-的解为正数,则m的取值范围是()A.1m>-B.1m≠C.1m D.1m>-且1m≠2.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.50.2510-⨯B.60.2510-⨯C.72.510-⨯D.62.510-⨯3.若实数a使关于x的不等式组313212x xa xx+⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y的方程3233y ay y--++1=的解是整数,则符合条件的所有整数a的个数是()A.4 B.3 C.2 D.1 4.020122012(31)(0.125)8-+⨯的结果是()A.3B .32-C.2 D.05.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是()(用含有a、b的代数式表示).A.a-b B.a+b C.ab D.2ab6.对于①2(2)(1)2x x x x+-=+-,②4(14)x xy x y-=-,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解7.形如abcd的式子叫做二阶行列式,它的算法是:abad bccd=-,则221a aa a-++的运算结果是()A.4a B.4a-C.4 D.4-8.下列各式中,正确的是()A.2222x y yx x y-+=B.22445a a a+=C.()2424m m--=-+D.33a b ab+=9.如图,在ABC中,90C∠=︒,30B∠=︒,以点A为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .410.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③ 11.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30° 12.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90°二、填空题13.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1a a =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________. 14.化简23x x+=____. 15.如果23a b -的值为1-,则645b a -+的值为_____.16.已知210x x +-=,则代数式3222020x x ++的值为________.17.平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形,且△AOP 的面积为16,则满足条件的P 点个数是______.18.如图,在等腰三角形ABC 中,AB =AC ,∠B =50°,D 为BC 的中点,点E 在AB 上,∠AED =70°,若点P 是等腰三角形ABC 的腰上的一点,则当DEP 是以∠EDP 为顶角的等腰三角形时,∠EDP 的度数是_____.19.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).20.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).三、解答题21.某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划的1.5倍,结果提前4天完成了任务,则原计划每天铺地多少平方米?22.先化简,再求值.(1)22 121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中x是9的平方根;(2)2222221211⎛⎫-+-÷⎪-+-⎝⎭a a a aa a a,然后从-1,0,1,2中选一个合适的数作为a的值代入求值.23.已知多项式35ax bx+-,当2x=-时,该多项式的值是7,则当2x=时,该多项式的值是多少?24.已知45MAN∠=︒,点B为射线AN上一定点,点C为射线AM上一动点(不与点A重合),点D在线段BC的延长线上,且CD CB=.过点D作DE AM⊥于点E.(1)当点C运动到如图1的位置时,点E恰好与点C重合,此时AC与DE的数量关系是;(2)当点C运动到如图2的位置时,依题意补全图形,并证明:2AC AE DE=+;(3)在点C运动的过程中,点E能否在射线AM的反向延长线上?若能,直接用等式表示线段AC,AE,DE之间的数量关系;若不能,请说明理由.25.如图,在ABC∆中,90,C∠=︒点D在BC上,过点D作DE AB⊥于点,E点F是AC边上一点,连接DF.若,BD DF CF EB==,求证:AD平分BAC∠.26.如图,在五边形ABCDE 中,∠A+∠B+∠E=310°,CF 平分∠DCB ,FC 的延长线与五边形ABCDE 外角平分线相交于点P ,求∠P 的度数【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 2.D解析:D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.0000025=62.510-⨯,故选:D .【点睛】此题考查了科学记数法,注意n 的值的确定方法:当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.3.D解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】 解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.4.C解析:C【分析】根据零次幂定义,积的乘方的逆运算进行计算.【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=. 故选:C【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键. 5.C解析:C【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可.【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y a y x b+=⎧⎨-=⎩ , 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab b a ab b ab ++-+=-==ab . 故选C .【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键. 6.D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.7.A解析:A【分析】根据定义把二阶行列式表示成整式,然后再化简计算即可.【详解】解:由题意可得:()()()212221aa a a a a a a -=+--+++ =()224a a a +--=224a a a +-+=a+4,故答案为A .【点睛】本题考查整式乘法的混合运算,通过观察题目给出的运算法则,把所求解的算式根据运算法则展开是解题关键. 8.A解析:A【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可.【详解】解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确.故选A.【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.9.C【分析】根据题意作图可知:AD 是BAC ∠的平分线,由此判断①正确;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,判断②正确;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断③正确;证明Rt △ACD ≌Rt △AED ,得到S △ACD =S △AED ,根据等底同高得到S △AED =S △BED ,即可得到:1:3DAC ABC S S =,判断④错误.【详解】解:由题意得:AD 是BAC ∠的平分线,故①正确;∵90C ∠=︒,30B ∠=︒,∴∠BAC=60︒,∵AD 是BAC ∠的平分线,∴∠CAD=∠BAD=30B ∠=︒,∴60ADC ∠=︒,故②正确;过点D 作DE ⊥AB 于E ,∵∠BAD=30B ∠=︒,∴AD=BD ,∴△ABD 是等腰三角形,∴AE=BE ,∴点D 在AB 的中垂线上,故③正确;∵AD 是BAC ∠的平分线,DC ⊥AC ,DE ⊥AB ,∴CD=DE ,∠C=∠AED=90︒,又∵AD=AD ,∴Rt △ACD ≌Rt △AED ,∴S △ACD =S △AED ,∵AE=BE ,DE ⊥AB ,∴S △AED =S △BED ,∴:1:3DAC ABC S S =,故④错误;故选:C ..【点睛】此题考查角平分线的作图方法及性质应用,全等三角形的判定及性质,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.10.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.11.B解析:B【分析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A 、根据AB =3,BC =4,∠C =40°,不能画出唯一三角形,故本选项不合题意; B 、∠A =60°,AB =4,∠B =45°,能画出唯一△ABC ,故此选项符合题意;C 、∠C =90°,AB =6,不能画出唯一三角形,故本选项不合题意;D 、AB =4,BC =3,∠A =30°,不能画出唯一三角形,故本选项不合题意;故选:B .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.12.C解析:C【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠.【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.二、填空题13.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条 解析:111a -+ 531a +- 2或6 【分析】(1)根据材料中分式转化变形的方法,即可把1a a +变形为满足要求的形式;(2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.14.【分析】原式利用同分母分式的加法法则计算即可得到结果【详解】故答案为:【点睛】此题考查了分式的加减法熟练掌握运算法则是解本题的关键 解析:5x. 【分析】 原式利用同分母分式的加法法则计算即可得到结果.【详解】232+3x x x+=5x =.故答案为:5x【点睛】 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.15.7【分析】把所求代数式整理成已知条件的形式然后整体代入进行计算即可得解【详解】解:∵2a-3b=-1∴3b-2a=1∴=2+5=7故答案是:7【点睛】本题考查了代数式求值整体思想的利用是解题的关键解析:7【分析】把所求代数式整理成已知条件的形式,然后整体代入进行计算即可得解.【详解】解:∵2a-3b=-1,∴3b -2a=1,∴()64523b 2a 5b a -+=-+=2+5=7,故答案是:7.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.16.【分析】根据条件转换成x2+x=1后一个代数式化简后将条件代入即可【详解】解:由题意得:x2+x=1∴x3+2x2+2020=x(x2+x)+x2+2020=x+x2+2020=1+2020=202解析:【分析】根据条件转换成x 2+x =1,后一个代数式化简后将条件代入即可.【详解】解:由题意得:x 2+x =1,∴x 3+2x 2+2020=[x (x 2+x )+x 2]+2020=x +x 2+2020=1+2020=2021,故答案为:2021.【点睛】本题考查代数式的整体代入求解,关键在于如何将代数式转换成条件中的整体. 17.10【分析】使△AOP 为等腰三角形只需分两种情况考虑:OA 当底边或OA 当腰当OA 是底边时有2个点;当OA 是腰时有8个点即可得出答案【详解】∵A (80)∴OA=8设△AOP 的边OA 上的高是h 则×8×h解析:10【分析】使△AOP 为等腰三角形,只需分两种情况考虑:OA 当底边或OA 当腰.当OA 是底边时,有2个点;当OA 是腰时,有8个点,即可得出答案.【详解】∵A (8,0),∴OA=8,设△AOP的边OA上的高是h,则12×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,②以O为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,③作AO的垂直平分线分别交直线a、b于一点,即共2个点符合,其中,没有重复的点,∴4+4+1+1=10.故选:B.【点睛】本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.18.40°或100°或140°【分析】根据△DEP是以∠EDP为顶角的等腰三角形可知DP=DE所以可以分两种情况考虑:①点P在AB上;②点P在AC上分别画出符合条件的图形根据等腰三角形的性质和全等三角形解析:40°或100°或140°【分析】根据△DEP是以∠EDP为顶角的等腰三角形,可知DP= DE,所以可以分两种情况考虑: ①点P在AB上;②点P在AC上.分别画出符合条件的图形,根据等腰三角形的性质和全等三角形的判定和性质定理解答即可.【详解】解:∵AB=AC,∠B=50°,∠AED=70°,∴∠EDB=20°,∵当△DEP是以∠EDP为顶角的等腰三角形,∴DP = DE ,①如图,当点P 在AB 上时,记为P 1,∵DE =DP 1,∴∠DP 1E =∠AED =70°,∴∠EDP 1=180°﹣70°﹣70°=40°,②如图,当点P 在AC 上时,有两个点P 2、 P 3符合条件,∵AB =AC ,D 为BC 的中点,∴∠BAD =∠CAD ,过D 作DG ⊥AB 于G ,DH ⊥AC 于H ,∴DG =DH ,在Rt △DEG 与Rt △DP 2H 中,2DE DP DG DH =⎧⎨=⎩, ∴Rt △DEG ≌Rt △DP 2H (HL ),∴∠AP 2D =∠AED =70°,∵∠BAC =180°﹣50°﹣50°=80°,∴∠EDP 2=140°,同理证得Rt △DEG ≌Rt △D P 3H (HL ),∴∠EDG =∠P 3DH ,∴∠EDP 3=∠GDH =100°,故答案为:40°或100°或140°.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,分类讨论画出符合条件的图形是解题的关键.19.①③【分析】由四边形内角和定理可求出;若DM 平分∠EDF 则∠EDM=60°从而得到∠ABC 为等边三角形条件不足不能确定故②错误;由题意可知∠EAD=∠FAD=30°故此可知ED=ADDF=AD 从而可解析:①③【分析】由四边形内角和定理可求出120EDF ∠=︒;若DM 平分∠EDF ,则∠EDM=60°,从而得到∠ABC 为等边三角形,条件不足,不能确定,故②错误;由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明③正确;连接BD 、DC ,然后证明△EBD ≌△CFD ,从而得到BE=FC ,从而可得AB+AC=2AE ,故可判断④.【详解】解:如图所示:连接BD 、DC .(1)∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°,∵∠EAF=60°,∠EAF+∠AED+∠AFD+∠EDF=360°∴∠EDF=360°-∠EAF-∠AED-∠AFD=360°-60°-90°-90°=120°,故①正确;②由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC 是否等于60°不知道,∴不能判定MD 平分∠EDF ,故②错误;③∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .故③正确.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC.∴AB+AC=AE-BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④错误.因此正确的结论是:①③,故答案为:①③.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质以及四边形的内角和等知识,掌握本题的辅助线的作法是解题的关键.20.①②③④【分析】分别根据平行线的性质角平分线的定义邻补角的定义直角三角形两锐角互余进行判断即可得出结论【详解】解:∵CD∥OB∠EFD=α∴∠EOB=∠EFD=α∵OE平分∠AOB∴∠COF=∠EO解析:①②③④【分析】分别根据平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余进行判断即可得出结论.【详解】解:∵CD∥OB,∠EFD=α,∴∠EOB=∠EFD=α,∵OE平分∠AOB,∴∠COF=∠EOB=α,故①正确;∠AOB=2α,∵∠AOB+∠AOH=180°,∴∠AOH=180°﹣2α,故②正确;∵CD∥OB,CH⊥OB,∴CH⊥CD,故③正确;∴∠HCO+∠HOC=90°,∠AOB+∠HOC=180°,∴∠OCH=2α﹣90°,故④正确.故答案为:①②③④.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余等知识,熟练掌握相关知识点是解题关键.三、解答题21.原计划每天铺地75平方米.【分析】设原计划每天铺x平方米,根据题意即可列出方程进行求解.【详解】解:设原计划每天铺地平方米,根据题意锝:112511253341.5x x x -⎛⎫-+= ⎪⎝⎭解得:75x =经检验,75x =是原方程的解.答:原计划每天铺地75平方米.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意列出方程.22.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义,∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.23.-17【分析】首先把x=-2代入多项式35ax bx +-,整理成关于a 、b 的等式,再把x=2代入,观察两个式子的联系,进一步求得数值即可.【详解】解:x =-2时, 35ax bx +-=7,即-8a -2b -5=7,所以8a+2b =-12,当x=2时,35ax bx +-=8a+2b -5=-12-5=-17,所以该多项式的值是-17.【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 24.(1)AC DE =;(2)补全图形见解析,证明见解析;(3)能,2.AC AE DE +=【分析】(1)先证明AC 是BD 的垂直平分线,可得:45ABD ADB ∠=∠=︒,可得:90DAB ∠=︒,可得45CAD CDA ∠=∠=︒,从而可得结论; (2)如图,过B 作BG AM ⊥于G ,证明:,BCG DCE ≌ 可得,,BG DE CG CE == 再证明:,AG BG DE == 从而可得()22,AC DE CE =+ ()2,AE DE DE CE +=+ 于是可得结论;(3)如图,过B 作BG AM ⊥于G ,同(2)理可得:(),BCG DCE AAS ≌AG BG =,可得,,CG CE BG DE == ,AG BG DE == 再证明2,AG AC AE =+从而可得结论.【详解】解:(1)当,E C 重合时,点D 在线段BC 的延长线上,CD CB =,DE AM ⊥,AC ∴是BD 的垂直平分线,,AB AD ∴=,ABD ADB ∴∠=∠45MAN ∠=︒,45ABD ∴∠=︒,45ABD ADB ∴∠=∠=︒,90DAB ∴∠=︒,45CAD CDA ∴∠=∠=︒,.AE DE ∴=故答案:.AE DE =(2)补全图形如图所示,过B 作BG AM ⊥于G ,DE AM ⊥,90DEC BGC ∴∠=∠=︒,,,BC DC BCG DCE =∠=∠(),BCG DCE AAS ∴≌,,BG DE CG CE ∴==45,MAN BG AM ∴∠=︒⊥,45GAB GBA ∴∠=∠=︒,,AG BG DE ∴==()()222,AC AG CG DE CE ∴=+=+()2,AE DE AG CG CE DE DE CE +=+++=+2.AC AE DE ∴=+(3)点E 能在射线AM 的反向延长线上,如图,过B 作BG AM ⊥于G ,同理可得:(),BCG DCE AAS ≌AG BG =,,,CG CE BG DE ∴==,AG BG DE ∴==2,AG AC CG AC CE AC AC AE AC AE ∴=+=+=++=+2.AC AE DE ∴+=【点睛】本题考查的是线段的垂直平分线的定义及性质,等腰三角形的判定,三角形全等的判定与性质,掌握以上知识是解题的关键.25.证明见解析【分析】由已知可得RT △DCF ≌RT △DEB ,从而得到DC=DE ,又由已知可得DC ⊥AC ,DE ⊥AB ,所以由角平分线的判定定理即可得解.【详解】证明:由题意可得,在Rt DCF ∆和Rt DEB ∆中,CF EB BD DF =⎧⎨=⎩Rt DCF Rt DEB ∴∆≅∆,DC DE ∴=90,C ∠=︒,DC AC ∴⊥,DE AB ⊥AD ∴平分BAC ∠.【点睛】本题考查角平分线与直角三角形的综合运用,熟练掌握角平分线的判定与直角三角形的判定和性质是解题关键.26.∠P=25°.【分析】延长ED ,BC 相交于点G .由四边形内角和可求∠G=50°,由三角形外角性质可求∠P 度数.【详解】解:延长ED ,BC 相交于点G .在四边形ABGE 中,∵∠G=360°-(∠A+∠B+∠E )=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG ) =12∠G=12×50°=25°. 【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.。
2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.已知(a-2)2+|b-8|=0,则ab的平方根为()A .±12B .-12C .±2D .22.下列命题中,正确的是()A .如果|a|=|b|,那么a=bB .一个角的补角一定大于这个角C .直角三角形的两个锐角互余D .一个角的余角一定小于这个角3.如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD 的条件是()A .BD=CDB .AB=AC C .∠B=∠CD .AD 平分∠BAC(第7题)(第8题)(第9题)(第10题)4.实数327,0,-π,16,13,0.1010010001…(相邻两个1之间依次多一个0),其中无理数有()A .1个B .2个C .3个D .4个5.下列各式运算正确的是()A .3a+2b=5abB .a 3·a 2=a 5C .a 8·a 2=a 4D .(2a 2)3=-6a 66.下列长度的四组线段中,可以构成直角三角形的是()A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2,37.下列因式分解中,正确的个数为()①x 3+2xy+x=x(x 2+2y);②x 2+4x+4=(x+2)2;③-x 2+y 2=(x+y)(x-y).A .3个B .2个C .1个D .0个8.如图所示,所提供的信息正确的是()A .七年级学生最多B .九年级的男生人数是女生人数的2倍C .九年级女生比男生多D .八年级比九年级的学生多9.如图,在△MNP 中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN 至G,取NG=NQ,若△MNP 的周长为12,MQ=a,则△MGQ 的周长是()A .8+2a B .8+a C .6+a D .6+2a10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB、AC 于点M 和N,再分别以M、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P,连接AP,并延长交BC 于点D,则下列说法中正确的个数是()①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △DAB =CD∶DB=AC∶AB.A .1B .2C .3D .4二、填空题(每题3分,共30分)11.a 的算术平方根为8,则a 的立方根是________.12.某校对1200名女生的身高进行测量,身高在1.58m ~1.63m 这一小组的频率为0.25,则该组的人数为________.13.因式分解:x 2y 4-x 4y 2=______________.14.如图,M,N,P,Q 是数轴上的四个点,这四个点中最适合表示7的是________.(第14题)(第16题)(第18题)(第19题)15.已知(a-b)m =3,(b-a)n =2,则(a-b)3m-2n=________16.将一副三角尺如图所示叠放在一起,若AC=14cm ,则阴影部分的面积是________cm 2.17.若x<y,x 2+y 2=3,xy=1,则x-y=________.18.如图,在△ABC 中,AB=AC=3cm ,AB 的垂直平分线分别交AB,AC 于点M,N,△BCN 的周长是5cm ,则BC 的长等于________cm.19.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在斜边AC 上,点B 与点B′重合,AE 为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C,D 两点;(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.计算或因式分解:(1)181+3-27+(-2)2+(-1)2014;(2)a 3-a 2b+14ab 2.22.先化简,再求值:(x+y)(x-y)+(4xy 3-8x 2y 2)÷4xy,其中x=1,y=12.23.如图,在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE,点C 在DE 上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图).频数分布表(第24题)代码,和谁在一起生活,频数,频率A,父母,4200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6000,1请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.(第27题)参考答案:一、 1.A 2.C 3.B 4.B 5.B 6.B 7.C 8.B 9.D 10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.412.30013.x 2y 2(y+x)(y-x)14.点P15.274点拨:(a-b)3m-2n =(a-b)3m ÷(a-b)2n =[(a-b)m ]3÷[(a-b)n ]2=[(a-b)m ]3÷[(b-a)n ]2=33÷22=274.16.9817.-1点拨:(x-y)2=x 2+y 2-2xy=3-2×1=1,∵x<y,∴x-y<0,∴x-y=-1=-1.18.219.32点拨:在Rt △ABC 中,∠B=90°,AB=3,BC=4,∴AC=5,设BE=B′E=x,则EC=4-x,B′C=5-3=2,在Rt △B′EC 中,由勾股定理得EC 2=B′C 2+B′E 2,即(4-x)2=22+x 2,解得x=32.20.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=19-3+2+1=19;2-ab+14b a-12b .22.解:原式=x 2-y 2+y 2-2xy=x 2-2xy,当x=1,y=12时,原式=1-2×1×12=0.23.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE(S .A .S .);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD=AE,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1)20°(2)设AD =x ,则BD =x ,DC =8-x .在Rt△BCD 中,DC 2+BC 2=BD 2,即(8-x )2+62=x 2,解得:x =254.∴AD 的长为254.(3)由题意知:AC 2+BC 2=m 2,12AC ·BC =m +1,∴(AC +BC )2-2AC ·BC =m 2,∴(AC +BC )2=m 2+2AC ·BC =m 2+4(m +1)=(m +2)2,∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2.26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF=AF=EF,又∵∠ABC=90°,∴∠DCF,∠AMF 都与∠MAC互余,∴∠DCF =∠AMF.在△DFC 和△AFM 中,∴△DFC ≌△AFM(A .A .S .),∴CF=MF,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC =140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(A .A .S .);(3)可以.∠BDA 的度数为110°或80°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(二)一、选择题(每小题4分,共40分)1.9的平方根是()C.3D.-3 A.±3B.±132.下列运算正确的是()A.x3·x4=x12B.(x3)4=x7C.x8÷x2=x6D.(3b3)2=6b63.将下列长度的三条线段首尾顺次连结,不能组成直角三角形的是() A.8、15、17B.7、24、25C.3、4、5D.2、3、74.已知关于x的二次三项式x2+kx+36可以写成一个两数和(差)的平方式,则k 的值是()A.6B.±6C.12D.±125.如图是某地PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是()A.汽车尾气约为建筑扬尘的3倍B.表示建筑扬尘的占7%C.表示煤炭燃烧对应的扇形圆心角度数为126°D.煤炭燃烧的影响最大(第5题)(第6题)(第8题)6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC的大小为()A .40°B .30°C .70°D .50°7.下列分解因式正确的是()A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)28.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是()A .1B .2C .3D .49.如图,数轴上点A 、B 分别对应数1、2,PQ ⊥AB 于点B ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是()A.3B.5C.6D.7(第9题)(第10题)10.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,点Q 为BC 延长线上一点,当PA =CQ 时,连结PQ 交AC 于点D ,则DE 的长为()A.13 B.12C.23D .不能确定二、填空题(每小题4分,共24分)11.请写出一个大于1且小于2的无理数:________.12.已知x 2n =5,则(3x 3n )2-4(x 2)2n 的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.(第13题)(第15题)(第16题)14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应边上的角平分线相等.其中逆命题是假命题的是________.(填序号)15.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过O 作EF ∥BC 分别交AB 、AC 于点E 、F .若△ABC 的周长比△AEF 的周长大12,点O 到AB 的距离为3.5,则△OBC 的面积为________.16.如图所示,将一个边长为a 的正方形剪去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.利用图形的面积关系可以得到一个代数恒等式是____________________.三、解答题(本题共9小题,共86分)17.(8分)计算:(1)49-327+|1-2|(2)[x (x 2y 2-xy )-y (x 2-x 3y )]÷x 2y .18.(8分)先化简,再求值:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab ),其中a =12,b =-12.19.(8分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE 、DE 、DC .(第19题)(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.20.(8分)如图,在△ABC 和△A ′B ′C ′中,∠B =∠B ′,∠C =∠C ′,AD 平分∠BAC交BC于点D.(1)在△A′B′C′中,作出∠B′A′C′的平分线A′D′交B′C′于点D′;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A′D′,求证:BD=B′D′.(第20题)21.(8分)(1)如图1所示,将两个边长为1的正方形分别沿对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.易知这个大正方形的面积是2,所以大正方形的边长为________.(2)观察下列各方格图中阴影所示的图形(每一小方格的边长为1),如图2,将左图阴影部分剪开,重新拼成右图的正方形,那么所拼成的正方形的边长为________.请你模仿图2的方法,将图3、图4阴影所示的图形剪拼成一个正方形,并在图中作出适当的标注.(第21题)22.(10分)某校为了解学生百米跑成绩,在各个年级抽取部分同学开展百米跑测试.成绩分为A、B、C、D四个等级,并绘制成以下两幅不完整的统计图.(1)求这次测试抽取的学生总人数,并补全条形统计图;(2)求C等级在扇形统计图中对应的圆心角的度数;(3)若成绩为A等级或B等级为合格,已知该校共有1400人,试估计全校合格的学生人数.(第22题)23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).(第23题)24.(12分)【知识介绍】换元法是数学中重要的解题方法.通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决.换元的实质是转化,关键是构造元和设元.均值换元法是换元法主要形式之一.【典例分析】已知实数x,y满足x+y=4,试求代数式x2+y2的最小值.【分析】均值换元法:由x+y=4,得x与y的均值为2,所以可以设x=2+t,y=2-t,再代入代数式换元求解.【解法】因为x+y=4,所以设x=2+t,y=2-t,所以x2+y2=(2+t)2+(2-t)2=2t2+8≥8,所以x2+y2的最小值是8.【理解应用】根据以上知识背景,回答下列问题:(1)若实数a、b满足a+b=2,求代数式a2+b2+2的最小值;(2)已知△ABC的三边长为a、b、c,满足b+c=8,bc=a2-8a+32,请判断△ABC的形状,并求△ABC的周长.25.(14分)【问题初探】如图①,△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连结AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连结BE,猜想BE和CD 有怎样的数量关系,并说明理由.【类比再探】如图②,△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连结BE,则∠EBD=________.(直接写出答案,不写过程)【方法迁移】如图③,△ABC是等边三角形,点D是BC上一点,连结AD,以AD为一边作等边三角形ADE,连结BE,则BD、BE、BC之间有怎样的数量关系?答案:________.(直接写出答案,不写过程)【拓展创新】如图④,△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作等边三角形MDE,连结BE.猜想∠EBD的度数,并说明理由.(第25题)答案一、1.A 2.C3.D4.D5.C6.A7.C8.D9.B 10.B二、11.3(答案不唯一)12.102513.1014.①③④15.21提示:∵∠ABC 与∠ACB 的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB .∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EOB =∠EBO ,∠FOC =∠FCO ,∴OE =BE ,OF =FC ,∴EF =BE +CF ,∴AE +EF +AF =AB +AC .∵△ABC 的周长比△AEF 的周长大12,∴(AB +BC +AC )-(AE +EF +AF )=12,∴BC =12.∵O 到AB 的距离为3.5,且O 在∠ABC 的平分线上,∴O 到BC的距离也为3.5,∴△OBC 的面积是12×12×3.5=21.16.a 2-b 2=(a +b )(a -b )三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y )÷x 2y =2xy -2.18.解:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab )=(a 2b 2-2ab +3ab -6-5a 2b 2+6)÷(-ab )=(-4a 2b 2+ab )÷(-ab )=4ab -1.当a =12,b =-12时,原式=4×12×1=-1-1=-2.19.(1)证明:在△ABE 和△CBD 中,∵AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (S.A.S.).(2)解:∵AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°.∵∠CAE =30°,∴∠AEB =∠ACB +∠CAE =45°+30°=75°.由(1)知△ABE ≌△CBD ,∴∠BDC =∠AEB =75°.20.(1)解:如图所示,A ′D ′为∠B ′A ′C ′的平分线.(第20题)(2)证明:∵∠B =∠B ′,∠C =∠C ′,∴∠BAC =∠B ′A ′C ′.∵AD 平分∠BAC ,A ′D ′平分∠B ′A ′C ′,∴∠BAD =12∠BAC ,∠B ′A ′D ′=12∠B ′A ′C ′,∴∠BAD =∠B ′A ′D ′.又∵∠B =∠B ′,AD =A ′D ′,∴△ABD ≌△A ′B ′D ′,∴BD =B ′D ′.21.解:(1)2(2)5拼法及标注如图所示.(答案不唯一)(第21题)22.解:(1)120÷30%=400,所以这次测试抽取的学生总人数为400,所以B 等级的人数为400-120-80-40=160.补全条形统计图如图所示.(第22题)(2)360°×80400=72°,所以C等级在扇形统计图中对应的圆心角的度数为72°.(3)1400×120+160400=980,所以估计全校合格的学生人数为980.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∵∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意,得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理,得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)因为a+b=2,所以设a=1+t,b=1-t,所以a2+b2+2=(1+t)2+(1-t)2+2=1+2t+t2+1-2t+t2+2=2t2+4≥4,所以a2+b2+2的最小值为4.(2)因为b+c=8,所以设b=4+t,c=4-t,因为bc=a2-8a+32,所以(4+t)(4-t)=a2-8a+32,16-t2=a2-8a+32,(a2-8a+16)+t2=0,即(a-4)2+t2=0,所以a=4,t=0,所以b=4+t=4,c=4-t=4,所以a=b=c,所以△ABC为等边三角形,所以△ABC的周长为12. 25.解:【问题初探】BE=CD.理由:∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD.又∵AB=AC,AE=AD,∴△BAE≌△CAD(S.A.S.),∴BE=CD.【类比再探】90°【方法迁移】BC=BD+BE【拓展创新】∠EBD=120°.理由:过点M作MG∥AC交BC于点G,如图,则∠BMG=∠A=60°,∠BGM=∠C=60°,(第25题)∴△BMG是等边三角形,∴BM=GM.∵∠DME=∠BMG=60°,∴∠BME=∠GMD.又∵ME=MD,∴△BME≌△GMD(S.A.S.),∴∠MBE=∠MGD=60°,∴∠EBD=∠MBE+∠MBG=120°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(三)一、选择题(每题4分,共40分)1.在实数-227,0,-6,503,π,0.101中,无理数的个数是() A.2B.3C.4D.52.已知一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,则该函数的图象大致是()3.如图所示,以A为圆心的圆交数轴于B,C两点,若A,B两点表示的数分别为1,2,则点C表示的数是()A.2-1B.2-2C.22-2D.1-2(第3题)(第5题)4.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:锻炼时间/h5678人数2652则这15名学生一周在校参加体育锻炼时间的中位数和众数分别为()A .6h ,7hB .7h ,7hC .7h ,6hD .6h ,6h5.如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是()A .30°B .40°C .50°D .60°6.如图,x 轴是△AOB 的对称轴,y 轴是△BOC 的对称轴,点A 的坐标为(1,2),则点C 的坐标为()A .(-1,-2)B .(1,-2)C .(-1,2)D .(-2,-1)7=-2,=1是关于x ,y +by =1,+ay =7的解,则(a +b )(a -b )的值为()A .-356 B.356C .16D .-168.我国古代著名的“赵爽弦图”的示意图如图①所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图②所示“数学风车”,则这个风车的外围周长是()A .413B .810C .413+12D .810+129.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托;折回索子却量竿,却比竿子短一托.”其大意:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是()x =y +5,12x =y -5x =y -5,12x =y +5x =y +5,2x =y -5x =y -5,2x =y +510.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶,甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不考虑),直到两车相遇.若甲、乙两车之间的距离y (km)与两车行驶的时间x (h)之间的关系如图所示,则A ,B 两地之间的距离为()A .150kmB .300kmC .350kmD .450km二、填空题(每题4分,共24分)11.64的算术平方根是________.12.“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻,中国境外种植面积达800万公顷.某村引进了甲、乙两种超级杂交水稻品种,在条件(肥力、日照、通风……)不同的6块试验田中同时播种并核定亩产,统计结果为:x 甲=1042千克/亩,s 2甲=6.5,x 乙=1042千克/亩,s 2乙=1.2,则________品种更适合在该村推广.(填“甲”或“乙”)13.一条有破损的长方形纸带,按如图折叠,纸带重合部分中的∠α的度数为________.14.如图,正比例函数y 1=2x 和一次函数y 2=kx +b 的图象交于点A (a ,2),则当y 1>y 2时,x 的取值范围是____________.(第14题)(第16题)15.我国明代数学读本《算法统宗》有一道题,其题意为客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有________两.16.如图,△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上,BD =6,CD=2,点P 是边AB 上一点,则PC +PD 的最小值为________.三、解答题(22~23题每题10分,24题12分,25题14分,其余每题8分,共86分)17.计算:24×13-4×18×(1-2)0+32.18x+2y=9,x-y=2.19.如图,在正方形网格中,每个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上.解答下列问题:(1)在图中建立直角坐标系,使点A,C的坐标分别为(-2,0)和(1,4),则B(____,____)和D(____,____);(2)求四边形ABCD的周长.20.如图,已知AD∥BE,∠1=∠2,∠3=∠4,求证:AB∥CD.21.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?家电种类甲乙每辆汽车能装运的台数203022.为了从甲、乙两名同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两名同学6次选拔赛的成绩,分别绘制了如下统计图.(1)填写下列表格:平均数/分中位数/分众数/分甲90________93乙________87.585(2)分别求出甲、乙两名同学6次成绩的方差.(3)你认为选择哪一名同学参加知识竞赛比较好?请说明理由.23.在△ABC中,AC=21,BC=13,点D是AC所在直线上的点,BD⊥AC,BD=12.(1)求AD的长;(2)若点E是AB边上的动点,连接DE,求线段DE的最小值.24.某超市计划按月购买一种酸奶,每天进货量相同,进货成本为每瓶4元,售价为每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天的需求量与当天本地最高气温有关.为了确定今年六月份的购买计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数y的数据统计如下:x/℃15≤x<2020≤x<2525≤x<3030≤x≤35天数610113y/瓶270330360420以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须为100瓶的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶获得的利润最大?25.如图,在平面直角坐标系中,直线y=-x+6与x轴和y轴分别交于点B和点C,与直线OA交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求点B和点C的坐标.(2)求△OAC的面积.S△OAC?若存在,求出此时点M的坐标;若不存在,(3)是否存在点M,使S△OMC=14请说明理由.答案一、1.A 2.A 3.B 4.D 5.B 6.A 7.D8.D9.A10.D二、11.2212.乙13.75°14.x>115.4616.10三、17.解:原式=24×13-4×24×1+42=22-2+42=5 2.183x+2y=9,①5x-y=2,②由②,得y=5x-2,③将③代入①,得3x+2(5x-2)=9,所以x=1,把x=1代入③,得y=3.x=1,y=3.19.解:(1)建立直角坐标系如图所示.4;0;-3;2(2)由勾股定理得AD =12+22=5,CD =42+22=25,BC =32+42=5,所以四边形ABCD 的周长=AB +AD +CD +BC =6+5+25+5=11+35.20.证明:因为AD ∥BE ,所以∠3=∠CAD ,因为∠3=∠4,所以∠4=∠CAD ,因为∠1=∠2,所以∠1+∠CAE =∠2+∠CAE ,即∠BAE =∠CAD ,所以∠4=∠BAE ,所以AB ∥CD .21.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.x +y =8,20x +30y =190,x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.22.解:(1)91;90(2)s 2甲=16[(85-90)2+(82-90)2+(89-90)2+(98-90)2+(93-90)2+(93-90)2]=863,s 2乙=16[(95-90)2+(85-90)2+(90-90)2+(85-90)2+(100-90)2+(85-90)2]=1003.(3)选择甲同学.理由:因为两人的平均数相同,说明两人实力相当,但甲的方差小于乙的方差,说明甲同学发挥更稳定,因此选择甲同学参加知识竞赛比较好.(理由不唯一)23.解:(1)①当∠ACB 为锐角时,∵BD ⊥AC ,BC =13,BD =12,∴CD =BC 2-BD 2=132-122=5,∴AD =AC -CD =21-5=16;②当∠ACB 为钝角时,同理可得CD =5,∴AD =AC +CD =21+5=26.综上,AD 的长为16或26.(2)当DE ⊥AB 时,线段DE 有最小值.①当∠ACB 为锐角时,AB =AD 2+BD 2=162+122=20.∵S △ABD =12AD ·BD =12AB ·DE ,∴DE =AD ·BD AB =16×1220=9.6;②当∠ACB 为钝角时,AB =AD 2+BD 2=262+122=2205,同理可得DE =AD ·BD AB =26×122205=156205205.综上,线段DE 的最小值为9.6或156205205.24.解:(1)依题意,得今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率为6+10+1130=0.9.(2)由题意可知该超市当天售出一瓶酸奶可获利2元,降价处理一瓶酸奶亏损2元.设今年六月份这种酸奶一天的进货量为n 瓶,平均每天的利润为W 元,则当n =100时,W =100×2=200;当n =200时,W =200×2=400;当n =300时,W =130×[(30-6)×300×2+6×270×2-6×(300-270)×2]=576;当n =400时,W =130×[6×270×2+10×330×2+11×360×2+3×400×2-6×(400-270)×2-10×(400-330)×2-11×(400-360)×2]=544;当n ≥500时,与n =400时比较,亏本售出多,所以其平均每天的利润比n =400时平均每天的利润少.综上,当n =300时,W 的值达到最大,即今年六月份这种酸奶一天的进货量为300瓶时,平均每天销售这种酸奶获得的利润最大.25.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M ,使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2)在直线OA 上,∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.如图①,当点M 在线段OA 上时,a =1,此时b =12a =12,∴点M如图②,当点M在射线AC上时,若a=1,则b=-a+6=5,∴点M1的坐标是(1,5);若a=-1,则b=-a+6=7,∴点M2的坐标是(-1,7).综上所述,点M(1,5)或(-1,7).。
一、选择题1.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++D .222()x y x y -+2.若x 2y 5=,则x y y+的值为( ) A .25 B .72C .57D .753.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++B .222()x y x y +-C .222()x y x y -+D .222()x y x y ++4.如果111a b a b +=+,则b a a b+的值为( ) A .2B .1C .1-D .2-5.已知A 为多项式,且2221241A x y x y =--+++,则A 有( ) A .最大值23 B .最小值23 C .最大值23- D .最小值23- 6.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6-B .0C .12D .187.下列计算一定正确的是( ) A .235a b ab += B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+8.下列运算正确的是( ) A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9 9.已知点(),3M a ,点()2,N b 关于x 轴对称,则2020()a b +的值( )A .3-B .1-C .1D .310.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( )A .B .C .D .11.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( )A .2对B .3对C .4对D .5对 12.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ).A .a b =B .180a b =+°C .180b a =+︒D .360b a =+︒二、填空题13.符号“a b c d”称为二阶行列式,规定它的运算法则为:a b c d=ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么x =__. 14.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________.15.下图中的四边形均为长方形,根据图形面积,写出一个正确的等式:______.16.已知22m mn -=,25mn n -=,则22325m mn n +-=________.17.如图,在ABC 中,12 cm AB AC ==, 6 cm BC =,D 为AC 的中点,动点P 从点A 出发,以每秒1 cm 的速度沿A B C --的方向运动,设运动时间为t ,当过D ,P 两点的直线将ABC 的周长分成两部分,当其中一部分是另一部分的2倍时,t =_________.18.如图,△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、CA 边上,且BE =CF ,BD =CE ,如果∠A =44°,则∠EDF 的度数为__.19.如图,△ABC 中,∠C=90°,AC=40cm ,BD 平分∠ABC ,DE ⊥AB 于E ,AD :DC=5:3,则D 到AB 的距离为__________cm .20.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.三、解答题21.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 22.解答下面两题:(1)解方程:35322x x x-+=-- (2)化简:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭ 23.计算: (1)2a (4a 2-2a +1) (2)(2x -1)(2x +2)-(-2x )2 (3)(-x -2y )(x -2y )-(2y -x )2 (4)119910022⨯(用简便方法计算) 24.如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:(1)Rt △ABF ≌Rt △DCE ; (2)OE =OF .25.已知4,BC BA BC =⊥,射线CM BC ⊥,动点P 在BC 上,PD PA ⊥交CM 于D .(1)如图1,当3,1BP AB ==时,求DC 的长;(2)如图2,连接AD ,当DP 平分ADC ∠时,求BP 的长.26.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A画线段BC的垂线,垂足为E;(2)过点A画线段AB的垂线,交线段CB的延长线于点F;(3)线段BE的长度是点到直线的距离;(4)线段AE、BF、AF的大小关系是.(用“<”连接)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A、6()8()x yx y-+=3()4()x yx y-+,故该项不是最简分式;B、22y xx y--=-x-y,故该项不是最简分式;C、2222x yx y xy++分子分母没有公因式,故该项是最简分式;D、222()x yx y-+=x yx y-+,故该项不是最简分式;故选:C.【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.2.D解析:D【分析】根据同分母分式的加法逆运算得到x y x yy y y+=+,将x2y5=代入计算即可.【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D . 【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.3.C解析:C 【分析】根据分式的除法法则计算即可. 【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可.4.C解析:C 【分析】先对111a b a b +=+变形得到()2a b ab +=,然后将b a a b +化成22a b ab+,再结合完全平方公式得到()22a b abab+-,最后将()2a b ab +=代入即可解答.【详解】 解:∵111b a a b a b ab ab ab a b++=+==+,即()2a b ab += ∴()22222221a b ab b a b a a b ab ab ab a b ab ab ab ab ab ab +-+--+=+=====-. 故选C . 【点睛】本题主要考查了分式的减法、完全平方公式的应用以及代数式求值,灵活运用完全平方公式是解答本题的关键.5.A解析:A 【分析】利用分组分解法,变为完全平方式解答即可. 【详解】2221241A x y x y =--+++=2221218441184x x y y -+--+-+++ =()()222694423x x y y --+--++ =()()2223223x y ----+ ∵()2230x --≤,()220y --≤,∴()()2223223x y ----+≤23,∴多项式的最大值是23, 故选A . 【点睛】本题考查了因式分解的应用,熟练掌握a 2±2ab +b 2=(a ±b )2是解答本题的关键.6.A解析:A 【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可. 【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=, 则()62106256126a b a b --=-+=-=-. 故选:A . 【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.7.B解析:B 【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可. 【详解】A 、2a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、(-a 3b 5)2=a 6b 10,故选项B 符合题意;C 、a 6÷a 2=a 4,故选项C 不符合题意;D 、(a+b )2=a 2+2ab+b 2,故选项D 不合题意. 故选B . 【点睛】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.8.B解析:B 【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】∵x 2•x 3=x 5,∴选项A 不符合题意; ∵(x 3)2=x 6,∴选项B 符合题意; ∵(−3x )3=−27x 3,∴选项C 不符合题意; ∵x 4+x 5≠x 9,∴选项D 不符合题意. 故选:B . 【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.9.C解析:C 【分析】根据关于坐标轴对称的规律,关于谁对称谁不变,另一个坐标变为相反数即可获得a 和b 的值,然后即可得解. 【详解】∵点(),3M a ,点()2,N b 关于x 轴对称 ∴2a =,3b =- ∴()()20182018231a b +=-=故选:C .【点睛】本题考查了在坐标平面直角坐标系中关于x 轴对称的点的坐标的变化规律,点(),x y 关于x 轴对称的点的坐标为()x y -,,熟记规律即可得到正确答案.10.D解析:D 【分析】根据题意画出图形,再利用“上北下南”求出方向角即可. 【详解】 解:如图:∵海岛N 位于海岛M 的北偏东30°方向上,∴海岛N 在海岛M 上方,故排除A 、B 选项, 根据直角三角形中30°角所对的边等于斜边的一半,排除选项C , 故选D . 【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.11.C解析:C 【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找. 【详解】解:AD 平分BAC ∠, BAD CAD ∴∠=∠,在ABD ∆与ACD ∆中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ()ABD ACD SAS ∴∆≅∆,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠, 又EDB FDC ∠=∠, ADE ADF ∴∠=∠,AED AFD ,BDE CDF ∆≅∆,∆≅∆ABF ACE . AED AFD ,ABD ACD ∆≅∆,BDE CDF ∆≅∆,∆≅∆ABF ACE ,共4对. 故选:C . 【点睛】本题考查三角形全等的判定方法和全等三角形的性质,熟悉相关判定定理是解题的关键.12.A解析:A 【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论. 【详解】∵四边形的内角和等于a ,∴a=(4-2)•180°=360°; ∵五边形的外角和等于b , ∴b=360°, ∴a=b . 故选:A . 【点睛】本题考查了多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.二、填空题13.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x ﹣1得:2+1=x ﹣1解得:x =4检验:当x =4时x ﹣1≠01﹣x≠0即x =4是分式方程的解析:4 【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 . 【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得: 2+1=x ﹣1, 解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0, 即x =4是分式方程的解, 故答案为:4. 【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.14.【分析】先算乘方再算乘除即可得到答案【详解】解:故答案为:【点睛】本题考查分式的化简求值属于基础题解析:26y x-【分析】先算乘方,再算乘除即可得到答案. 【详解】解:3224423y x x y ⎛⎫-⋅ ⎪⎝⎭ 6234483y x x y=-⋅ 26y x=-. 故答案为:26y x-. 【点睛】本题考查分式的化简求值,属于基础题.15.(等号两边交换位置也正确)【分析】根据三个小长方形的面积和等于大长方形的面积可列等式【详解】解:从左到右三个小长方形的面积分别为:mambmc 大长方形的面积为:m (a+b+c )三个小长方形的面积和等解析:()m a b c ma mb c ++=++(等号两边交换位置也正确)【分析】根据三个小长方形的面积和等于大长方形的面积可列等式.【详解】解:从左到右三个小长方形的面积分别为:ma 、mb 、mc ,大长方形的面积为:m (a+b+c ),三个小长方形的面积和等于大长方形的面积,m (a+b+c )= ma+mb+mc ,故答案为:()m a b c ma mb c ++=++.【点睛】本题考查了单项式乘以多项式的几何意义,分别表示出各个长方形的面积,找到等量关系是解题关键.16.31【分析】由然后把代入求解即可【详解】解:由题意得:∴把代入得:原式=;故答案为31【点睛】本题主要考查代数式的值及整式的加减关键是对于所求代数式进行拆分然后整体代入求解即可解析:31【分析】由()()222232535m mn n m mn mn n+-=-+-,然后把22m mn -=,25mn n -=,代入求解即可.【详解】解:由题意得: ()()222232535m mn n m mn mn n +-=-+-,∴把22m mn -=,25mn n -=代入得:原式=325531⨯+⨯=;故答案为31.【点睛】本题主要考查代数式的值及整式的加减,关键是对于所求代数式进行拆分,然后整体代入求解即可.17.4或14秒【分析】由于动点P 从点A 出发沿的方向运动所以分两种情况进行讨论:(1)P 点在AB 上时设P 点运动了t 秒用含t 的代数式分别表示BPAP 根据条件过DP 两点的直线将的周长分成两部分使其中一部分是另解析:4或14秒.【分析】由于动点P 从点A 出发,沿A B C --的方向运动,所以分两种情况进行讨论:(1)P 点在AB 上时,设P 点运动了t 秒,用含t 的代数式分别表示BP ,AP ,根据条件过D ,P 两点的直线将ABC 的周长分成两部分,使其中一部分是另一部分的2倍,求出t 的值;(2)P 点在BC 上时,同理,可解得t 的值.【详解】解:分两种情况:(1)P 点在AB 上时,如图,∵12 cm AB AC ==,1 6 cm 2AD CD AC ===, 设P 点运动了t 秒,则AP t =,12BP t =-,由题意得: ()12AP AD BP BC CD +=++或()12AP AD BP BC CD +=++, ∴()1612662t t +=-++①或1(6)12662t t +=-++②, 解①得4t =秒,解②得,14t =(舍去);(2)P 点在BC 上时,如图,P 点运动了t 秒,则AB BP t +=,18PC AB BC t t =+-=-,由题意得:()2AD AB BP PC CD ++=+或()2AD AB BP PC CD ++=+, ∴()62186t t +=-+①或()26186t t +=-+②解①得14t =秒,解②得,4t =秒(舍去).故当4t =或14秒时,过D 、P 两点的直线将ABC 的周长分成两个部分,使其中一部分是另一部分的2倍.故答案为4或14秒.【点睛】本题考查了等腰三角形的性质及动点问题.解答此题时要分情况进行讨论,不要漏解. 18.56°【分析】根据可求出根据△DBE ≌△ECF 利用三角形内角和定理即可求出的度数【详解】解:∵AB =AC ∴∠ABC =∠ACB 在△DBE 和△CEF 中∴△DBE ≌△ECF (SAS )∴DE =EF ∴△DEF解析:56°【分析】根据44A ∠=︒可求出68ABC ACB ∠=∠=︒,根据△DBE ≌△ECF ,利用三角形内角和定理即可求出 EDF ∠的度数.【详解】解:∵AB =AC ,∴∠ABC =∠ACB ,在△DBE 和△CEF 中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS ),∴DE =EF ,∴△DEF 是等腰三角形,∵△DBE ≌△ECF ,∴∠1=∠3,∠2=∠4,∵∠A +∠B +∠C =180°, ∴()118044682B ∠=︒-︒=︒,∴1218068∠+∠=︒-︒,∴3218068∠+∠=︒-︒,∴∠DEF =68°, ∴18068562EDF ︒-︒∠==︒. 故答案为:56°.【点睛】 此题主要考查全等三角形的判定与性质的理解和掌握,主要应用了三角形内角和定理和平角是180︒,根据等腰三角形的性质得出B C ∠=∠是解题的关键.19.15【分析】根据角平分线的性质可得DE=DC 然后求出DC 即得答案【详解】解:∵AC=40cmAD :DC=5:3∴DC=15cm ∵BD 平分∠ABCDE ⊥AB ∠C=90°∴DE=DC=15cm 即D 到AB解析:15【分析】根据角平分线的性质可得DE=DC ,然后求出DC 即得答案.【详解】解:∵AC=40cm ,AD :DC=5:3,∴DC=15cm ,∵BD 平分∠ABC ,DE ⊥AB ,∠C=90°,∴DE=DC=15cm ,即D 到AB 的距离为15cm .故答案为:15.【点睛】本题考查了角平分线的性质,属于基础题目,熟练掌握角平分线的性质定理是解题关键. 20.110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB 根据角平分线的定义求出∠ABC +∠ACB 从而求出∠A 根据三角形高的定义可得∠AEC=∠FDC=90°然后根据三角形的内角和定理求出∠ACE解析:110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB ,根据角平分线的定义求出∠ABC +∠ACB ,从而求出∠A ,根据三角形高的定义可得∠AEC=∠FDC=90°,然后根据三角形的内角和定理求出∠ACE ,最后利用三角形外角的性质即可求出结论.【详解】解:∵=125CGB ∠︒∴∠GBC +∠GCB=180°-∠CGB=55°∵,ABC ACB ∠∠的角平分线交于点G ,∴∠ABC=2∠GBC ,∠ACB=2∠GCB∴∠ABC +∠ACB=2∠GBC +2∠GCB=2(∠GBC +∠GCB )=110°∴∠A=180°-(∠ABC +∠ACB )=70°∵,AB AC 边上的高,CE BD 相交于点F ,∴∠AEC=∠FDC=90°,∴∠ACE=180°-∠AEC -∠A=20°∴CFB ∠=∠FDC +∠ACE=110°故答案为:110°.【点睛】此题考查的是三角形内角和定理、三角形外角的性质、三角形的高和角平分线,掌握三角形内角和定理、三角形外角的性质、三角形的高的定义和角平分线的定义是解题关键.三、解答题21.(1)24m mn +;(2)x=1【分析】(1)根据单项式乘多项式法则和完全平方公式,即可得到结果;(2)通过去分母,把分式方程化为整式方程,即可求解.【详解】(1)原式=22222mn n m mn n -+++=24m mn +;(2)2132163x x x -=--- 213213(21)x x x -=--- 2(21)3x x --=-423x x --=-55=xx=1,经检验,x=1是方程的解,∴x=1.【点睛】本题主要考查整式的混合运算以及解分式方程,熟练掌握完全平方公式以及解分式方程的步骤,是解题的关键.22.(1)1x =-是该方程的解;(2)(1)x x +.【分析】(1)去分母将分式方程化为整式方程,解整式方程,最后验证根即可;(2)先计算括号内的,再将除法化为乘法分别因式分解后,约分即可.【详解】解:(1)去分母得:353(2)x x --=-,去括号得3536x x --=-,移项后合并得:1x =-,经检验,1x =-是该方程的解;(2)原式=22321121x x x x x x x x ⎛⎫+--÷ ⎪++++⎝⎭=2232121x x x x x x x +--÷+++ =2222112x x x x x x -+++- =2(2)(1)12x x x x x -++- =(1)x x +.【点睛】本题考查解分式方程和分式的混合运算.(1)中注意分式方程一定要验根;(2)注意运算顺序,其次除法化为乘法后才能约分.23.(1)8a 3-4a 2+2a ;(2)2x-2;(3)-2x 2+4xy ;(4)399994. 【分析】(1)利用单项式乘多项式法则计算即可;(2)根据多项式乘多项式和积的乘方展开,再合并同类项即可;(3)根据平方差公式和完全平方公式展开,再合并同类项即可;(4)原式先变形,再利用平方差公式计算即可.【详解】(1)2a(4a 2-2a+1)= 2a ⋅4a 2-2a ⋅2a +2a ⋅1=8a 3-4a 2+2a ;(2)(2x -1)(2x+2)-(-2x)2=4x 2+4x-2x-2-4x 2=2x-2;(3)(-x-2y)(x-2y)-(2y-x)2= (-2y-x)( -2y+x) -(2y-x)2=4y 2-x 2-4y 2-x 2+4xy=-2x 2+4xy ; (4)119910022⨯=2211113(100)(100)100()10000999922244-⨯+=-=-=. 【点睛】此题考查了整式的混合运算,熟练掌握相应的运算法则是解答此题的关键.24.(1)见解析;(2)见解析【分析】 (1)由于△ABF 与△DCE 是直角三角形,根据直角三角形全等的判定的方法即可证明; (2)先根据三角形全等的性质得出∠AFB =∠DEC ,再根据等腰三角形的性质得出结论.【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵∠A =∠D =90°,∴△ABF 与△DCE 都为直角三角形,在Rt △ABF 和Rt △DCE 中∵BF CE AB CD =⎧⎨=⎩, ∴Rt △ABF ≌Rt △DCE (HL );(2)∵Rt △ABF ≌Rt △DCE (已证),∴∠AFB =∠DEC ,∴OE =OF .【点睛】本题主要考查全等三角形的判定和性质以及等腰三角形的判定定理,掌握HL 判断两个直角三角形全等,是解题的关键.25.(1)3;(2)2【分析】(1)根据同角的余角相等证得∠1=∠3,再利用AAS 证明()ABP PCD AAS ∆≅∆,然后根据全等三角形的性质解答即可;(2)过P 作PH AD ⊥于H ,利用角平分线的性质进行解答即可.【详解】解:(1)如图,∵AP PD ⊥,∴1290∠+∠=︒,∵PC CD ⊥,∴2390∠+∠=︒∴13∠=∠,∵3,4BP BC ==,∴1PC BC BP =-=,又∵1AB =,∴AB PC =,又∵AB BP ⊥,∴90B C ∠=∠=︒,∴()ABP PCD AAS ∆≅∆,∴3CD BP ==;(2)作PH AD ⊥于H ,如图2,∵DP 平分ADC ∠,∴∠1=∠2,∵90C ∠=︒,PH AD ⊥∴∠HDP=∠CDP ,∴PH PC =,又∵1390∠+∠=︒,2490∠+∠=︒,∴34∠=∠,又∵90B ∠=︒,PH AD ⊥∴∠HAP=∠BAP ,∴PH BP =, ∴122BP PC BC ===. 【点睛】本题考查全等三角形的判定与性质、角平分线的性质、同角的余角相等、直角三角形的两锐角互余,熟练掌握全等三角形的判定与性质,添加辅助线灵活运用角平分线的性质是解答的关键.26.(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE⊥,∴线段BE的长度是点B到直线AE的距离,故答案是:B,AE;(4)∵AE是直角三角形AEF的直角边,AF是直角三角形AEF的斜边,<,∴AE AF∵BF是直角三角形ABF的斜边,AF是直角三角形ABF的直角边,∴AF BF<,∴AE AF BF<<,<<.故答案是:AE AF BF【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.。
期末考试模拟试卷 2024—2025学年华东师大版数学八年级上册一、单选题1.下列运算正确的是( )A .()2211m m -=-B .()3326m m =C .734m m m ÷= D .257m m m += 2.下列调查中,适宜采用全面调查方式的是( )A .检测“神舟十四号”载人飞船零件的质量B .检测一批LED 灯的使用寿命C .检测黄冈、孝感、咸宁三市的空气质量D .检测一批家用汽车的抗撞击能力3.等腰三角形的两边为a ,b ,且满足30a -,那么它的周长为( ) A .12 B .15 C .12或15 D .134.下列命题中,真命题的是( )A .同位角相等B .相等的角是对顶角C .同角的余角相等D .内错角相等5.已知22(1)4x k xy y +-+是一个完全平方式,则k 的值是( )A .5B .5或-3C .-3D .±46.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带( )A .第1块B .第2块C .第3块D .第4块 7.在“传唱红色经典,弘扬爱国精神”比赛中,七位评委给某选手打出了7个原始分,如果规定:去掉一个最高分和一个最低分,余下5个有效分的平均值作为这位选手的最后得分,则7个原始分和5个有效分这两组数据相比较,一定不会发生改变的是( ) A .方差 B .加权平均数 C .平均数 D .中位数 8.一个正数的两个平方根分别为21m -与2m -,则m 的值为( )A .1B .2C .1-D .2-9.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是( )A .10尺B .11尺C .12尺D .13尺10.如图,圆柱形玻璃杯高为11cm ,底面周长为30cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的爬行最短路线长为(杯壁厚度不计( )A .12cmB .17cmC .20cmD .25cm二、填空题11.4的算术平方根是.12.已知13x x +=,则代数式221x x+的值为. 13.如图,ABC ∠、ACB ∠的平分线相交于点F ,过点F 作DE BC ∥交AB 于点D ,交AC 于点E ,5cm BD =,4cm EC =,则DE =cm .14.若()()4x a x +-的积中不含有x 的一次项,则a 的值为.15.如图,ABC V 中,13AB =,6AD =,5AC =,D 为BC 边的中点,则ABC S =V .16.如图,在ABC V 中,10128AB BC AD AD ===,,,垂直平分BC ,若E ,F 分别是AD 和AC 上的动点,则EC EF +的最小值是.三、解答题17.计算:0123(6)()2-+--⨯-. 18.化简与求值:[(x ﹣2y )2+(x ﹣2y )(x+2y )﹣2x (2x ﹣y )]÷2x ,其中x=5,y=﹣6. 19.求下列各式中的x .(1)()24164x -=(2)()331640x -+=20.为改善民生;提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A 表示“非常支持”,B 表示“支持”,C 表示“不关心”,D 表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了________名居民进行调查统计,扇形统计图中,D 类所对应的扇形圆心角的大小是________;(2)将条形统计图补充完整;(2)该社区共有2000名居民,估计该社区表示“支持”的B 类居民大约有多少人? 21.如图,在长方形纸片ABCD 中,4,3AB BC ==,点P 在BC 边上,将CDP △沿DP 折叠,点C 落在点E 处,,PE DE 分别交AB 于点G ,F ,若GE GB =,(1)试说明GEF GBP △△≌(2)求BF 的长22.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿AB 由点A 向点B 移动,已知点C 为一海港,且点C 与直线AB 上两点A ,B 的距离分别为300km 和400km ,又AB =500km ,以台风中心为圆心周围250km 以内为受影响区域.(1)海港C 受台风影响吗?为什么?(2)若台风的速度为25km /h ,台风影响该海港持续的时间有多长?23.如图,在四边形ABCD 中,90ABC ∠=︒,CA 平分BCD ∠,且CA C D =,过点D 作DE AC⊥于点E ,连接BE 并延长交AD 于点F .(1)求证:CBE CEB ∠=∠;(2)若2AB =, 1.5BC =,求四边形ABCD 的面积;(3)求证:AF DF =.24.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a ,b 的代数式分别表示1S 、2S ;(2)若15a b +=,20ab =,求12S S +的值;(3)当1240S S +=时,求出图3中阴影部分的面积3S .25.已知:ABC V 为等边三角形.(1)如图1,点D 、E 分别为边BC AC 、上的点,且BD CE =.①求证:ABD BCE V V ≌;②求AFE ∠的度数.(2)如图2,点D 为ABC V 外一点,60BDC ∠=︒,BA 、CD 的延长线交于点E ,连接AD ,猜想线段AD 、CD 、BD 之间的数量关系并加以证明.(3)如图3,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,直接写出AD 的最大值与最小值的差.。
一、选择题1.如果分式2121x x -+的值为0,则x 的值是( ) A .1 B .0 C .1- D .±12.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( )A .9-B .8-C .7-D .6- 3.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ 4.计算221(1)(1)x x x +++的结果是( ) A .1 B .1+1x C .x +1 D .21(+1)x 5.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18 B .12 C .9D .7 6.下列分解因式正确的是( )A .xy ﹣2y 2=x (y ﹣2x )B .m 3n ﹣mn =mn (m 2﹣1)C .4x 2﹣24x +36=(2x ﹣6)2D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y )7.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断:①**a b b a =;②()222**a b a b =;③()()**a b a b -=-;④()**a b c a b a c +=+*.其中所有正确推断的序号是( )A .①②③④B .①③④C .①②D .①③ 8.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( ) A .1B .0C .1或2D .0或4 9.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40 10.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论:①BD =CD ;②AD +CF =BD ;③CE =12BF ;④AE =BG .其中正确的是( )A .①②B .①③C .①②③D .①②③④ 11.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 12.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D .二、填空题13.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.14.若关于x 的方程1322m x x x-+=--的解是正数,则m =____________. 15.若231m n -=,则846m n -+=________.16.若2249x mxy y -+是一个完全平方式,则m =______17.如图,在Rt ABC △中.AC BC ⊥,若5AC =,12BC =,13AB =,将Rt ABC △折叠,使得点C 恰好落在AB 边上的点E 处,折痕为AD ,点P 为AD 上一动点,则PEB △的周长最小值为___.18.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.19.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.20.如果点G 是ABC ∆的重心,6AG =,那么BC 边上的中线长为_______________________.三、解答题21.解下列方程.(1)21133x x x -+=-- (2)2216124x x x --=+- 22.先化简,再求值:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝,其中12m =-. 23.分解因式:(1)25105x x ++(2)()()2249a x y b y x -+-24.在等边ABC ∆中,(1)如图1,P ,Q 是BC 边上两点,AP AQ =,20BAP ∠=︒,求AQB ∠的度数; (2)点P ,Q 是BC 边上的两个动点(不与B ,C 重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接AM ,PM .①依题意将图2补全;②求证:PA PM =.25.如图,已知Rt ABC △中,90ACB ︒∠=,CA CB =,D 是AC 上一点,E 在BC 的延长线上,且CE CD =,BD 的延长线与AE 交于点F .求证:BF AE ⊥.26.如果正多边形的每个内角都比它相邻的外角的4倍多30°.(1)它是几边形?(2)这个正多边形的内角和是多少度?(3)求这个正多边形对角线的条数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案.【详解】解:∵分式2121x x -+值为0, ∴2x+1≠0,210x -=,解得:x=±1.故选:D .【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.2.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 3.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==.【点睛】本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.4.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.5.D解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.6.D解析:D【分析】根据因式分解的方法:提公因式法、平方差公式、完全平方公式计算判断.【详解】A 、xy ﹣2y 2=y (x ﹣2y ),故该项错误;B 、m 3n ﹣mn =mn (m 2﹣1)=mn (m+1)(m-1),故该项错误;C 、4x 2﹣24x +36=4(x ﹣3)2,故该项错误;D 、4x 2﹣9y 2=(2x ﹣3y )(2x +3y ),故该项正确;故选:D .【点睛】此题考查因式分解的解法,熟练掌握因式分解的方法是解题的关键.7.D【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可.【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-,∴a*b=b*a 成立;②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a b a b a b -=-+, ∵()()()422a b a b a b -≠-+ ∴(a*b )2=a 2*b 2不成立; ③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦,∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立;故选:D .【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键. 8.D解析:D【分析】依据绝对值的性质,即可得到m ﹣3n =2020或2018,进而得出m ﹣3n 的值,再根据平方运算,即可得到(2020﹣m +3n )2的值.【详解】∵|m ﹣3n ﹣2019|=1,∴m ﹣3n ﹣2019=±1,即m ﹣3n =2020或2018,∴2020﹣m +3n =2020﹣(m ﹣3n )=0或2,∴(2020﹣m +3n )2的值为0或4,故选:D .【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m ﹣3n 的值且注意去绝对值时的两种情况.9.C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C.【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想.10.C解析:C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用ASA判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.又由(2),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.∴正确的选项有①②③;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.11.C解析:C【分析】利用基本作图对三个图形的作法进行判断即可.【详解】解:在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,利用作法得AE=AF,AM=AN,则可判断△AMF≌△ANE,所以∠AMD=∠AND,再根据ME=AM-AE=AN-AF=FN,∠MDE=∠NDF可判断△MDE≌△NDF,根据三角形面积公式则可判定D点到AM和AN的距离相等,则可判断AD平分∠BAC.故选:C.【点睛】本题考查了作图-基本作图,全等三角形的判定与性质,解决本题的关键是掌握角平分线的作法.12.B解析:B【分析】利用三角形高的定义逐一判断选项,可得答案.【详解】A.CE不垂直AB,故CE不是ABC的高,不符合题意,B.CE是ABC中AB边上的高,符合题意,C.CE不是ABC的高,不符合题意,D.CE不是ABC的高,不符合题意.故选B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.二、填空题13.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000解析:6⨯1.210-【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000012=1.2×10-6.故答案为:1.2×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.m<5且m≠1【分析】将分式方程去分母转化为整式方程表示出x根据x为正数列出关于m的不等式求出不等式的解集即可确定出m的范围【详解】解:关于的方程的解是正数且解得m<5且m≠1故答案为:m<5且m≠解析:m<5且m≠1【分析】将分式方程去分母转化为整式方程,表示出x ,根据x 为正数列出关于m 的不等式,求出不等式的解集即可确定出m 的范围.【详解】 解:1322m x x x-+=-- ()m+32=-1-x x5-m x=2关于x 的方程1322m x x x -+=--的解是正数, 5-m 02>且5-m 22≠ 解得m <5且m≠1,故答案为:m <5且m≠1【点睛】此题考查了分式方程的解,得出关于m 的不等式是解题的关键,注意任何时候考虑分母不为0.15.6【分析】将原式化为再整体代入即可【详解】解:∵∴原式==8-2×1=6故答案为:6【点睛】本题考查了求代数式的值把某一部分看成一个整体是解题的关键解析:6【分析】将原式化为82(23)m n --,再整体代入即可.【详解】解:∵231m n -=,∴原式=82(23)m n --=8-2×1=6.故答案为:6.【点睛】本题考查了求代数式的值,把某一部分看成一个整体是解题的关键.16.【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 17.【分析】根据由沿AD 对称得到进而表示出最后求周长即可【详解】由沿AD 对称得到则E 与C 关于直线AD 对称∴如图连接由题意得∴当P 在BC 边上即D 点时取得最小值12∴周长为最小值为故答案为:20【点睛】本题解析:【分析】根据ADE ∆由ACD ∆沿AD 对称,得到AE AC =,进而表示出PB PE PB PC BC ,最后求PEB ∆周长即可.【详解】ADE ∆由ACD ∆沿AD 对称得到,则E 与C 关于直线AD 对称,5AE AC ==,∴1358BE AB AE =-=-=,如图,连接PC ,由题意得PC PE =,∴12PB PE PB PC BC ,当P 在BC 边上,即D 点时取得最小值12,∴PEB ∆周长为PE PB BE ,最小值为12820+=.故答案为:20.【点睛】本题考查了三角形折叠问题,正确读懂题意是解本题的关键.18.3cm 【分析】过点P 作PF ⊥OB 于F 根据角平分线上的点到角的两边距离相等可得PF =PE 根据角平分线的定义可得∠AOC =∠BOC 根据两直线平行内错角相等可得∠AOC =∠OPD 两直线平行同位角相等可得∠解析:3cm【分析】过点P 作PF ⊥OB 于F ,根据角平分线上的点到角的两边距离相等可得PF =PE ,根据角平分线的定义可得∠AOC =∠BOC ,根据两直线平行,内错角相等可得∠AOC =∠OPD ,两直线平行,同位角相等可得∠PDF =∠AOB ,再求出∠BOC =∠OPD ,根据等角对等边可得PD=OD ,然后根据直角三角形30°角所对的直角边等于斜边的一半可得PF =12PD ,进而即可求解.【详解】如图,过点P 作PF ⊥OB 于F ,∵OC 平分∠AOB ,PE ⊥OA ,∴PE =PF ,∵OC 平分∠AOB ,∴∠AOC =∠BOC ,∵PD ∥OA ,∴∠AOC =∠OPD ,∠PDF =∠AOB =30°, ∴∠BOC =∠OPD ,∴PD =OD =6cm ,∴PF =12PD =12×6=3cm , ∴PE =PF =3cm .故答案为:3cm .【点睛】本题考查了角平分线的性质,平行线的性质,等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并作辅助线是解题的关键.19.【分析】如图延长AEBC 交于点M 通过条件证明再证明可知即可求解出结果【详解】解:如图延长AEBC 交于点MAE 平分又BE 平分BE=BE 故答案为:【点睛】本题考查全等三角形的综合问题需要熟练掌握全等三角 解析:212cm【分析】如图,延长AE ,BC 交于点M ,通过条件证明()ABE MBE AAS ≅,再证明()ADE MCE ASA ≅,可知ADE MCE SS =,=2ABE ABCD S S 四边形即可求解出结果.【详解】 解:如图,延长AE ,BC 交于点M ,AE 平分DAB ∠,BAE DAE ∴∠=∠,//AD BC ,//AD BM ∴,BAE DAE CME ∴∠=∠=∠,又 BE 平分CBA ∠,ABE MBE ∴∠=∠,BAE CME ABE MBE ∠=∠∠=∠,,BE=BE ,()ABE MBE AAS ∴≅,90BEA BEM AE ME ∴∠=∠=︒=,,DAE CME AE ME ∠=∠=,,AED MEC ∠=∠,()ADE MCE ASA ∴≅,ADE MCE S S ∴=,3cm AE =,4cm BE =,21==2234122ABM ABE ABCD S S S cm ∴=⨯⨯⨯=四边形, 故答案为:212cm .【点睛】本题考查全等三角形的综合问题,需要熟练掌握全等三角形的判定定理和性质,能根据条件和图像做出合适的辅助线是解决本题的关键.20.【分析】根据三角形的重心到一顶点的距离等于到对边中点距离的2倍求得DG=3继而求得边上的中线长为9【详解】∵三角形的重心到顶点的距离是其到对边中点的距离的2倍∴DG=AG=×6=3∴AD=AG+GD解析:9【分析】根据三角形的重心到一顶点的距离等于到对边中点距离的2倍求得DG=3,继而求得BC 边上的中线长为9.【详解】∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=12AG=12×6=3, ∴AD=AG+GD=6+3=9.即BC 边上的中线长为9.故答案为:9.【点睛】本题考查的是三角形重心的性质,熟知三角形的重心到顶点的距离是其到对边中点的距离的2倍是解决问题的关键.三、解答题21.(1)2x =;(2)无解【分析】(1)去分母,化成整式方程求解即可;(2)去分母,化成整式方程求解即可;【详解】(1)分式两边同时乘以()3x -得,213x x --=-,解得2x =,把2x =代入()3x -中得2310-=-≠,∴2x =是分式方程的解;(2)分式方程两边同时乘以()()22x x +-得,()()()222216x x x ---+=, 2244416x x x -+-+=,解得:2x =-,把2x =-代入()()22x x +-中得()()220x x +-=,∴分式方程无解.【点睛】本题主要考查了分式方程的求解,准确计算是解题的关键.22.11m m -+,3-. 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝()()2212211m m m m m m -+-=⋅-+- ()()()212211m m m m m --=⋅-+- 11m m -=+; 当12m =-时,原式1123112--==--+. 【点睛】考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算. 23.(1)()251x +;(2)()()()2323x y a b a b -+- 【分析】(1)先提取公因式5,再利用完全平方公式分解因式;(2)先提公因式(x-y ),再利用平方差公式分解因式.【详解】(1)解:原式()2521x x =++ ()251x =+;(2)解:原式()()2249x y a b =--()()()2323x y a b a b =-+-.【点睛】此题考查因式分解:将多项式写成整式的积的形式,叫做将多项式因式分解,因式分解的方法:提公因式法和公式法,掌握因式分解的方法并熟练应用是解题的关键. 24.(1)80°;(2)①见解析;②见解析【分析】(1)根据等边三角形的性质求解即可;(2)①根据题意画图即可;②过点A 作AH BC ⊥于点H ,根据等边三角形的性质得到PAB QAC ∠=∠,再根据点Q ,M 关于直线AC 对称,得到AP=AM ,得到APM ∆为等边三角形,即可得到答案;【详解】(1)ABC ∆为等边三角形,60B ∴∠=︒,80APC BAP B ∴∠=∠+∠=︒,AP AQ =, 80AQB APC ∴∠=∠=︒;(2)①补全图形如图所示,②证明:过点A 作AH BC ⊥于点H ,如图.ABC ∆为等边三角形,AP AQ =,BAH CAH ∴∠=∠,PAH QAH ∠=∠,PAB QAC ∴∠=∠,点Q ,M 关于直线AC 对称,QAC MAC ∴∠=∠,AQ AM =,60MAC PAC PAB PAC ∴∠+∠=∠+∠=︒,AP AM =,APM ∴∆为等边三角形,PA PM ∴=.【点睛】本题主要考查了等边三角形的判定与性质,准确分析判断是解题的关键.25.证明见解析【分析】根据题意可以得到△ACE ≌△BCD ,然后根据全等三角形的性质和垂直的定义可以证明结论成立.【详解】证明:∵90ACB ︒∠=∴90ACE BCD ︒∠=∠=在ACE △和BCD △中,CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩∴()ACE BCD SAS =∴CAE CBD ∠=∠∵Rt ACE △中,90CAE E ︒∠+∠=,∴90CBD E ︒∠+∠=,∴90BFE ︒∠=∴BF AE ⊥【点睛】本题考查了全等三角形的判定与性质、垂直的定义,解题的关键是明确题意,利用全等三角形的判定和性质、数形结合的思想作答.26.(1)十二边形;(2)这个正多边形的内角和为1800︒;(3)对角线的总条数为54 条.【分析】(1)设一个外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x 的值,再利用外角和360°÷外角的度数可得边数; (2)利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答. 【详解】(1)设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =, 3603012︒÷︒=∴这个正多边形是十二边形.(2)这个正多边形的内角和为(122)1801800-⨯︒=︒;(3)对角线的总条数为()12312542⨯=-(条) . 【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引(n-3)条对角线.。
华师大版八年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.计算:|﹣13|)A .1B .23C .0D .﹣12.下列运算正确的是()A .()325x x -=-B .235x x x +=C .347x x x ⋅=D .3321x x -=3.下列命题为假命题的是()A .三角形三个内角的和等于180°B .三角形两边之和大于第三边C .三角形的面积等于一条边的长与该边上的高的乘积的一半D .同位角相等4.下列结论正确的是()A .有两个锐角相等的两个直角三角形全等;B .顶角和底边对应相等的两个等腰三角形全等C .一条斜边对应相等的两个直角三角形全等;D .两个等边三角形全等.5.下列长度的三条线段能组成直角三角形的是()A .3,4,5B .2,3,4C .4,6,7D .5,11,126.浚县古城是闻名遐迩的历史文化名城,“元旦”期间相关部门对到浚县观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是()A .此次调查的总人数为5000人B .扇形图中的m 为10%C .样本中选择公共交通出行的有2500人D .若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有2.5万人二、填空题7.81的平方根是__________;6427-的立方根是__________.8.在实数-50,π中,最大的数是________.9.计算:20192019313103⎛⎫⎛⎫-⋅-= ⎪ ⎪⎝⎭⎝⎭__________.10.已知12x y +=,6-=x y ,则22x y -=__________.11.分解因式:2233x y -=____.12.请用“如果…,那么…”的形式写一个命题______________13.如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是.(只写一个即可,不需要添加辅助线)14.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .15.已知直角三角形的两边长分别为5和12,则第三边长的平方是__________.16.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____17.在一个不透明的盒子中装有n 个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是_____.18.在某次数学测验后,王老师统计了全班50名同学的成绩,其中70分以下的占12%,70~80分的占24%,80~90分的占36%,则90分及90分以上的有__________人.三、解答题19.(1)计算:()()3232342132392xy x x xy y x y ⎡⎤-⋅-⋅⋅÷⎢⎥⎣⎦;(2)先化简,再求值:()()()2223x y x y x y x ++-+-,其中20182x =,201912y ⎛⎫= ⎪⎝⎭.20.利用我们学过的知识,可以推导出下面这个形式优美的等式:()()()22222212a b c ab bc ac a b b c c a ⎡⎤+++++=+++++⎣⎦.该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐美、简洁美.(1)请你检验这个等式的正确性;(2)猜想:222a b c ab bc ac ++---=12[].(3)灵活运用上面发现的规律计算:若2018a =-,2016b =,2017c =-,求222a b c ab bc ac ++++-的值.21.如图,在Rt ABC 中.()1利用尺规作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;()2利用尺规作图,作出()1中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)22.如图所示,△ADF 和△BCE 中,∠A=∠B ,点D ,E ,F ,C 在同一直线上,有如下三个关系式:①AD=BC ;②DE=CF ;③BE ∥AF .请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.23.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A .减少杨树新增面积,控制杨树每年的栽种量B .调整树种结构,逐渐更换现有杨树C .选育无絮杨品种,并推广种植D .对雌性杨树注射生物干扰素,避免产生飞絮E .其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)请补全条形统计图;(3)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.24.如图1,在ABC ∆中,90ACB ∠= ,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).参考答案1.C【分析】先计算绝对值、算术平方根,再计算减法即可得.【详解】原式=13﹣13=0,故选C.【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序与运算法则及算术平方根、绝对值性质.2.C【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【详解】A、(-x2)3=-x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3-x3=x3,此选项错误;故选:C.【点睛】此题考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.3.D【分析】根据三角形内角和定理对A进行判断;根据三角形三边的关系对B进行判断;根据三角形面积公式对C进行判断;根据同位角的定义对D进行判断.【详解】A、三角形三个内角的和等于180°,所以A选项为真命题;B、三角形两边之和大于第三边,所以B选项为真命题;C、三角形的面积等于一条边的长与该边上的高的乘积的一半,所以C选项为真命题,D、两直线平行,同位角相等,所以D选项为假命题.故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.B【详解】试题解析:A两个锐角相等的两个直角三角形不全等,故该选项错误;B中两角夹一边对应相等,能判定全等,故该选项正确;C一条斜边对应相等的两个直角三角形不全等,故该选项错误;D中两个等边三角形,虽然角相等,但边长不确定,所以不能确定其全等,所以D错误.故选B.5.A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选A.【点睛】考查勾股定理的逆定理,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.6.D【分析】根据自驾人数及其对应的百分比可得样本容量,根据各部分百分比之和等于1可得其它m的值,用总人数乘以对应的百分比可得选择公共交通出行的人数,利用样本估计总体思想可得选择自驾方式出行的人数.【详解】A .本次抽样调查的样本容量是2000÷40%=5000,此选项正确;B .扇形统计图中的m 为1-(50%+40%)=10%,此选项正确;C .样本中选择公共交通出行的约有5000×50%=2500(人),此选项正确;D .若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有5×40%=2(万人),此选项错误;故选:D .【点睛】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体是解题的关键,另外注意学会分析图表.7.±943-【分析】根据平方根及立方根的定义即可求出答案.【详解】根据平方根的定义可知81的平方根是±9,6427-的立方根是43-.故答案为:±9,43-.【点睛】本题考查了平方根及立方根的知识,难度不大,主要是掌握平方根及立方根的定义.8.π【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【详解】根据实数比较大小的方法,可得π>0>−5,故实数-50,π中最大的数是π.故答案为π.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9.1【分析】把带分数化为假分数,然后逆运用积的乘方的性质进行计算即可得解.【详解】20192019313103⎛⎫⎛⎫-⋅- ⎪ ⎪⎝⎭⎝⎭20192019310103⎛⎫⎛⎫=-⋅- ⎪ ⎝⎭⎝⎭2019310103⎛⎫= ⎪⎝⎭20191=1=.故答案为:1.【点睛】本题考查了积的乘方,同底数幂的乘法,熟记性质并灵活运用是解题的关键.10.72【分析】利用平方差公式对22x y -变形为()()x y x y +-,即可求解.【详解】∵12x y +=,6-=x y ,∴()()2212672x y x y x y -=+-=⨯=.故答案为:72.【点睛】本题主要考查了平方差公式的应用,解题的关键是牢记公式的结构特征和形式.11.3()()x y x y +-【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【详解】解:()()()2222333=3x y x y x y x y -=-+-,故答案为:3()()x y x y +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先要提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.答案不唯一【解析】本题主要考查了命题的定义任何一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.答案不唯一,例如:如果两个角是同位角,那么这两个角相等.13.可添∠ABD=∠CBD 或AD=CD .【分析】由AB=BC 结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS 证明全等,也可以添加一对夹角相等,利用SAS 证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD 或AD=CD ,①∠ABD=∠CBD ,在△ABD 和△CBD 中,∵AB BC ABD CBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBD (SAS );②AD=CD ,在△ABD 和△CBD 中,∵AB BC AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),故答案为∠ABD=∠CBD 或AD=CD .【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键.熟记全等三角形的判定方法有:SSS ,SAS ,ASA ,AAS .14.22【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去.②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.15.169或119【分析】求第三边的长必须分类讨论,分12是斜边或直角边两种情况,然后利用勾股定理求解.【详解】分两种情况:①当5和12为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方22512169=+=;②12为斜边长时,由勾股定理得:第三边长的平方22125119=-=;综上所述:第三边长的平方是169或119;故答案为:169或119.【点睛】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.16.等腰三角形的底角是钝角或直角【详解】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.故答案是:等腰三角形的两底都是直角或钝角.17.100.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,3n=0.03,解得,n=100,故估计n 大约是100,故答案为100.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.18.14【分析】先求出90分及90分以上的频率,然后根据“频数=频率×数据总和”求解.【详解】90分及90分以上的频率为:1-12%-24%-36%=28%,∵全班共有50人,∴90分及90分以上的人数为:50×28%=14(人).故答案为:14.【点睛】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.19.(1)83x xy ;(2)xy ,12【分析】(1)先根据积的乘方、幂的乘方和同底数幂乘法法则进行计算,再根据多项式除单项式的运算法则计算即可;(2)根据完全平方公式、多项式乘多项式的运算法则去括号,再合并同类项化成最简式,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】(1)()()3232342132392xy x x xy y x y⎡⎤-⋅-⋅⋅÷⎢⎥⎣⎦332242291227929x x x y x x y y y ⎡⎤=⋅-⋅⋅÷⎢⎥⎣⎦5104252(27)99x y y y x x =-÷52425104292799x y x y x y x y =÷-÷83y x x =-;(2)()()()2223x y x y x y x ++-+-222222223x xy xy y y x x x y =++---++xy =,当20182x =,201912y ⎛⎫= ⎪⎝⎭时,原式201920182018201820182018111111122212222222⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .【点睛】本题考查整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.(1)证明见解析;(2)222 ()()()a b b c c a -+-+-;(3) 3【分析】(1)右边利用完全平方公式化简,去括号合并即可验证;(2)猜想:(2222221[()())2a b c ab bc ac a b b c c a ⎤++---=-+-+-⎦;(3)根据 201820162017a b c =-==-,,,将原式变形,计算即可得到结果.【详解】(1)右边(2221[()())2a b b c c a ⎤=+++++⎦()22222212222a ab b b bc c c ac a =++++++++22212222ab 2bc 2ac2a b c =+++++222a b c ab bc ac =+++++=左边,故等式成立;(2)(2222221 [()())2a b c ab bc ac a b b c c a ⎤++---=-+-+-⎦右边(2221[()())2a b b c c a ⎤=-+-+-⎦()22222212222a ab b b bc c c ac a =-++-++-+22212222ab 2bc 2ac 2a b c =++---222a b c ab bc ac =++---=左边,∴猜想成立,故答案为:(222[()())a b b c c a ⎤-+-+-⎦;(3)根据(1)(2)的规律,猜想:(2222221[()())2a b c ab bc ac a b b c c a ⎤++++-=++++-⎦,右边()22222212222a ab b b bc c c ac a =++++++-+22212222ab 2bc 2ac 2a b c =++++-222a b c ab bc ac =++++-=左边,∴猜想成立;∵ 201820162017a b c =-==-,,,∴(2222221[()())2a b c ab bc ac a b b c c a ⎤++++-=++++-⎦(2221[(20182016)(20162017)20172018)2⎤=-++-+-+⎦(2221[(2)1)12⎤=-+-+⎦()14112=++3=.【点睛】本题考查了完全平方公式,熟练掌握题中已知等式的灵活运用是解本题的关键.21.()1作图见解析;(2)作图见解析.【分析】()1由点P 到AB 的距离(PD 的长)等于PC 的长知点P 在BAC ∠平分线上,再根据角平分线的尺规作图即可得(以点A为圆心,以任意长为半径画弧,与AC、AB分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A 及这个交点作射线交BC于点P,P即为要求的点);()2根据过直线外一点作已知直线的垂线的尺规作图即可得(以点P为圆心,以大于点P到AB的距离为半径画弧,与AB交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB的一侧交于一点,过这点以及点P作直线与AB交于点D,PD 即为所求).【详解】()1如图,点P即为所求;()2如图,线段PD即为所求.【点睛】本题考查了作图-复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.22.如:AD=BC,BE∥AF,则DE=CF;理由见解析【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【详解】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,A B AFD BEC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCE(AAS),∴DF=CE ,∴DF ﹣EF=CE ﹣EF ,∴DE=CF .【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.23.(1)2000;(2)补图见解析;(3)36万人.【详解】分析:(1)将A 选项人数除以总人数即可得;(2)用总人数乘以D 选项人数所占百分比求得其人数,据此补全图形即可得;(3)用总人数乘以样本中C 选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)D 选项的人数为2000×25%=500,补全条形图如下:(3)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)不成立,DE=AD-BE ,理由见解析;(2)DE=BE-AD【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD.∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.。
华师版八年级第一学期数学期末模拟试题(满分120,时间90分钟)一、填空题(每小题2分,共30分)1、计算:=∙432)(a a ;=-32)2(c b ;=-∙22)5(2ab a2、计算:=+-∙-)42(32x x x ;224) )(2(b a b a -=-3、若k x x 442++是一个多项式的完全平方,则=k4、不等式621<-x 的负整数解为5、当m 时,不等式mx ≥m 8解集为x ≤86、如图1,已知AC=AD ,若使△ABC ≌△ABD充条件(只需填写一个你认为适当的条件)7、在平行四边形ABCD 中,已知AB=8,周长等于24则BC=8、菱形的一条对角线与一条边长相等,这个菱形相邻两个内角的度数分别为9、如图2,一张宽为6cm 的矩形纸片,按图示加以折叠,使得一角顶点落在AB 边上,则折痕DF=cm10、等腰梯形的上底与高相等,下底是上底的3倍,则底角(锐角)等于 度11、同学们曾玩过万花筒,它是由三块等宽、等长的玻璃片围成的,如图3是万花筒的一个图案,图中所有三角形均是全等的等边三角形,其中的菱形AEFG可以看成是菱形ABCD 以A 为中心逆时针旋转度得到的。
12、某学生第一次数学检测得80分,第二次得86分,那么他第三次检测得分x 的情况为时,才能使平均成绩不低于85分。
二、选择题(每小题3分,共30分)13、下列计算结果是8a 的是( )A 、42a a ∙B 、44a a +C 、24)(aD 、42a14、若3)3)(1(2-+=+-px x x x ,那么p 的值是( )A 、-2B 、-1C 、2D 、315、分解因式32b b a -结果正确的是( )A 、)(22b a b -B 、2)(b a b -C 、))((b a b ab -+D 、))((b a b a b -+A B16、若10=-b a ,5=ab ,则22b a +的值为A 、15B 、90C 、100D 、11017、若当0<a 时,3a a n ∙的值大于零,则n 的值只能是( )A 、0B 、奇数C 、偶数D 、正整数18、两次翻折(对称轴互相平行)相当于一次( )A 、翻折B 、平移C 、旋转D 、中心对称19、正方形具有而矩形不具有的性质是( )A 、对边相等B 、对角线相等C 、对角线互相平分D 、对角线互相垂直20、如图4所示的图案是我国几家银行标志,其中既是中心对称又是轴对称的有( )A 、1个B 、2个C 、3个D 、4个21、使两个直角三角形全等的条件是( )A 、一组锐角对应相等B 、两组锐角分别对应相等C 、一组直角边对应相等D 、两组直角边分别对应相等22、过矩形的四个顶点分别作对角线的平行线,围成的四边形是( )A 、一般四边形B 、矩形C 、菱形D 、正方形三、计算题(每小题5分,共25分)23、先化简,再求值。
一、选择题1.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠02.分式293x x --等于0的条件是( ) A .3x =B .3x =-C .3x =±D .以上均不对 3.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >-B .1m ≠C .1mD .1m >-且1m ≠ 4.计算a b a b a ÷⨯的结果是() A .a B .2a C .2b a D .21a 5.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n == 6.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6- B .0 C .12D .18 7.下列各式中,正确的是( ) A .2222x y yx x y -+= B .22445a a a +=C .()2424m m --=-+D .33a b ab +=8.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ). A .6或20 B .20 或-20 C .6或-6 D .-6或209.如图,在ABC ∆中,90,30C B ∠=︒∠=︒,以点A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 是∠BAC 的平分线B .60ADC ∠=︒ C .点D 在AB 的垂直平分线上 D . : 1:3DAC ABD S S ∆∆=10.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒11.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ 12.在ABC 中,若B 与C ∠互余,则ABC 是( )三角形A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 二、填空题13.计算:()1211x x x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 14.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5400元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数多100盒,且每盒花的进价比第一批的进价少3元.设第一批盒装花的进价是x 元,则根据题意可列方程为________.15.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.16.若2x y a +=,2x y b -=,则22x y -的值为____________.17.如图,∠C=90°,CB=CO ,且点B 坐标为(-2,0),则点C 坐标为_________.18.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .19.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).20.若等腰三角形两边的长分别为3cm 和6cm ,则此三角形的周长是______________cm .三、解答题21.先化简231124a a a +⎛⎫+÷ ⎪--⎝⎭,然后请你从2,2,1--和0中选取一个合适的值代入a ,求此时原式的值.22.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =. 23.阅读下列文字,并解决问题.已知x 2y =3,求2xy (x 5y 2﹣3x 3y ﹣4x )的值.我们知道,满足x 2y =3的x ,y 的值可能较多,不可能逐一代入求解,而运用整体思想能使问题化繁为简,化难为易,运用整体代入的方法能巧妙地解决一些代数式的求值问题,于是将x 2y =3整体代入.解:2xy (x 5y 2﹣3x 3y ﹣4x )=2x 6y 3﹣6x 4y 2﹣8x 2y=2(x 2y )3﹣6(x 2y )2﹣8x 2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab =4,求(2a 3b 2﹣3a 2b+4a )•(﹣2b )的值;(2)已知x ﹣1x =5,求1x x +的值. 24.如图,在12×10的正方形网格中,△ABC 是格点三角形,点B 的坐标为(﹣5,1),点C 的坐标为(﹣4,5).(1)请在方格纸中画出x 轴、y 轴,并标出原点O ;(2)画出△ABC 关于直线l 对称的△A 1B 1C 1;C 1的坐标为(3)若点P (a ,b )在△ABC 内,其关于直线l 的对称点是P 1,则P 1的坐标是 .25.如图,在ACD △与BCE 中,AC BC =,CD CE =,ECD ACB ∠=∠.(1)求证:AD BE =;(2)若105ACD ∠=︒,32D ∠=︒,求B 的度数.26.如图,在平面内有三个点、、A B C(1)根据下列语句画图:①连接AB ;②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x+>0, ∴x +4>0,x≠0,∴x >−4且x≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 2.B解析:B【分析】根据分式等于0的条件:分子为0,分母不为0解答.【详解】由题意得:290,30x x -=-≠,解得x=-3,故选:B .【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键. 3.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 4.C解析:C【分析】先把除法变成乘法,然后约分即可.【详解】 解:2a b b b b a a b a a a a÷⨯=⋅⋅=, 故选:C .【点睛】本题考查了分式的乘除混合运算,解题的关键是熟练掌握乘除混合运算法则.5.D解析:D【分析】根据题意逐一计算即可判断.【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意;故选:D .【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.6.A解析:A【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可.【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=,则()62106256126a b a b --=-+=-=-.故选:A .【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.7.A解析:A【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可.【详解】解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确.故选A.【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.8.A解析:A【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可.【详解】|a |=13,=13a ±,|b|=7,b=7±,∵+a b >0,∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=,当=13a ,7b =-时,=13+720a b -=,则6a b -=或20.故选择:A .【点睛】本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.9.D解析:D【分析】根据题意作图可知:AD 是BAC ∠的平分线,即可判断A ;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,即可判断B ;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断C ;由30CAD ∠=︒,可得12CD AD =,由AD DB =,可得12DC DB =.可得::DAC ABD SS CD DB =,由12CD DB =,可得:1:21:3DAC ABD S S =≠,即可判断D .【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确;∵90,30C B ∠=︒∠=︒,∴60CAB ∠=︒.∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=︒.∴60ADC ∠=︒.故B 正确;过D 作DE ⊥AB∵30,30B DAB ∠=︒∠=︒,∴AD DB =.∴AE=BE∴点D 在AB 的垂直平分线上.故C 正确;∵30CAD ∠=︒, ∴12CD AD =, ∵AD DB =, ∴12DC DB =. ∴12DAC CD AC S⋅=,12ABD DB AC S ⋅=, ∴::DAC ABD SS CD DB =, ∴12CD DB =, ∴:1:21:3DAC ABD S S =≠,故D 错误.故选择:D .本题考查角平分线的作图方法及性质应用,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.10.B解析:B【分析】根据AB AC =,D 为BC 的中点,∠CAD=40BAD ∠=︒,∠C=50︒,由AD AE =,得到∠AED =70︒,再根据∠AED=∠C+∠CDE 求得答案.【详解】∵AB AC =,D 为BC 的中点,∴∠CAD=40BAD ∠=︒,∠BAC=802BAD ∠=︒,∴∠B=∠C=50︒,∵AD AE =,∴∠AED=∠ADE=70︒,∵∠AED=∠C+∠CDE ,∴CDE ∠=20︒,故选:B .【点睛】此题考查等腰三角形的性质:等边对等角求角的度数以及三线合一,三角形的内角和定理,三角形外角的性质,熟记并熟练运用等腰三角形的性质是解题的关键.11.C解析:C【分析】先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.12.B解析:B【分析】由B 与C ∠互余,结合180A B C ∠+∠+∠=︒,求解A ∠,从而可得答案.【详解】 解:B 与C ∠互余,90B C ∴∠+∠=︒,180A B C ∠+∠+∠=︒,90A ∴∠=︒,ABC ∴是直角三角形,故A 、C 、D 不符合题意,B 符合题意,故选:B .【点睛】本题考查的是两个角互余的概念,三角形的内角和定理的应用,二元一次方程组的解法,掌握以上知识是解题的关键.二、填空题13.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +,故答案为:11x +. 【点睛】 本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.14.【分析】设第一批盒装花的进价是x 元/盒则第一批进的数量是:第二批进的数量是:再根据等量关系:第二批进的数量=第一批进的数量+100可得方程【详解】解:设第一批盒装花的进价是元/盒则故答案是:【点睛】 解析:54003000100x 3x=+- 【分析】设第一批盒装花的进价是x 元/盒,则第一批进的数量是:3000x ,第二批进的数量是:5400x 3-,再根据等量关系:第二批进的数量=第一批进的数量+100可得方程. 【详解】解:设第一批盒装花的进价是x 元/盒,则54003000100x 3x=+-, 故答案是:54003000100x 3x=+-. 【点睛】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键. 15.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 16.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键 解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键. 17.(-11)【分析】过点C 作CD ⊥y 轴于点D 根据等腰三角形的性质得出OD=CD=1得出结果【详解】解:过点C 作CD ⊥y 轴于点D ∵∠ACB=90°CB=CO ∴∠CBO=∠COB=45°∵CD ⊥y 轴∴∠C解析:(-1,1)【分析】过点C 作CD ⊥y 轴于点D ,根据等腰三角形的性质得出OD=CD=1,得出结果.【详解】解:过点C 作CD ⊥y 轴于点D ,∵∠ACB=90°,CB=CO ,∴∠CBO=∠COB=45°,∵CD ⊥y 轴,∴∠CDO=90°,∴∠COD=∠DOC ,∴OD=CD ,∵CD ⊥y 轴,CB=CO ,∴OD=12OB , ∵点B 坐标为(-2,0),∴OB=2,∴OD=CD=1,∴点C 坐标为(-1,1),故答案为(-1,1).本题考查了等腰三角形的性质,解题的关键是正确作出辅助线.18.【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm 的边为腰时底边长=24-6-6=12(cm )∵6+6=12故不能构成三角形;当6cm 的边为底边时腰长=(cm )解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm 的边为腰时,底边长=24-6-6=12(cm ),∵6+6=12,故不能构成三角形; 当6cm 的边为底边时,腰长=1(246)92⨯-=(cm ),由于6+9>9,故能构成三角形, 故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答. 19.或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.15【分析】题中没有指出哪个底哪个是腰故应该分情况进行分析以3为腰6为底以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可【详解】当3cm 是腰时3+3=6不符合三角形三边关系故舍去;当解析:15题中没有指出哪个底哪个是腰,故应该分情况进行分析,以3为腰6为底,以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可.【详解】当3cm 是腰时,3+3=6,不符合三角形三边关系,故舍去;当6cm 是腰时,6+6=12>3,6-6=0<3,能组成三角形;∴周长=6+6+3=15cm .故它的周长为15cm .故答案为:15.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.三、解答题21.2a +,2【分析】把括号内通分,并把除法转化为乘法,约分化简后从所给数中选一个使分式有意义的数代入计算即可.【详解】 解:原式=2234221a a a a a --⎛⎫+⨯ ⎪--+⎝⎭=()()22121a a a a a +-+⨯-+ =2a +,∵a 取2,-2,-1时分式无意义,∴a 只能取0,∴原式=0+2=2.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22.21(2)x -,19【分析】先计算括号内的运算,然后进行化简,得到最简分式,再把5x =代入计算,即可得到答案.解:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭ =221[](2)(2)4x x x x x x x +--⨯--- =22224[](2)(2)4x x x x x x x x x ---⨯--- =24(2)4x x x x x -⨯-- =21(2)x -; 当5x =时,原式=211(52)9=-. 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1)-192;(2)1x x += 【分析】(1)根据单项式乘多项式的运算法矩形计算,根据积的乘方法则变形,把已知数据代入计算即可;(2)根据完全平方公式把原式变形,把已知数据代入计算即可.【详解】解:(1)∵ab =4,∴(2a 3b 2﹣3a 2b+4a )•(﹣2b )=﹣4a 3b 3+6a 2b 2﹣8ab=﹣4(ab )3+6(ab )2﹣8ab=﹣4×43+6×42﹣8×4=﹣192;(2)∵x ﹣1x=5, ∴22211()()45429x x x x +=-+=+=. 1x x∴+=【点睛】本题考查的整式的混合运算及完全平方公式,正确理解题意掌握相关运算顺序和计算法则正确计算是解题的关键.24.(1)见解析;(2)见解析;(0,5);(3)(﹣a ﹣4,b )(1)利用A 、C 点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A 、B 、C 关于直线l 的对称点A 1、B 1、C 1即可; (3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ).【详解】解:(1)如图,就是所求作的坐标轴与原点;(2)如图,△A 1B 1C 1为所作的三角形;C 1的坐标为:(0,5);(3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ). ∴P 1的坐标是(﹣a ﹣4,b ).【点睛】本题考查了作图——轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,25.(1)见解析;(2)43°【分析】利用 SAS 证明≌ACD BCE 即可;由全等三角形的性质可知:B A ∠=∠ 再根据三角形内角和为180︒,可求出A ∠的度数,即可求出B .【详解】(1)证明:∵ECD ACB ∠=∠.∴ECD ACE ACB ACE ∠+∠=∠+∠∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴()ACD BCE SAS ≌∴AD BE =(2)∵105ACD ∠=︒,32D ∠=︒∴1801053243A ∠=︒-︒-︒=︒由(1)得≌ACD BCE∴43B A ∠=∠=︒.【点睛】本题考查了全等三角形的判定和性质,三角形的内角和定理,属于中考常考题型. 26.(1)见解析;(2)AB BC CD AB BD AD ++>+>【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC ,然后以点C 为圆心,BC 为半径画弧,交射线AC 于点D ,连接BD ;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB 即为所求;②如图,直线BC 即为所求;③如图,射线AC ,点D ,线段BD 即为所求(2)如图,在△BCD 中,BC+CD >BD∴AB BC CD AB BD ++>+在△ABD 中,AB+BD >AD∴AB BC CD AB BD AD ++>+>【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.。
2014-2015华师大版八年级数学上期末模拟考试卷
一、选择题(共10小题,每小题2分,满分20分.) 1、下列说法正确的是( )
A 、-2是-8的立方根
B 、1的平方根是1
C 、()2
1-的平方根是-1 D 、16的平方根是4
2、在实数721-
,8,38-,-0.518,3
π
,0.101001…中,无理数的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个 3、下列运算不正确...
的是 ( ) A 、 x 2
²x 3
= x 5
B 、 (x 2)3
= x 6
C 、 x 3
+x 3
=2x 6
D 、 (-2x)3
=-8x 3
4、如图,已知∠1=∠2,则不一定...
能使△ABD ≌△ACD 的条件是( ) A .BD=CD ; B .AB=AC ; C .∠B=∠C ; D .∠BAD=∠CAD ; 5、计算25-38-的结果是 ( )
A 、3
B 、7
C 、-3
D 、-7 6、和数轴上的点一一对应的数是( )
A 、分数
B 、有理数
C 、无理数
D 、实数
7、如果()()n x m x -+中不含x 的项,则m 、n 满足( )
0.,.,0.,.=-===n D n m C m B n m A
8、如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E , AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( )cm A 、9 B 、12 C 、15 D 、18
9、设三角形的三边分别是下列各组数,则不是直角三角形的一组是( ) A 、3,4,5; B 、6,8,10; C 、5,12,13; D 、5,6,8; 10、如图右所示:求黑色部分(长方形)的面积为( ) A 、24 B 、30 C 、48 D 、18 二、填空题(共8小题。
每小题3分.满分24分) 11、16的平方根是______________。
12、计算(-3x 2y 2)2
²(2xy)3
÷(xy)
2
=_______
13、因式分解:x x 1233
-= ;
1 2
A
B
C
D
第4题
14、若a 、b 、c 是△ABC 的三边,且a = 3cm ,b = 4 cm,c=5cm ,则△ABC 最大边上的高是__________
15、若x 2
-kxy +4y 2
是一个完全平方式,则k 的值是_______.
16、用简便方法计算20082
-4016×2007+20072
的结果是 ____ ; 17、某班课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是 18、已知一个等腰三角形两边长分别为10,16,则底边上的高= 。
三、解答题(共8题,满分56分) 19、计算:464)1.3(530+---+-π
20、化简求值:[]
2,5,4)4()2)(2(2-==÷+--+y x y y x y x y x 其中
21、学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,图10是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
(1)本次问卷调查,共调查了多少名学生? (2)将上图甲中“B”部分的图形补充完整;
(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?
甲
乙
A
B C D E M
N 22、在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?
23、如图,在△ABC 中,若AB=10,BD=6,AD=8,AC=17,求DC 的长。
24、、已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE , 垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE 。
求证:(1)△ABC ≌△DEF ;
(2)GF =GC 。
25、如图,△ABC 和△ADE 都是等腰直角三角形,CE 与BD 相交于点M,BD 交AC 于点N , 证明:(1)BD=CE. (2)BD ⊥CE.
26、已知,如图,四边形ABCD 中,1AB BC ==
,CD =,1DA =,
且090B ∠=。
试求:(1)BAD ∠的度数;
(2)四边形ABCD 的面积。
附加题:等腰△ABC 的底边BC=8cm ,腰长AB=5cm ,一动点P 在底边上从点B 开始向点C 以0.25cm/s 的速度运动,当点P 运动到PA 与腰垂直的位置野战为P 运动的时间为多少秒? (7s 或25s )
A
B C D
参考答案
一、选择题 ABCBB DACDB 二、填空题 11、±4 12、5572y x 13、)2)(2(3-+x x x 14、
5
12 15、±4 16、1 17、
5
1 18、2316或 三、解答题 19、12
20、052=--y x
21、(1)200人;(2)100人;(3)50人 22、4.5 23、DC=15 24、略 25、略 26、(1)135° (2)2
2
1+。