1 0 0 x 1 x 1 c o s k ( t t 0 ) x 2 s in k ( t t 0 ) k x k x 0 s in k ( t t ) x 0 c o s k ( t t ) 1 0 2 0 2
通解为:
式中 x , x 2 0是初扰动,由此得:
1 2 n
严格的稳定性概念由 A .M 李雅普诺夫给出: 定义1 如果任取 0 ( H , 无论如何小),对于任意给定的初时 刻 t 0 0 ,存在 ( t , ) 0 ,( 由 t 0 和 确定),任取初扰动 x 0,只要满 足 x ,对于一切 t t 0 有 X ( t ) 那么系统(1)的平衡就是稳定的.
故单摆运动在其平衡位置是稳定的. 另外,根据,定理2,不是渐近稳定的 定理3 (巴尓巴欣---克拉索夫斯基,1952)如果存在正定函数 ,它由(1)构成 的全导数是常负的,并且在全导数为零的集合 ,除原点外,不包含(1)的整 条轨线在内,则(1)的无扰动运动是渐近稳定的. 例如,证明对于有阻尼的下垂摆,平衡是渐近稳定的. 证明:扰动运动的微分方程是:
T 1 2
1 2 k 2 A 1 2
1
2
1 2
求得 a 1 1
1 2
k
2
0
,
A
1 4
(k )
2 2
根据定理1,只要 A
0 ,即 k
时,函数 V ( x1 , x 2 )是正定的.
n
对于扰动运动微分方程 x X ( x ) x R , (1) 以下假设函数V ( x ) 是单值连续的.V (0 ) 0 ,对x具有连续偏导数 (i=1,2…n)