第6章非线性振动-1讲解
- 格式:ppt
- 大小:716.00 KB
- 文档页数:33
非线性振动现象的分析与控制引言:振动是物体在受到外界力的作用下产生的周期性运动。
在很多实际应用中,振动现象是无法避免的。
传统的振动理论常常以线性振动为研究对象,但在实际工程中,由于材料的非线性特性或者复杂的系统结构等因素的影响,一些系统的振动往往表现出非线性特征,这给振动控制带来了挑战。
本文将从非线性振动的基本原理、分析方法和控制策略等方面进行介绍。
1. 非线性振动的基本原理非线性振动的基本原理是指在振动系统中,系统的运动方程中存在非线性项。
非线性项可能来自于系统的非线性弹簧,非线性摩擦力以及非线性扰动等。
这些非线性项会使得系统的运动不再满足叠加原理,产生新的现象。
在非线性振动中,振幅的大小和振动频率之间存在复杂的关系,如倍频现象、相位共振等。
2. 分析非线性振动的方法为了分析非线性振动系统,常常需要采用数值模拟方法。
其中,一种常用的方法是时域分析,即通过求解系统的运动方程,得到系统的时域响应。
另一种方法是频域分析,即通过将时域信号转换到频域,分析系统的频谱特性。
此外,还可以通过相平面分析方法来研究非线性系统的稳定性、受激振动和共振现象等。
3. 非线性振动的控制策略在实际应用中,为了控制非线性振动系统,常常需要采取相应的控制策略。
其中,一种常见的方法是使用非线性控制器,通过引入非线性反馈来补偿系统的非线性特性。
另一种方法是使用自适应控制策略,根据系统的变化实时调整控制参数。
此外,还可以通过参数识别和模型预测控制等方法来实现对非线性振动的控制。
4. 实际应用中的非线性振动现象非线性振动现象在实际应用中普遍存在。
例如在建筑结构中,由于地震或风荷载等外力的作用,结构会发生非线性振动,给结构的安全性和稳定性带来威胁。
在机械系统中,由于轴承的非线性摩擦力或者悬挂系统的非线性特性,机械系统会出现非线性振动,影响其性能和寿命。
因此,对于非线性振动的分析和控制具有重要的理论和实际意义。
结论:非线性振动现象是实际工程中普遍存在的重要问题。
非线性振动期末作业任课老师:姓名:学号:专业:课程:非线性振动非线性振动的理论研究方法非线性振动是指恢复力与位移不成正比或阻尼力不与速度一次方成正比的系统的振动。
尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。
一般说,线性模型只适用于小运动范围,超出这一范围,按线性问题处理就不仅在量上会引起较大误差,而且有时还会出现质上的差异,这就促使人们研究非线性振动。
通过理论分析对非线性振动进行研究是目前最有效最基本最直接的方式。
理论研究分析最主要的任务是通过理论的研究分析来揭示各类非线性系统振动的基本理论和主要特点。
非线性振动理论研究分析的最重要的数学工具就是微分方程。
学者们在微分方程发展过程中发现用初等函数表达方程解的可能性极为有限之后,出现了三个比较重要的方向。
其一是引入新的函数作为解的表达,并研究这些函数的性质和数值解。
非线性振动中有个别的问题就可以用这种方法来求解方程,例如摆的大幅振动解用椭圆函数表达。
然而这方面的例子是极为有限的。
这就说明只有极少数非线性微分方程能够求出方程的解,所以通常必须用近似的求解方法求出非线性微分方程的近似解,这就需要用到求解非线性微分方程的两个最基本的方法,这就是定性方法和定量方法。
定性理论不通过解的表达式来研究分析解的性质,比如利用几何法作出微分方程所定义的积分曲线,运用稳定性理论引入另外的函数中,通过它们去研究解的性质。
把常微分方程定性理论与非线性振动联系起来主要应归功于前苏联的Andronov等建立起来的学派。
这些学者们把定性理论用来解决电学和力学中出现的大量非线性振动问题。
定性理论在发展的过程中,一方面在理论上形成了许多讨论奇点、周期解、极限环的定理、判据等,一方面形成了一些实用的作图方法,例如等倾线法、Lienard法、点映射等。
求解非线性微分方程近似解的方法中定量分析的方法包括数值解法以及解析法。
非线性振动现象振动是物体围绕平衡位置做周期性的来回运动,它是自然界中普遍存在的现象。
在很多实际问题中,我们会遇到非线性振动现象,即振动系统不满足线性的回复力定律。
非线性振动现象在物理学、工程学以及生物学等领域都有广泛的应用和重要的研究价值。
一、什么是非线性振动现象非线性振动现象是指振动系统的受力律不满足线性回复力定律,即系统力与位移之间的关系不是线性的。
与线性振动相比,非线性振动显示出更加丰富的运动特性和行为。
非线性振动现象的出现主要归结为以下几个方面的原因:1.回复力律的非线性:通常线性振动系统受到的回复力与振动的位移成正比,但在某些情况下,回复力可能随着位移的增加而变化速率不等,导致非线性振动现象的出现。
2.系统参数的非线性:振动系统的参数非线性,如刚度、阻尼系数、质量等的变化,也会导致系统的振动特性发生变化。
3.外部扰动的非线性:外界对振动系统的扰动如果不规律、不可逆,也会导致系统出现非线性振动现象。
二、非线性振动的种类非线性振动现象的种类繁多,下面介绍几种常见的非线性振动现象:1.硬度非线性:当振动系统的回复力不仅与位移的大小有关,还与位移的变化率有关时,就会出现硬度非线性。
硬度非线性表现为振动系统的频率与振幅的关系非线性,通常存在频率间跳变、倍频和次谐波等特点。
2.阻尼非线性:振动系统受到非线性阻尼时,会出现振幅的跃变、突变等非线性现象。
3.非线性共振:当振动系统的频率接近系统的特征频率时,振幅会出现非线性的迅速增大,达到共振峰值。
4.受迫非线性振动:当振动系统受到非线性外力激励时,振幅和频率会发生非线性变化。
三、非线性振动的应用非线性振动现象在各个领域都有广泛的应用和研究价值:1.物理学:非线性振动现象的研究在物理学领域中有重要的地位。
例如,非线性振动现象的研究为材料的性能评估和电磁波的传播提供了重要依据。
2.工程学:非线性振动的研究对于工程结构的设计和优化至关重要。
例如,建筑结构和桥梁的振动特性分析需要考虑非线性振动的影响。
振动理论(6-1)第6章具有非线性特征的系统陈永强北京大学力学系6.1 非线性系统的举例●在粘性阻尼条件下,系统的运动微分方程为线性二阶常微分方程⏹线性振动理论能表征很多实际问题⏹对于不能用常系数线性微分方程来描述的物理系统,需要讨论非线性微分方程●忽略质量变化,单自由度系统的运动方程的一般形式可以写为⏹带有非线性特征的系统称为非线性系统,其运动称为非线性振动或者非线性响应⏹叠加原理不适用于非线性系统⏹通常,非线性振动不是简谐的,其频率随振幅改变非线性现象的一个重要类型是弹性恢复力与变形不成比例硬化弹簧软化弹簧32014/11/14质量附在长度为的拉直的弦AB 的中部,弦的初始张力用表示。
令质量在弦的横向上离开平衡位置的距离为,弦中产生的弹性恢复力如图(b )所示该系统自由振动方程:对称硬化弹簧的例子2014/11/144由几何关系代入运动方程显然这是一个非线性方程如果认为是小振动,有,因此52014/11/14●单摆,重,长度。
单摆离开竖直位置的夹角为, 单摆关于轴的回复力矩为,绕轴的转动方程为●代入质量的惯性矩, 有●小振幅情况为简谐振动,●振幅较大,对称软化弹簧的例子2014/11/14 6对比两种情况的非线性方程72014/11/14硬化情形分段线性化恢复力2014/11/148软化情形92014/11/14●如果动力荷载使结构或机器部件变形时超出了材料弹性范围,造成的运动称为非弹性响应●一建筑的二维矩形钢框架,受横向力作用于屋顶。
如果柱的弯曲刚度小于梁的弯曲刚度,随着荷载无限增加,在柱的两端会形成所谓的塑性铰。
102014/11/14●对应的载荷-位移曲线●实验表明,最大的正力和最大的负力在数值上是相等的●滞后回线关于原点对称2014/11/1411线性软化弹性卸载反向加载弹性卸载●曲线部分常常用直线代替,用以模拟真实的材料行为●双线性非弹性恢复力2014/11/1412双线性●理想弹塑性恢复力●滞后回线表示的能量耗散在这里被假定通过塑性铰损失掉,结构的其余部分依然保持能量守恒●这种能量耗散机制称为滞后阻尼2014/11/1413刚塑形带有摩擦抗力的单自由度系统及其滞后回线142014/11/14●下图两个问题在数学上是相同的⏹前者是属于刚塑形恢复力的情况,弹性变形与塑形范围相比很小⏹后者是没有弹簧的质量在摩擦力的阻滞下运动⏹除粘性阻尼外,其它类型的耗散机制均导致非线性⏹通常,假定质量、阻尼和刚度特征不随位移、速度和加速度而改变。