当前位置:文档之家› 机车车辆二系垂向阻尼对其振动传递特性的影响

机车车辆二系垂向阻尼对其振动传递特性的影响

机车车辆二系垂向阻尼对其振动传递特性的影响
机车车辆二系垂向阻尼对其振动传递特性的影响

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告 一、实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、实验原理 1. 有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++= 记ω0为无阻尼时自由振动的固有角频率,其值为ω0=k/J ,定义阻尼系数β =γ/(2J ),则上式可以化为: 2220d d k dt dt θθ βθ++= 小阻尼即22 00βω-<时,阻尼振动运动方程的解为 ( )) exp()cos i i t t θθβφ=-+ (*) 由上式可知, 阻尼振动角频率为d ω=阻尼振动周期为2d d T π ω= 2. 周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++= ()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。 一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ=

22 02arctan βω φωω =- 其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中α m 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转 角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 ()22cos 0m d d J k t dt dt θθγθαω++-= 也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θ m 的极大值条件0m θω? ?=可知,当外激励角频率ω=系统发生共振, θ m 有极大值 α 引入参数(0ζβωγ==,称为阻尼比。 于是,我们得到 m θ= ()() 02 02arctan 1ζωωφωω=- 三、实验任务和步骤 1. 调整仪器使波耳共振仪处于工作状态。 2. 测量最小阻尼时的阻尼比δ和固有角频率ω0。 3. 测量阻尼为3和5时的振幅,并求δ。 4. 测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤。

汽车振动练习题

判断题 1、系统作与激振力同频率的简谐振动,振幅决定于激振力的幅值、频率以及系统本身的物理特性。 A.对 2、当初始条件为零,即==0时,系统不会有自由振动项。 A.错 3、隔振系统的阻尼愈大,则隔振效果愈好。 A.对 4、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。B.错 5、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。对 6、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。错 7、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。对 8、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。对 9、无阻尼振动的固有频率只与质量和刚度有关,是系统的固有特性,与外界初始激励(初始条件)无关。对 10、对数衰减系数可以用来求阻尼比。() A.对 11、单自由度系统在简谐激励力作用下,系统将产生一个与激励力相同频率的简谐振动,但滞后一个相角。 A.对 12、线性系统内各个激励产生的响应是互不影响的。 A.对 13、两个同频率的简谐振动在同方向的合成运动是该频率的简谐振动。 A.对 14、简谐振动的加速度,其大小与位移呈正比,而方向与位移相反,始终指向平衡位置。 A.对 15、所有表示周期振动的周期函数都可以展开成Fourier级数的形式。 B.错 16、广义坐标必须能完整地描述系统的运动。 A.对 17、在欠阻尼和过阻尼的情况下,运动都将衰减为零。()对 18、对于无阻尼系统,速度超前位移90度。() A.对 19、瑞利法的基础是能量守恒定律。() A.对 20、有阻尼系统自由振动的频率有可能是零。() A.对 21、有阻尼系统自由振动的频率有时大于无阻尼系统的固定频率。() A.对 22、能量守恒定律可用于推导有阻尼系统和无阻尼系统的运动微分方程。() A.对 23、当质量块在垂直方向振动时,推导运动微分微分方程时都可以不计重力。() A.对 24、对于单自由度系统而言,无论质量是在水平面还是在斜面上运动,运动微分方程都是相同的。 A.对 25、在空气中振动的系统可以看作是一个阻尼系统。() A.对 26无阻尼系统的振幅不随时间变化。() A.对 27、离散系统和集中参数系统是相同的。() A.对 28、广义坐标不一定是笛卡尔坐标。() A.对 29、几个不同位置质量的等效质量可以用动能等效得到。() A.对 30、简谐运动是周期运动。() A.对

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告一、实验目的1.观测阻尼振动,学习测量振动系统基本参数的方法;2.研究受迫振动的幅频特性和相频特性,观察共振现象;3.观测不同阻尼对受迫振动的影响。 二、实验原理1.有粘滞阻尼的阻尼振动弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++=记ω0为无阻尼时自由振动的固有角频率,其值为ω0=,定义阻尼系数k/J β=γ/(2J ),则上式可以化为: 2220d d k dt dt θθβθ++=小阻尼即时,阻尼振动运动方程的解为2200βω-< (*)( )) exp()cos i i t t θθβφ=-+由上式可知,阻尼振动角频率为 ,阻尼振动周期为d ω=2d d T π=2.周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为22cos d d J k M t dt dt θθγθω++=()( ))()exp cos cos i i m t t t θθβφθωφ=-++-这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=-稳态解的振幅和相位差分别为路须同时切断习题电源,备制造厂家出具高中资料需要进行外部电源高中资料

m θ=2202arctan βωφωω=-其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。3.电机运动时的受迫振动运动方程和解弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω=式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转角为。于是在固定坐标系中摆轮转角θ的运动方程为()cos m t t θαθαω-=-()22cos 0m d d J k t dt dt θθγθαω++-=也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到m θ=由θm 的极大值条件可知,当外激励角频率时, 0m θω ??=ω=系统发生共振,θm 有极大值。α 引入参数,称为阻尼比。(0ζβ ωγ==于是,我们得到 m θ=()()0202arctan 1ζωωφωω=-三、实验任务和步骤 1.调整仪器使波耳共振仪处于工作状态。 2.测量最小阻尼时的阻尼比ζ和固有角频率ω0。进行隔开处理;同一线槽内人员,需要在事前掌握图纸电机一变压器组在发生内部

第四节有阻尼的自由振动

第四节有阻尼自由振动 (Damped Free Vibration) 前面的自由振动都没有考虑运动中阻力的影响。实际系统的机械能不可能守恒,因为总存在着各种各样的阻力。振动中将阻力称为阻尼,例如粘性阻尼、库伦阻尼(干摩擦阻尼)、和结构阻尼及流体阻尼等。尽管已经提出了许多种数学上描述阻尼的方法,但是实际系统阻尼的物理本质仍然极难确定。 一、粘性阻尼(Viscous Damping) ------------- 最常见的阻尼力学模型 在流体中低速运动或沿润滑表面滑动的物体,通常就认为受到粘性阻尼。粘性阻尼力与相对速度成正比,即 =& F cx F--- 粘性阻尼力,x&--- 相对速度 ? c--- 粘性阻尼系数(阻尼系数),单位:N S m

二、粘性阻尼自由振动 () k x ?+ 以静平衡位置为坐标原点建立坐标系。由牛顿运动定律,得运动方程 mx cx kx ++= &&&(2-10) 设方程的解为 ()st x t Ae = 代入式(2-10),得 2 ()0 st ms cs k Ae ++= 因为0 A≠,所以在任一时间时均能满足上式条件为 20 ms cs k ++=(2-11) ------ 系统的特征方程(频率方程) 它的两个根为 1,22 c s m =-±(2-12)

则方程(2-10)的通解为 1211212s t s t c t m x A e A e e A A e =+?? ?=+ ??? (2-13) 式中1A 和2A 为任意常数,由初始条件 00(0),(0)x x x x ==&& 确定。显然方程(2-10)的解(2-13)的性质取决于 是实数、零,还是虚数。 当 2 02c k m m ??-= ??? 时的阻尼系数称为临界阻尼系数,用0c 表示。因此 02n c m ω== 令 02n c c c c m ζω=== 叫做阻尼比。 ∵ 022n c c m m ζζω==

振动基础简答题

振动,广义地讲,指一个物理量在它的平均值附近不停地经过极大值和极小值而往复变化。 机械振动指机械或结构在它的静平衡位置附近的往复弹性运动。 任何具有弹性和惯性的力学系统均可能产生机械振动。 振动系统发生振动的原因是由于外界对系统运动状态的影响,即外界对系统的激励或作用,称之为振动系统的激励或输入。 振动的分类1:①线性振动:是指系统在振动过程中,振动系统的惯性力、阻尼力、弹性力分别与绝对加速度、相对加速度、相对位移成线性关系。线性振动系统的振动可以用线性微分方程描述。②非线性振动:非线性振动系统在振动的过程中,系统的惯性力、阻尼力、弹性力与绝对加速度、相对加速度、相对位移的关系没有线性系统那样简单,非线性系统的振动过程只能用非线性微分方程描述。 分类2:①确定性振动:一个振动系统,如果对任意时刻t,都可以预测描述它的物理量的确定的值x,即振动是确定的或可以预测的,这种振动称为确定性振动。②随机振动:无法预测它在未来某个时刻的确定值,如汽车行驶时由于路面不平引起的振动,地震时建筑物的振动。随机振动只能用概率统计(期望、方差、谐方差、相关函数等)方法描述。 系统的自由度数定义为描述系统运动所需要的独立坐标(广义坐标)的数目。 分类3:在实际中遇到的大多数振动系统,其质量和刚度都是连续分布的,通常需要无限多个自由度才能描述它们的振动,它们的运动微分方程是偏微分方程,这就是连续系统。在结构的质量和刚度分布很不均匀时,往往把连续结构简化为若干个集中质量、集中阻尼、集中刚度组成的离散系统,所谓离散系统,是指系统只有有限个自由度。描述离散系统的振动可用常微分方程。 分类4:按激励情况分:①自由振动:系统在初始激励下或原有的激励消失后的振动;②强迫振动:系统在持续的外界激励作用下产生的振动。 分类5:按响应情况分,确定性振动和随机振动。确定性振动分为:①简谐振动:振动的物理量为时间的正弦或余弦函数;②周期振动:振动的物理量为时间的周期函数;③瞬态振动:振动的物理量为时间的非周期函数,通常只在一段时间内存在。 机械或结构产生振动的内在原因:本身具有在振动时储存动能和势能,而且释放动能和势能并能使动能和势能相互转换的能力。 基本元件:惯性元件(储存和释放动能)、弹性元件(储存和释放势能)、阻尼元件(耗散振动能量) 基本元件的基本特征:弹性元件:忽略它的质量和阻尼,在振动过程中储存势能。弹性力与其两端的相对位移成比例,如弹簧:F s=?k?x;扭簧:T s=?k t(θ2?θ1);阻尼元件:阻尼力的大小与阻尼元件两端的相对速度曾比例,方向相反,这种阻尼又称为黏性阻尼。忽略黏性阻尼元件的质量和弹性,则作用力:F d=?c?υ;惯性元件:

对无阻尼两自由度自由振动的振动系统

对无阻尼两自由度自由振动的振动系统,质量块1和质量块2有初始位移x1=2,x2=2,初速度x3=0.8,x4=1.3。弹簧刚度k1=9,k2=12,k3=9。质量均为3kg。求位移与时间之间的关系。 syms k1k2k3m1m2abcdX1X2C1C2wehpsi1psi2r1r2tx1x2x3x4; X1=C1*cos(w_1*t-psi1)+C2*cos(w_2*t-psi2); X2=C1*r1*cos(w_1*t-psi1)+C2*r2*cos(w_2*t-psi2); x1=2; x2=2; x3=0.8; x4=1.3; k=[9,12,9]; m=[3,3]; a=(k(1)+k(2))/m(1); b=k(2)/m(1); c=k(2)/m(2); d=(k(2)+k(3))/m(2); y1=w^2-(a+d)*w+(a*d-b*c); y=solve('w^2 - 14*w + 33=0',w); e=y(1); h=y(2); w=[e,h]; A=[(a-e^2)/b,(a-h^2)/b]; r1=simplify(A(1)); r2=simplify(A(2)); C1=(abs(r2-r1))^(-1)*sqrt((r2*x1-x2)^2+(r2*x3-x4)^2/e^2); C2=(abs(r2-r1))^(-1)*sqrt((x2-r1*x1)+(x4-r1*x3)^2/h^2); psi1=atan((r2*x3-x4)/(e*(r2*x1-x2))); psi2=atan((r1*x3-x4)/(h*(r1*x1-x2))); ts=0:0.01:10; X1=C1*cos(e*ts-psi1)+C2*cos(h*ts-psi2); X2=C1*r1*cos(e*ts-psi1)+C2*r2*cos(h*ts-psi2); plot(ts,X1,'b',ts,X2,'r')

大学物理实验简谐振动与阻尼振动的实验报告

湖北文理学院物理实验教学示范中心 实 验 报 告 学院 专业 班 学号: 姓名: 实验名称 简谐振动与阻尼振动的研究 实验日期: 年 月 日 实验室: N1-103 [实验目的]: 1. 验证在弹性恢复力作用下,物体作简谐振动的有关规律;测定弹簧的弹性系数K 和有效质量m. 2. 测定阻尼振动系统的半衰期和品质因数,作出品质因数Q 与质量M 的关系曲线。 [仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 气垫导轨、滑块、附加质量(2)、弹簧(4)、光电门(2)、数字毫秒计. [实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1.简谐振动 在水平气垫导轨上的滑块m 的两端连接两根弹性系数1k 、2k 近乎相等的弹簧,两弹簧的另一端分别固定在气轨的两端点。滑块的运动是简谐振动。其周期为: 2 122k k M T +== π ω π 由于弹簧不仅是产生运动的原因,而且参 加运动。因此式中M 不仅包含滑块(振子)的质量m ,还有弹簧的有效质量0m 。M 称为弹簧振子系统的有效质量。经验 证:0m m M += 其中 s m m 31 0=,s m 为弹簧质量。假设:k k k ==21则有周期: 22T πω= = 若改变滑块的质量m ?,则周期2T 与m ?成正比。222 4422M m T k k ππ?=+。以2T 为纵坐标,以m ?为横坐标,作2T -m ?曲线。则为一条斜率为242k π的直线。由斜率可以求出弹簧的弹性系数k 。求出弹性系数后再根据式22 42M T k π=求出弹簧的 有效质量。 2.阻尼振动 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。用品质因数(即Q 值),来反映阻尼振动衰减的特性。其定义为:振动系统的总能量E 与在一个周期中所损耗能 量E ?之比的π2倍,即 2E Q E π =?;通过简单推导也有: 12 ln 2 T Q T π= 2 1T 是 阻尼振动的振幅从 0A 衰减为 2 0A 所用时 间,叫做半衰期。测出半衰期就可以计算出品质因数Q 。在实验中,改变滑块的质量。作质量与品质因数的关系曲线。 [实验内容]: 简述实验步骤和操作方法 1. 打开气泵观察气泵工作是否正常,气轨出气孔出气大小是否均匀。 2. 放上滑块,调节气轨底座,使气轨处于水平状态。 3. 把滑块拉离平衡位置,记录下滑块通过光电门10次所用的时间。 4. 改变滑块质量5次,重复第3步操作。 5. 画出m T -2 关系曲线,.据m T -2关系曲线,求出斜率K ,并求出弹性系数k 。 6. 用天平测量滑块(附挡光片)、每个附加物的质量后;求出弹簧的有效质量。 7. 用秒表测量滑块儿的振幅从A 0衰减到A 0/2所用的时间2 1T ;求出系统的品质因数Q 8. 滑块上增至4个附加物,重复步骤7作出Q-m ?的关系曲线;

有关阻尼振动的研究

阻尼振动的探究 摘要: 以弹簧振子的阻尼振动及RLC电路的阻尼振荡为例,探究了阻尼振动。同时,以这两个阻尼振动系统为例分析了阻尼振动衰减时的特点。 关键词: 阻尼振动阻尼系数衰减 R esearch on damped vibration Abstract:: Abstract This article researches into damped vibration by the example of spring oscillator’s damped vibration and the example of RLC’s damped vibration.At the same time,this article researches the points of damped vibration’s attenuation by the two examples. Keyword: damped vibration damping coefficient attenuation 简谐运动又叫做无阻尼自由振动。但实际上,任何的振动系统都是会受到阻力作用的,这种实际振动系统的振动叫做阻尼振动。在阻尼系统中,振动系统要不断地克服阻力做功,

所以它的能量将不断地减少。一定时间后回到平衡位置。弹簧振子在有阻力情况下的振动就是阻尼振动。 分析安置在一个水平光滑表面的弹簧振子。取弹簧处于自然长度时的平衡位置为坐标原点。忽略空气等阻力,则弹簧振子只受到弹簧的弹力作用。即 由牛顿第二定律,可得 此微分方程的通解为 给定初始值,弹簧在t=0时,x=,,则此微分方程的解为 弹簧振子在初始时刻,被拉离坐标原点距离,即弹簧被拉长(而后,弹簧由于弹簧拉力作用而返回原点,很容易就可以想到弹簧将作往复运动。如方程所描述弹簧作简谐振动。如果考虑弹簧振子运动时的阻力,情况将如何呢? 由实验,可知运动物体的速度不太大时,介质对物体的阻力与速度成正比。又阻力总与速度方向相反,所以阻力与速度有如下关系: 为正比例常数。则此时,上面所列弹簧振子的运动方程应为: 考虑此方程,令。可知即为弹簧振子在无阻力振动时的角频率,称为阻尼系数,如此可得: 此微分方程通解为: A,B由弹簧振子的初始值,即t=0时的x,值决定。由上通解无法直观看出弹簧振子的实际运动景象如何。下面以与的大小关系分为三种情况考虑。 时,可将通解化为如下形式: ) 其中 而由弹簧振子的初始值决定。其位移时间图像,大致如下

阻尼振动与受迫振动实验报告

阻尼振动与受迫振动实验报告 一、实验目的 (一)观察扭摆的阻尼振动,测定阻尼因数。 (二)研究在简谐外力矩作用下扭摆的受迫振动,描绘扭摆在不同阻尼的情况下的共振曲线(即幅频特性曲线)。 (三)描绘外加强迫力矩与受迫振动之间的位相随频率变化的特性曲线(即相频特性曲线)。 (四)观测不同阻尼对受迫振动的影响。 二、实验仪器 扭摆(波尔摆)一套,秒表,数据采集器,转动传感器。 三、实验任务 1、调整仪器使波耳共振仪处于工作状态。 2、测量最小阻尼时的阻尼比ζ和固有角频率ω0。 3、测量其他2种或3种阻尼状态的振幅,并求ζ、τ、Q和它们的不确定度。 4、测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤 1、打开电源开关,关断电机和闪光灯开关,阻尼开关置于“0”档,光电门H、I可以手动微调,避免和摆轮或者相位差盘接触。手动调整电机偏心轮使有机玻璃转盘F上的0位标志线指示0度,亦即通过连杆E和摇杆M使摆轮处于平衡位置。然后拨动摆轮使偏离平衡位置150至200度,松开手后,检查摆轮的自由摆动情况。正常情况下,震动衰减应该很慢。 2、开关置于“摆轮”,拨动摆轮使偏离平衡位置150至200度后摆动,由大到小依次读取显示窗中的振幅值θj;周期选择置于“10”位置,按复位钮启动周期测量,停止时读取数据10 T。 d 并立即再次启动周期测量,记录每次过程中的10 T的值。 d (1)逐差法计算阻尼比ζ; (2)用阻尼比和振动周期T d计算固有角频率ω0。 3、依照上法测量阻尼(2、3、4)三种阻尼状态的振幅。求出ζ、τ、Q和它们的不确定度。 4、开启电机开关,置于“强迫力”,周期选择置于“1”,调节强迫激励周期旋钮以改变电机运动角频率ω,选择2个或3个不同阻尼比(和步骤3中一致),测定幅频和相频特性曲线,注意阻尼比较小(“0”和“1”档)时,共振点附近不要测量,以免振幅过大损伤弹簧;每次调节电机状态后,摆轮要经过多次摆动后振幅和周期才能稳定,这时再记录数据。要求每

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角 2 a =h 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 F sin α 2 θ h mg

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2= == 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

阻尼运动实验报告

竭诚为您提供优质文档/双击可除 阻尼运动实验报告 篇一:《阻尼振动与受迫振动》实验报告 《阻尼振动与受迫振动》实验报告 工程物理系核41崔迎欢20XX011787 一.实验名称:阻尼振动与受迫振动二.实验目的 1.观测阻尼振动,学习测量振动系统基本参数的方法;2.研究受迫振动的幅频特性和相频特性,观察共振现象;3.观测不同阻尼对受迫振动的影响。三..实验原理1.有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设摆轮转动惯量为J,粘滞阻尼的阻尼力矩大小定义为角速度dθ/dt与阻尼力矩系数γ的乘积,弹簧劲度系数为k,弹簧的反抗力矩为-kθ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为d2?d?J2???k??0dtdt 记ω0为无阻尼时自由振动的固有角频率,其值为ω 0k/J,定义阻尼系数β =γ/(2J),则上式可以化为:

d2?d? ?2??k??02dtdt 2 小阻尼即?2??0?0时,阻尼振动运动方程的解为 ?? t???iexp(??t)cos ??i(*)? 由上式可知, 阻尼振动角频率为?d?阻尼振动周期为Td?2? 2.周期外力矩作用下受迫振动的解 在周期外力矩mcosωt激励下的运动方程和方程的通解分别为 d d2?d?J2???k??mcos?tdtdt ??t???iexp? ??t?cos ??i??mcos??t??? ? 这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。 一般t>>τ后,就有稳态解 ??t???mcos??t???

稳态解的振幅和相位差分别为 ?m? ??arctan 2?? 22 ?0?? 其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。 3.电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ??t???mcos?t 式中α m 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转 角为????t?????mcos?t。于是在固定坐标系中摆轮转角θ的运动方程为 d2?d?J2???k????mcos?t??0dtdt 也可以写成 d2?d?J2???k??k?mcos?tdtdt 于是得到 2

阻尼、阻尼系数、阻尼比

阻尼、阻尼系数、阻尼比 阻尼(英语:damping)是指任何振动系统在振动中,由于外界作用和/或系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。 概述 除简单的力学振动阻尼外,阻尼的具体形式还包括电磁阻尼、介质阻尼、结构阻尼,等等。尽管科学界目前已经提出了许多种阻尼的数学模型,但实际系统中阻尼的物理本质仍极难确定。下面仅以力学上的粘性阻尼模型为例,作一简单的说明。 粘性阻尼可表示为以下式子: 其中F表示阻尼力,v表示振子的运动速度(是表征阻尼大小的常数,称为阻尼系数, 上述关系类比于电学中定义电阻的欧姆定律。 在日常生活中阻尼的例子随处可见,一阵大风过后摇晃的树会慢慢停下,用手拨一下吉他的弦后声音会越来越小,等等。阻尼现象是自然界中最为普遍的现象之一。 理想的弹簧阻尼器振子系统如右图所示。分析其受力分别有: x为振子偏离平衡位置的位移): F s= ? kx 假设振子不再受到其他外力的作用,于是可利用牛顿第二定律写出系统的振动方程:

其中a为加速度。 [编辑] 运动微分方程 上面得到的系统振动方程可写成如下形式,问题归结为求解位移x关于时间t 函数的二阶常微分方程: 将方程改写成下面的形式: 然后为求解以上的方程,定义两个新参量: 第二 n 为无量纲参量。之比。ζ = 1时,此时的阴尼系数称为临界阻尼系数Cr。 微分方程化为: 根据经验,假设方程解的形式为 其中参数一般为复数。 将假设解的形式代入振动微分方程,得到关于

解得γ为: [编辑] 系统行为 欠阻尼、临界阻尼和过阻尼体系的典型位移-时间曲线 系统的行为由上小结定义的两个参量——固有频率ω 和阻尼比ζ——所决定。 n 特别地,上小节最后关于γ的二次方程是具有一对互异实数根、一对重实数根还是一对共轭虚数根,决定了系统的定性行为。 [编辑] 临界阻尼 当ζ = 1时,的解为一对重实根,此时系统的阻尼形式称为临界阻尼。现实生活中,许多大楼内房间或卫生间的门上在装备自动关门的扭转弹簧的同时,都相应地装有阻尼铰链,使得门的阻尼接近临界阻尼,这样人们关门或门被风吹动时就不会造成太大的声响。 [编辑] 过阻尼 当ζ > 1时,的解为一对互异实根,此时系统的阻尼形式称为过阻尼。当自动门上安装的阻尼铰链使门的阻尼达到过阻尼时,自动关门需要更长的时间。[编辑] 欠阻尼 当0 < ζ < 1时,的解为一对共轭虚根,此时系统的阻尼形式称为欠阻尼。在欠 阻尼的情况下,系统将以圆频率相对平衡位置作往复振动。

阻尼 阻尼系数 阻尼比

阻尼阻尼系数阻尼比 阻尼(英语:damping)是指任何振动系统在振动中,由于外界作用和/或系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。 概述 在物理学和工程学上,阻尼的力学模型一般是一个与振动速度大小成正比,与振动速度方向相反的力,该模型称为粘性(或粘性)阻尼模型,是工程中应用最广泛的阻尼模型。粘性阻尼模型能较好地模拟空气、水等流体对振动的阻碍作用。本条目以下也主要讨论粘性阻尼模型。然而必须指出的是,自然界中还存在很多完全不满足上述模型的阻尼机制,譬如在具有恒定摩擦系数的桌面上振动的弹簧振子,其受到的阻尼力就仅与自身重量和摩擦系数有关,而与速度无关。 除简单的力学振动阻尼外,阻尼的具体形式还包括电磁阻尼、介质阻尼、结构阻尼,等等。尽管科学界目前已经提出了许多种阻尼的数学模型,但实际系统中阻尼的物理本质仍极难确定。下面仅以力学上的粘性阻尼模型为例,作一简单的说明。 粘性阻尼可表示为以下式子: 其中F表示阻尼力,v表示振子的运动速度(矢量),c是表征阻尼大小的常数,称为阻尼系数,国际单位制单位为牛顿·秒/米。 上述关系类比于电学中定义电阻的欧姆定律。 在日常生活中阻尼的例子随处可见,一阵大风过后摇晃的树会慢慢停下,用手拨一下吉他的弦后声音会越来越小,等等。阻尼现象是自然界中最为普遍的现象之一。 理想的弹簧阻尼器振子系统如右图所示。分析其受力分别有: 弹性力(k为弹簧的劲度系数,x为振子偏离平衡位置的位移): F = ?kx s 阻尼力(c为阻尼系数,v为振子速度): 假设振子不再受到其他外力的作用,于是可利用牛顿第二定律写出系统的振动方程:

减振器阻尼对汽车大冲击性能的影响分析

减振器阻尼对汽车大冲击性能的影响分析 作者:长安汽车股份有限公司董益亮彭旭阳 摘要:本文简要介绍了汽车大冲击性能分析评价指标和分析评价方法。利用ADAMS软件建立了某轿车四通道平顺性分析模型,分析了减震器阻尼在不同车速下对大冲击性能的影响,提出了优化方案。实车验证结果表明,该方法是一种有效的汽车大冲击性能分析评价方法。 关键字:冲击,乘坐舒适性,评价 1 前言 汽车在路面上行驶时,除了随机路面外,偶尔也会遇到冲击路面,如减速带、路面凸块和凹坑、铁路交叉口、路面接缝等,这类路面统称为冲击路面,其特点是冲击较大,冲击的产生间隔足够长的距离,这样在下次冲击来之前,车辆的振动已充分衰减。来自路面的剧烈冲击,通过轮胎、悬架、车身和座椅传给人体,同时会引起悬架和车身的跳动。 大冲击舒适性是用户评价汽车乘坐舒适性的重要内容,也是汽车厂家在汽车开发过程中需要控制的重要指标之一。在汽车开发的底盘调校阶段,一般通过减振器阻、弹簧和缓冲块来优化汽车的大冲击乘坐舒适性,其中减振器阻尼力的优化最为重要和复杂。 2 汽车冲击性能分析评价方法 2.1 冲击乘坐舒适性评价指标 当汽车遇到路面冲击时,会导致以下汽车振动响应: 1) 主振动(Primary Ride):车体的刚体振动响应,如俯仰和侧倾,乘员有时会感受到悬架限位块的撞击。 2) 冲击(Impact):乘员通过座椅和地板感受到的来自路面的较大冲击,以及车体上下运动速度迅速改变。 本文用地板、座椅等所关心位置的最大(绝对值)的加速度,以及车身的最大振动俯仰角和振动衰减的快慢作为大冲击振动下的客观评价指标。

2.2 大冲击仿真分析方法 目前,大冲击CAE分析方法主要有两类,一是基于平顺性轮胎模型的整车道路仿真分析方法,二是基于四通道的整车台架仿真分析方法。 第一种方法必须使用平顺性轮胎模型,常用的平顺性轮胎模型主要有ftire、swift 轮胎模型等,并配合使用冲击路面模型,冲击路面模型主要有三角形凸块路面、矩形凸块路面、锯齿形凸块路面等[1],见图1。 图1 基于平顺性轮胎模型的整车道路仿真分析 第二种方法用四通道实验台模拟路面垂向冲击激励[4],可以使用普通的操稳轮胎模型,如Pacjka 轮胎模型,见图2。 图2 基于四通道的整车台架仿真分析 第一种方法能够同时仿真分析大冲击引起的纵向和垂向振动响应,与比较接近实际情况,仿真结果较精确,但国内对平顺性轮胎模型研究较少,而且没有建立平顺性轮胎模型的试验条件,限制了其推广应用。第二种方法只能仿真路面冲击引起的垂向振动响应,与实际情况有差距,但可避开使用平顺性轮胎模型,另外,操稳轮胎模型国内研究较多,也有建立操稳轮胎模型的试验条件。 由于减振器阻尼力主要影响汽车的垂向振动响应,本文使用基于四通道的仿真分析方法。

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

第三章----单自由度有阻尼系统的振动

第三章 单自由度有阻尼系统的振动 3—1 阻尼的作用与分类 前述无阻尼的振动只是一种理想情况,在这种情况下,机械能守恒,系统保持持续的周期性等幅振动。但实际系统振动时,不可避免要受到各种阻尼的影响,由于阻尼的方向始终与振动体的运动方向相反,因此对系统作负功,不断消耗系统的能量,使自由振动不断衰减最终停止,强迫振动的振幅受到抑制。 阻尼有各种来源,情况比较复杂,主要有下列三种形式。 1.干摩擦阻尼: 两个干燥表面互相压紧并相对运动时所产生的阻尼称为干摩擦阻尼,阻尼大小与两个面之间的法向压力N 成正比,即符合摩擦定律F=fN ,式中f 是摩擦系数。 2.粘性阻尼: 物体以中、低速度在流体中运动时所受到的阻力称为粘性阻尼。有润滑油的滑动面之间 产生的阻尼就是这种阻尼。粘性阻尼与速度的一次方成正比,即x c F ,式中c 为粘性阻尼系 数,它取决于运动物体的形状、尺寸及润滑介质的粘性,单位为N ·s/cm 。物体以较大速度 在流体中运动时(如3m/s 以上),阻尼将与速度的平方成正比,即2 x b F ,式中b 为常数,此种阻尼为非粘性阻尼。 3.结构阻尼、 材料在变形过程中,由内部晶体之间的摩擦所产生的阻尼,称为结构阻尼。其性质比较复杂,阻尼的大小取决与材料的性质。 由于粘性阻尼在数学处理时可使求解大为简化,所以本节先以粘性阻尼为基本模型来分析有阻尼的振动。在遇到非粘性阻尼时则可用等效粘性的办法作近似计算。有关等效粘性阻尼的概念和计算方法在本章后面再作介绍。 3-2具有粘性阻尼的自由振动 单自由度有阻尼振系的力学模型如图3-1所示,包括弹簧、质量及阻尼器。以物体的平衡位置0为原点,建立图示坐标轴x 。则物体运动微分方程为 kx x c x m -=- 式中 : x c 为阻尼力,负号表示阻尼力方向与速度方向相反。

阻尼振动和受迫振动实验报告

清华大学实验报告 工程物理系工物40 钱心怡 2014011775 实验日期:2015年3月3日 一.实验名称 阻尼振动和受迫振动 二.实验目的 1.观测阻尼振动,学习测量振动系统参数的基本方法 2.研究受迫振动的频幅特性和相频特性,观察共振现象 3.观察不同阻尼对振动的影响 三.实验原理 1.阻尼振动 在转动系统中,设其无阻尼时的固有角频率为ω0,并定义阻尼系数β其转动的角度与时间的关系满足如下方程 d2θdt +2βdθ dt +ω02θ=0 解上述方程可得当系统处于弱阻尼状态下时,即β<ω0时,θ和t 满足如下关系 θt=θi exp?(?βt)cos?( ω02?β2t+?i) 解得阻尼振动角频率为ωd= ω02?β2,阻尼振动周期为T d= ω02?β2 同时可知lnθ和t成线性关系,只要能通过实验数据得到二者之间线性关系的系数,就可以进一步解得阻尼系数和阻尼比。 2.周期性外力作用下的受迫振动 当存在周期性外力作用时,振动系统满足方程

J d 2θdt +γ d θdt +k θ=M ωt θ和t 满足如下关系: θ t =θi exp ?βt cos ω02?β2t +?i +θm cos ? (ωt ??) 该式中的第一项随着时间t 的增大逐渐趋于0,因此经过足够长时间后,系统在外力作用下达到平衡,第一项等于0,在该稳定状态下,系统的θ和t 满足关系:θ t =θm cos ?(ωt ??) 其中θm = M J (ω02 ?ω2)+4β2ω 2 ;?=arctan 2βω ω02?ω (θ∈(0,π)) 3.电机运动时的受迫振动 当波尔共振仪的长杆和连杆的长度远大于偏心轮半径时,当偏心轮电机匀速转动时,设其角速度为ω,此时弹簧的支座是弹簧受迫振动的外激励源,摆轮转角满足以下方程: J d 2θdt 2+γd θ dt +k θ?αm cos ωt =0 即为 J d 2θdt +γ d θdt +k θ=k αm cos ωt 与受周期性外力矩时的运动方程相同,即有 θ t =θi exp ?βt cos ω02?β2t +?i +θm cos ? (ωt ??) θm = αω2 (ω02 ?ω2)+4β2ω 2= α (1?( ωω0)2)2+4ζ2(ωω0) 2 ?=arctan 2βω02=arctan 2ζ( ωω0 )1?(ωω0 ) 2 可知,当ω=ω0时φ最大为π 2,此时系统处于共振状态。

第二章单自由度无阻尼系统的振动

第二章 单自由度无阻尼系统的振动 单自由度系统是指用一个独立参量便可确定系统位置的振动系统。系统的自由度数是指确定系统位置所必须的独立参数的个数,这种独立参量称为广义坐标,广 义坐标可以是线位移、角位移等。 单自由度系统振动理论是振动理论的基础,尽管实际的机械都是弹性 体,属多自由度系统,然而要掌握多自由度系统振动的基本理论和规律, 就必须先掌握单自由度系统的振动理论。此外,许多工程实际问题在一定 条件下可以简化为单自由度振动系统来研究。单自由度系统的力学模型如 图2-1所示,图中,m 为质量元件(或惯性元件),k 为线性弹簧,C 为线 性阻尼器。图2-1所示系统称为单自由度有阻尼系统,若该系统不计阻尼, 则称之为单自由度无阻尼系统,若在质量元件上作用有持续外界激扰力, 则系统作强迫振动,如无持续的外界激扰力而只有初始的激扰作用,则系 统作自由振动。 下面先研究单自由度无阻尼系统的自由振动,再进一步研究其强迫振 动。 2—1 自由振动 图2-2左图所示为单自由度无阻尼的弹簧质量系统。现用牛顿第二定律来建立该系统的运动微分方程。取质量m 的静平衡位置为坐标原点,取x 轴铅直向下为正,当系统处于平衡 位置时有,δk mg =,故有静位移 δ=mg/k (a ) 当系统处在位置x 处时,作用在质量上的力系不再平衡, 有: mg x k x m ++-=)(δ (b) 式中:2 2/dt x d x = 是质量的加速度,将(a )式代入(b )式;则得 kx x m -= 即 0=+kx x m (2-1) 注意,上式中-kx 是重力与弹簧力的合力,它的大小与位移x 的大小成正比,但其方向却始终与位移的方向相反,即始终指向平衡位置,故称其为弹性恢复力。由式(2-1)可以看到,只要取物体的静平衡位置为坐标原点,则在列运动微分方程时,可以不再考虑物体的重力与弹簧的静变形。 将(2-1)式改写成 0=+x m k x ,令2p m k = 则得 02=+x p x (2-2) 这是一个二阶齐次线性常系数微分方程。其解为

相关主题
文本预览
相关文档 最新文档