2017年春中考数学总复习单元测试二方程与不等式试题
- 格式:doc
- 大小:102.00 KB
- 文档页数:4
中考数学知识点复习 第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·杭州)设x ,y ,c 是实数,(B )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c,则2x =3y 2.(2017·深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程(D )A .10%x =330B .(1-10%)x =330C .(1-10%)2x =330D .(1+10%)x =3303.若关于x 的方程2x -m =x -2的解为x =3,则m 的值为(B )A .-5B .5C .-7D .7 4.(2017·天津)方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是(D ) A.⎩⎪⎨⎪⎧x =2y =3 B.⎩⎪⎨⎪⎧x =4y =3C.⎩⎪⎨⎪⎧x =4y =8D.⎩⎪⎨⎪⎧x =3y =65.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8C.12x -3=8D.12x +3=8 6.(2017·随州)小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组(B )A.⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B.⎩⎪⎨⎪⎧20x +10y =11030x +5y =85C.⎩⎪⎨⎪⎧20x +5y =11030x +10y =85D.⎩⎪⎨⎪⎧5x +20y =11010x +30y =85 7.已知方程|x |=2,那么方程的解是(C )A .x =2B .x =-2C .x 1=2,x 2=-2D .x =48.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =3m -5,x -y =m -1,若x +y >3,则m 的取值范围是(D )A .m >1B .m <2C .m >3D .m >5二、填空题(本大题共7小题 ,每小题3分,共21分)9.(2017·金华)若a b =23,则a +b b =__53__. 10.(2017·南宁)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =__5__.11.我们规定一种运算:a *b =2a -3b ,则方程x *2=3*x 的解为__x =125__. 12.(2017·宁夏)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为__4__元.13.若(a -1)x 2-|a |-3=0是关于x 的一元一次方程,则a 的值为__-1__.14.若x ,y 互为相反数,且(x +y +3)(x -y -2)=6,则x =__2__.15.(2017·荆门)已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为__12__岁.三、解答题(本大题共6小题 ,共42分)16.(5分)(2017·武汉)解方程:4x -3=2(x -1).解:4x -3=2(x -1),4x -3 =2x -2,4x -2x =-2+3,2x =1,x =12.17.(5分)解方程:6x +1=3(x +1)+4.解:去括号得:6x +1=3x +3+4,移项合并得:3x =6,解得:x =2.18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得:x =4,把x =4代入①得:y =1,则方程组的解为⎩⎪⎨⎪⎧x =5,y =1.19.(7分)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21的解为x =a ,y =b ,求a +b 的值. 解:∵⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21,解得 ⎩⎪⎨⎪⎧x =1,y =12, ∴a =1,b =12,∴a +b =13.20.(9分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?解:该店有客房8间,房客63人.21.(10分)(2018·原创)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)解:(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请甲组需要的费用:300×12=3600元,单独请乙组需要的费用:24×140=3360元,答:单独请乙组需要的费用少;(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲、乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;∵5120<6000<8160,∴甲、乙合作损失费用最少.答:甲、乙合作施工更有利于商店.第6讲 一元二次方程(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·嘉兴)用配方法解方程x 2+2x -1=0时,配方结果正确的是(B )A .(x +2)2=2B .(x +1)2=2C .(x +2)2=3D .(x +1)2=32.(2017·广东)如果2是方程x 2-3x +k =0的一个根,则常数k 的值为(B )A .1B .2C .-1D .-23.(2017·苏州)关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为(A )A .1B .-1C .2D .-24.(2017·绵阳)关于x 的方程2x 2+mx +n =0的两个根是-2和1,则n m 的值为(C )A .-8B .8C .16D .-165.(2017·江西)已知一元二次方程2x 2-5x +1=0的两个根为x 1,x 2,下列结论正确的是(D )A .x 1+x 2=-52B .x 1·x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数6.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是(A )A .(2-3x )(1-2x )=1B.12(2-3x )(1-2x )=1 C.14(2-3x )(1-2x )=1 D.14(2-3x )(1-2x )=2 7.下列关于x 的一元二次方程中,有两个相等实数根的是(D )A .x 2+1=0B .x 2+x -1=0C .x 2+2x -3=0D .4x 2-4x +1=08.(2017·烟台)若x 1,x 2是方程x 2-2mx +m 2-m -1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为(D )A .-1或2B .1或-2C .-2D .1二、填空题(本大题共5小题 ,每小题3分,共15分)9.方程(x -2)2=3x (x -2)的解为__x =2或x =-1__.10.(2017·大连)关于x 的方程x 2+2x +c =0有两个不相等的实数根,则c 的取值范围为__c <1__.11.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是__k >-1且k ≠0__.12.(2017·菏泽)关于x 的一元二次方程(k -1)x 2+6x +k 2-k =0的一个根是0,则k 的值是__0__.13.(2017·成都)已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 12-x 22=10,则a =__214__. 三、解答题(本大题共7小题 ,共48分)14.(5分)(2017·丽水)解方程:(x -3)(x -1)=3.解:方程化为x 2-4x =0,x (x -4)=0,∴x 1=0,x 2=4.15.(5分)解方程:3x 2+5(2x +1)=0.解:3x 2+5(2x +1)=0,整理得:3x 2+10x +5=0,∵a =3,b =10,c =5,∴b 2-4ac =100-60=40>0,∴x =-10±2106=-5±103, 则原方程的解为x 1=-5+103,x 2=-5-103. 16.(5分)解方程:x 2-6x -4=0.解:移项得x2-6x=4,配方得x2-6x+9=4+9,即(x-3)2=13,开方得x-3=±13,∴x1=3+13,x2=3-13.17.(7分)(2017·玉林)已知关于x的一元二次方程:x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.(1)证明:在方程x2-(t-1)x+t-2=0中,b2-4ac=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t-1=0,解得t=1.∴当t=1时,方程的两个根互为相反数.18.(8分)(2017·绥化)已知关于x的一元二次方程x2+(2m+1)x+m2-4=0.(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.解:(1)∵方程x 2+(2m +1)x +m 2-4=0有两个不相等的实数根, ∴b 2-4ac =(2m +1)2-4(m 2-4)=4m +17>0, 解得m >-174.∴当m >-174时,方程有两个不相等的实数根;(2)设方程的两根分别为a 、b ,根据题意得:a +b =-2m -1,ab =m 2-4. ∵2a 、2b 为边长为5的菱形的两条对角线的长,∴a 2+b 2=(a +b )2-2ab =(-2m -1)2-2(m 2-4)=2m 2+4m +9=52=25, 解得m =-4或m =2.∵a >0,b >0,∴a +b =-2m -1>0, ∴m =-4.∴若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m 的值为-4.19.(9分 )新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?解:每件玩具的售价定为32元时,月销售利润恰为2520元.20.(9分)(2017·襄阳)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?解:(1)这两年该企业年利润平均增长率为20%;(2)该企业2017年的利润能超过3.4亿元.第7讲分式方程(时间50分钟满分80分)一、选择题(本大题共7小题,每小题4分,共28分)1.(2017·哈尔滨)方程2x+3=1x-1的解为(C)A.x=3 B.x=4 C.x=5 D.x=-52.解分式方程2x-1+x+21-x=3时,去分母后变形正确的是(D)A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2-(x +2)=3(x -1)3.(2017·成都)已知x =3是分式方程kxx -1-2k -1x =2的解,那么实数k 的值为(D )A .-1B .0C .1D .24.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为(B )A.420x -420x -0.5=20B.420x -0.5-420x =20C.420x -420x -20=0.5D.420x -20-420x =0.55.(2017·聊城)如果解关于x 的分式方程mx -2-2x 2-x=1时出现增根,那么m 的值为(D )A .-2B .2C .4D .-4 6.(2016·十堰)用换元法解方程x 2-12x-4xx 2-12=3时,设x 2-12x=y ,则原方程可化为(B )A .y -1y -3=0B .y -4y-3=0C .y -1y +3=0D .y -4y+3=07.(2017·龙东地区)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是(C )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4二、填空题(本大题共4小题 ,每小题3分,共12分) 8.(2017·南京)方程2x +2-1x =0的解是__x =2__.9.(2017·泸州)若关于x 的分式方程x +mx -2+2m2-x=3的解为正实数,则实数m 的取值范围是__m <6且m ≠2__.10.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:__160x =200x +5__.11.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12000步与小博步行9000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,则小博每消耗1千卡能量需要行走__30__步.三、解答题(本大题共6小题 ,共40分) 12.(5分)解方程:x -3x -2+1=32-x.解:方程两边同乘以(x -2), 得:x -3+(x -2)=-3, 解得x =1,检验:x =1时,x -2≠0, ∴x =1是原分式方程的解.13.(5分)(2017·宁夏)解方程:x +3x -3-4x +3=1.解:去分母得(x +3)2-4(x -3)=(x -3)(x +3), 去括号得x 2+6x +9-4x +12=x 2-9, 合并同类项得2x =-30, 系数化为1得x =-15, 当x =-15时,(x -3)(x +3)≠0, ∴原分式方程的解为x =-15.14.(5分)(2017·上海)解方程:3x 2-3x -1x -3=1.解:方程两边同乘x (x -3)得3-x =x 2-3x , ∴x 2-2x -3=0, ∴(x -3)(x +1)=0, 解得x =3或x =-1, 经检验x =3是原方程的增根, ∴原方程的解为x =-1.15.(7分)(2017·广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5∶8,求乙队平均每天筑路多少公里. 解:(1)60×43=80(公里).答:乙队筑路的总公里数为80公里;(2)设乙队平均每天筑路8x 公里,则甲队平均每天筑路5x 公里, 根据题意得:605x -808x =20,解得:x =0.1,经检验,x =0.1是原方程的解, ∴8x =8×0.1=0.8.答:乙队平均每天筑路0.8公里.16.(8分)(2017·通化)一汽车从甲地出发开往相距240 km 的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快14,比原计划提前24 min 到达乙地,求汽车出发后第1小时内的行驶速度.解:汽车出发后第1小时内的行驶速度是80千米/小时.17.(10分)某公司计划对面积为1800 m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成的绿化面积是乙队每天能完成的绿化面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天时间.(1)求甲、乙两工程队每天能完成的绿化面积;(2)若公司每天需付给甲队的绿化费用为0.4万元,付给乙队的绿化费用为0.25万元,要使这次的绿化总费用不超过8万元,则至少应安排甲队工作多少天?解:(1)甲、乙两工程队每天能完成绿化的面积分别是100 m2、50 m2;(2)至少应安排甲队工作10天.第8讲不等式(组)及其应用(时间60分钟满分100分)A卷一、选择题(本大题共10小题,每小题4分,共40分) 1.(2017·杭州)若x+5>0,则(D)A.x+1<0 B.x-1<0C.x5<-1 D.-2x<122.一元一次不等式x+1≥2的解在数轴上表示为(A)3.(2017·株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为(D) A.a>b B.a+2>b+2C.-a<-b D.2a>3b4.(2017·西宁)不等式组⎩⎪⎨⎪⎧-2x +1<3,x ≤1的解集在数轴上表示正确的是(B )5.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A )A .16个B .17个C .33个D .34个6.(2017·恩施州)关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,3x -1>2(x -1)无解,那么m 的取值范围为(A )A .m ≤-1B .m <-1C .-1<m ≤0D .-1≤m <07.(2017·大庆)若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为(D )A .2B .3C .4D .58.不等式组⎩⎪⎨⎪⎧3(x +2)>2x +5,x -12≤x 3的最小整数解是(B )A .-1B .0C .1D .29.已知x >y ,若对任意实数a ,以下结论:甲:ax >ay ;乙:a 2-x >a 2-y ;丙:a 2+x ≤a 2+y ;丁:a 2x ≥a 2y .其中正确的是(D )A .甲B .乙C .丙D .丁10.(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x <m 的解是x <5,则m 的取值范围是(A )A .m ≥5B .m >5C .m ≤5D .m <5二、填空题(本大题共7小题 ,每小题3分,共21分) 11.(2016·陕西)不等式-12x +3<0的解集是__x >6__.12.(2017·哈尔滨)不等式组⎩⎪⎨⎪⎧5-2x ≤1,x -3<0的解集是__2≤x <3__.13.已知关于x 的不等式(1-a )x >3的解集为x <31-a ,则a 的取值范围是__a >1__.14.(2017·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为__10__元/千克.15.(2017·烟台)运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是__x <8__.16.(2017·宜宾)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1x +3y =3的解满足x +y >0,则m 的取值范围是__m >-2__.17.定义一种法则“⊕”如下:a ⊕b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ),例如:1⊕2=2,若(-2m -5)⊕3=3,则m 的取值范围是__m ≥-4__.三、解答题(本大题共3小题,共19分)18.(6分)(2017·北京)解不等式组:⎩⎪⎨⎪⎧2(x +1)>5x -7,x +103>2x .解:⎩⎪⎨⎪⎧2(x +1)>5x -7①,x +103>2x ②,由①式得x <3,由②式得x <2, ∴不等式组的解集是x <2.19.(6分)解不等式组:⎩⎪⎨⎪⎧x +2>0,3(x -1)+2≥2x ,并判断-1,3这两个数是否为该不等式组的解.解:解不等式x +2>0,得x >-2, 解不等式3(x -1)+2≥2x ,得x ≥1, ∴不等式组的解集为x ≥1, ∵-1<1,3>1,∴3是该不等式组的解.20.(7分)(2017·常州)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?解:(1)每个篮球和每个足球的售价分别为100元,120元; (2)最多可购买25个足球.B 卷1.(3分)(2017·百色)关于x 的不等式组⎩⎪⎨⎪⎧x -a ≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是(B )A .3B .2C .1 D.232.(3分)已知,关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,2-x >0的整数解共有两个,那么a 的取值范围是__-1≤a <0__.3.(5分)(2017·天津)解不等式组⎩⎪⎨⎪⎧x +1≥2 ①,5x ≤4x +3②,请结合题意填空,完成本题的解答. (1)解不等式①,得__x ≥1__; (2)解不等式②,得__x ≤3__;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为__1≤x≤3__.解:(3)把不等式①和②的解集在数轴上表示出来:4.(9分)(2017·聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A 乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生用电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的15少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?解:(1)该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元; (2)设能购进的学生用电脑m 台,则能购进的教师用笔记本电脑为(15m -90)台,依题意得:0.19m +0.3×(15m -90)≤438,解得m ≤1860.∴15m -90=15×1860-90=282(台). 答:至多能购进的学生用电脑1860台,教师用笔记本电脑为282台.第二章 方程(组)与不等式(组)自我测试(时间60分钟 满分105分)一、选择题(本大题共10小题 ,每小题4分,共40分) 1.(2017·常州)若3x >-3y ,则下列不等式中一定成立的是(A ) A .x +y >0 B .x -y >0 C .x +y <0 D .x -y <02.(2017·安徽)不等式4-2x >0的解集在数轴上表示为(D )3.(2017·泰安)一元二次方程x 2-6x -6=0配方后化为(A ) A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=34.不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是(A )5.(2017·岳阳)解分式方程2x -1-2xx -1=1,可知方程的解为(D )A .x =1B .x =3C .x =12D .无解6.(2017·宜宾)一元二次方程4x 2-2x +14=0的根的情况是(B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断7.(2017·安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足(D )A .16(1+2x )=25B .25(1-2x )=16C .16(1+x )2=25D .25(1-x )2=168.(2017·内江)不等式组⎩⎪⎨⎪⎧3x +7≥2,2x -9<1的非负整数解的个数是(B )A .4B .5C .6D .79.(2017·娄底)“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是(A )A.⎩⎪⎨⎪⎧x +y =60x -7y =4B.⎩⎪⎨⎪⎧x +y =60y -7x =4C.⎩⎪⎨⎪⎧x =60-y x =7y -4D.⎩⎪⎨⎪⎧y =60-x y =7x -4 10.(2017·凉山州)若关于x 的方程x 2+2x -3=0与2x +3=1x -a有一个解相同,则a的值为(B )A .0B .-1C .2D .-3二、填空题(本大题共7小题 ,每小题3分,共21分) 11.方程(2a -1)x 2+3x +1=4是一元一次方程,则a =__12__.12.(2017·襄阳)不等式组⎩⎪⎨⎪⎧2x -1>x +1,x +8≥4x -1的解集为__2<x ≤3__.13.(2017·乌鲁木齐)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是__100__元.(导学号 35694137)14.(2017·枣庄)已知关于x 的一元二次方程ax 2-2x -1=0有两个不相等的实数根,则a 的取值范围是__a >-1且a ≠0__.15.(2017·包头)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5的解是⎩⎪⎨⎪⎧x =b ,y =1,则a b 的值为__1__.16.(2017·北京)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为__⎩⎪⎨⎪⎧x -y =34x +5y =435__.17.(2017·西宁)若x 1,x 2是一元二次方程x 2+3x -5=0的两个根,则x 12x 2+x 1x 22的值是__15__.三、解答题(本大题共6小题,共44分)18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得x =4,把x =4代入①得y =1,则方程组的解为⎩⎪⎨⎪⎧x =4,y =1.19.(6分)解方程1-x x -2+1=x2x -4.解:方程两边同乘以2(x -2),得:2(1-x )+2x -4=x , 解得x =-2,把x =-2代入原分式方程中,方程两边相等, 经检验x =-2是分式方程的解.20.(7分)(2017·长沙)解不等式组⎩⎪⎨⎪⎧2x ≥-9-x5x -1>3(x +1),并把它的解集在数轴上表示出来.解:解不等式2x≥-9-x,得x≥-3,解不等式5x-1>3(x+1),得x>2,则不等式组的解集为x>2,将解集表示在数轴上如解图.21.(7分)(2017·广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?答:男生志愿者有12人,女生志愿者有16人.22.(9分)(2017·日照)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?解:(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.23.(9分)(2017·宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?解:(1)甲种商品的销售单价为900元,乙种商品的销售单价为600元;(2)至少销售甲种商品2万件.第31 页共31 页。
江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及其应用真题精选(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及其应用真题精选(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及其应用真题精选(含解析)的全部内容。
第二章方程(组)与不等式(组)第7课时一元二次方程及其应用江苏近4年中考真题精选(2013~2016)命题点1 一元二次方程及其解法(2015年3次,2014年4次,2013年5次)1. (2016泰州14题3分)方程2x-4=0的解也是关于x的方程x2+mx+2=0的一个解,则m 的值为________.2. (2015徐州20(1)题5分)解方程:x2-2x-3=0。
3。
(2014泰州17(2)题6分)解方程:2x2-4x-1=0.命题点2 一元二次方程根的判别式及根与系数的关系(2016年5次,2015年7次,2014年6次,2013年3次)4。
(2014苏州7题3分)下列关于x的方程有实数根的是( )A。
x2-x+1=0 B. x2+x+1=0C. (x-1)(x+2)=0 D。
(x-1)2+1=05. (2016淮安14题3分)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=________.6. (2016宿迁12题3分)若一元二次方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是________.7。
河北省2017中考数学复习第二单元方程与不等式第7讲分式方程试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省2017中考数学复习第二单元方程与不等式第7讲分式方程试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省2017中考数学复习第二单元方程与不等式第7讲分式方程试题的全部内容。
第7讲分式方程1.(2016·石家庄藁城区模拟)分式方程错误!=1的解是( D )A.x=-错误! B.x=2 C.x=3 D.x=错误!2.下列说法:①解分式方程一定会产生增根;②方程错误!=0的根为2;③方程错误!=错误!的最简公分母为2x(2x-4);④x+错误!=1+错误!是分式方程.其中正确的个数是( A ) A.1 B.2 C.3 D.43.(2016·青岛)A,B两地相距180 km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50 %,而从A地到B地的时间缩短了1 h.若设原来的平均车速为x km/h,则根据题意可列方程为( A )A。
180x-错误!=1 B。
错误!-错误!=1C.错误!-错误!=1D.错误!-错误!=14.(2016·秦皇岛模拟)一项工程要求在一定时间内完成.如果甲工程队单独施工,那么刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成.设规定时间为x个月,所列方程为( B )A.4x+错误!=1 B。
错误!+错误!=1C。
错误!+错误!=1 D.错误!+错误!=15.(2016·河北考试说明)已知分式错误!的值是2,那么x的值是-3.6.(2016·河北模拟)“五一篮球联赛”前期,某中学购进甲、乙两种品牌的篮球,购买甲品牌篮球花费了2 500元,购买乙品牌篮球花费了2 000元,且购买甲品牌篮球数量是购买乙品牌篮球数量的2倍,已知购买一个乙品牌篮球比购买一个甲品牌的篮球多花30元,则购买一个甲品牌篮球需50元.7.(2015·龙岩)解分式方程:x-3+错误!=0。
杭州市2017年中考二轮专题复习(二)(方程与不等式)一.选择题1.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是( )A.18(42﹣x)=12x B.2×18(42﹣x)=12x C.18(42﹣x)=2×12x D.18(21﹣x)=12x 2.关于x的方程5x+12=4a的解都是负数,则a的取值范围( )A.a>3 B.a<﹣3 C.a<3 D.a>﹣33.方程去分母后正确的结果是( )A.2(2x﹣1)=8﹣3﹣x B.2(2x﹣1)=1﹣(3﹣x) C.2x﹣1=1﹣(3﹣x) D.2(2x﹣1)=8﹣(3﹣x) 4.方程去分母后,正确的是( )A.4x﹣1=3x﹣3 B.4x﹣1=3x+3 C.4x﹣12=3x﹣3 D.4x﹣12=3x+35.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )A.﹣ B. C. D.﹣6.若方程组的解x,y满足0<x+y<1,则k的取值范围是( )A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣47.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为( )A.1 B.﹣1 C.1或﹣1 D.8.根据下列表格中关于x的代数式ax2+bx+c的值与x的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的范围是( )x 5.12 5.13 5.14 5.15ax2+bx+c ﹣0.04 ﹣0.02 0.01 0.03A.5.14<x<5.15 B.5.13<x<5.14 C.5.12<x<5.13 D.5.10<x<5.129.为喜迎G20,某校团委举办了以“G20”为主题的学生绘画展览,为美化画面,要在长为30cm、宽为20cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),若设彩纸的宽度为xcm,根据题意可列方程为( )A.(30+2x)(20+2x)=1200 B.(30+x)(20+x)=1200C.(30﹣2x)(20﹣2x)=600 D.(30+x)(20+x)=60010.若关于x的一元二次方程(k﹣1)x2﹣(2k+1)x+k=0有两个不相等的实数根,则k的取值范围是( )A. B.且k≠1 C. D.k≥且k≠011.若关于x的分式方程的解为正数,则m的取值范围是( )A.m>﹣1 B.m≠1 C.m>1 D.m>﹣1且m≠112.已知关于x的不等式ax>b的解为x<3,那么下列关于x的不等式中解为x>3的是( )A.﹣2ax>﹣2b B.2ax>2b C.ax+2>b+2 D.ax﹣2>b﹣2二.填空题13.若|x﹣y+1|+(y+5)2=0,则xy=.14.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.张强两次购物分别付款99元和252元.如果张强一次性购买以上两次相同的商品,则应付款 元.15.方程=1解的情况是 .16.若关于x的一元一次不等式组无解,则m的取值范围为 .17.已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是 . 18.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是 .19.若方程x2﹣7x+12=0的两根恰好是一个直角三角形两条直角边的长,则这个直角三角形的斜边长是 .三.解答题20.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?21.某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.天气渐热,为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱饮料每降价1元,每天可多售出2箱.针对这种饮料的销售情况,请解答以下问题:(1)当每箱饮料降价20元时,这种饮料每天销售获利多少元?(2)在要求每箱饮料获利大于80元的情况下,要使每天销售饮料获利14400元,问每箱应降价多少元?参考答案1. C.2. C 3. D.4. C.5. B.6. A.7. B.8. B.9. A.10. B.11. D.12. A 13. 30.14. 303.2或312或331.2或340元.15. 无解 .16. m≤0.17.<m<.18. k>﹣1且k≠0.19. 5.20.解:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30﹣z)≤30,解得:z≥15,答:至少购买A种设备15台.21.解:(1)每箱应降价x元,依据题意得总获利为:(120﹣x)(100+2x),当x=20时,(120﹣x)(100+2x)=100×140=14000元;(2)要使每天销售饮料获利14400元,每箱应降价x元,依据题意列方程得,(120﹣x)(100+2x)=14400,整理得x2﹣70x+1200=0,解得x1=30,x2=40;∵要求每箱饮料获利大于80元,∴x=30答:每箱应降价30元,可使每天销售饮料获利14400元.。
方程与不等式一、选择题(每小题3分,共30分)1.下列方程中,解为x =2的方程是(B )A. 3x -2=3B. -x +6=2xC. 4-2(x -1)=1D. 3x +1=02.下列各项中,是二元一次方程的是(B )A. y +12x B. x +y 3-2y =0 C. x =2y +1 D. x 2+y =03.已知方程组⎩⎪⎨⎪⎧2x +y =5,x +3y =5,则x +y 的值为(D ) A. -1B. 0C. 2D. 3 4.分式方程 x x -2-1x=0的根是(D ) A. x =1 B. x =-1C. x =2D. x =-2 5.分式方程x 2x -1+x1-x =0的解为(C ) A. x =1 B. x =-1C. x =0D. x =0或x =16.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15 min.他骑自行车的平均速度是250 m/min ,步行的平均速度是80 m/min.他家离学校的距离是2900 m .如果他骑车和步行的时间分别为x (min),y (min),列出的方程是(D )A. ⎩⎪⎨⎪⎧x +y =14,250x +80y =2900B. ⎩⎪⎨⎪⎧x +y =15,80x +250y =2900C. ⎩⎪⎨⎪⎧x +y =14,80x +250y =2900D. ⎩⎪⎨⎪⎧x +y =15,250x +80y =2900 7.若不等式组 ⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A ) A. 1B. 2C. 3D. 4 8.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中的位置是(A ) A. 第一象限 B. 第二象限C. 第三角限D. 第四象限解:解方程组,得⎩⎪⎨⎪⎧x =1.5,y =0.5.∴点(1.5,0.5)在第一象限. 9.关于x 的分式方程a x +3=1,下列说法正确的是(B )A. 方程的解是x =a -3B. 当a >3时,方程的解是正数C. 当a <3时,方程的解为负数D. 以上答案都正确 10.小华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x(0>0),解得x =1,这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小,因此x +1x(x >0)的最小值是2.模仿小华的推导,你求得式子x 2+9x(x >0)的最小值是(C )(第10题图)A. 2B. 1C. 6D. 10解:∵x >0,∴x 2+9x =x +9x ≥2x ·9x =6, 则原式的最小值为6.二、填空题(每小题4分,共24分)11.已知关于x 的一元二次方程x 2-23x +k =0有两个相等的实数根,则k 的值为__3__.12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有__22__只,兔有__11__只.13.如图,将一条长为60 cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1∶2∶3,则折痕对应的刻度有__4__种可能.(第13题图)14.已知a =6,且(5tan 45°-b )2+2b -5-c =0,以a ,b ,c 为边组成的三角形面积等于__12__.15.若分式3x +5x -1无意义,当53m -2x -12m -x =0时,m =__37__. 16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题(本题有8小题,共66分)17.(本题8分)解下列方程(组).(1)解方程:x x +1-4x 2-1=1. 解:去分母,得x (x -1)-4=x 2-1.去括号,得x 2-x -4=x 2-1.解得x =-3.经检验,x =-3是分式方程的解.(2)解方程组:⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.解:方程组整理,得⎩⎪⎨⎪⎧3x -5y =3,①3x -2y =6.② ②-①,得3y =3,∴y =1.将y =1代入①,得x =83. ∴原方程组的解为⎩⎪⎨⎪⎧x =83,y =1.18.(本题6分)解方程:16x -2=12-21-3x . 设13x -1=y ,则原方程化为12y =12+2y ,解方程求得y 的值,再代入13x -1=y 求值即可.结果需检验.请按此思路完成解答. 解:设13x -1=y ,则原方程化为12y =12+2y , 解得y =-13.当y =-13时,有13x -1=-13,解得x =-23. 经检验,x =-23是原方程的根. ∴原方程的根是x =-23. 19.(本题8分)设m 是满足1≤m ≤50的正整数,关于x 的二次方程(x -2)2+(a -m )2=2mx+a 2-2am 的两根都是正整数,求m 的值.解:将方程整理,得x 2-(2m +4)x +m 2+4=0,∴x =2(m +2)±4m 2=2+m ±2m . ∵x ,m 均是正整数且1≤m ≤50,2+m ±2m =(m ±1)2+1>0,∴m 为完全平方数即可,∴m =1,4,9,16,25,36,49.20.(本题8分)已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5都是关于x ,y 的方程y =kx +b 的解. (1)求k ,b 的值.(2)若不等式3+2x >m +3x 的最大整数解是k ,求m 的取值范围.解:(1)将⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5代入y =kx +b ,得∴⎩⎪⎨⎪⎧2k +b =3,-2k +b =-5 解得⎩⎪⎨⎪⎧k =2,b =-1.∴k 的值是2,b 的值是-1.(2)∵3+2x >m +3x ,∴x <3-m .∵不等式3+2x >m +3x 的最大整数解是k =2,∴2<3-m ≤3,∴0≤m <1,即m 的取值范围是0≤m <1.21.(本题8分)解方程:|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.(第21题图)参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为x =1或x =-7.(2)解不等式|x -3|+|x +4|≥9.(3)若|x -3|-|x +4|≤a 对任意的x 都成立,求a 的取值范围.解:(1)x =1或x =-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点在3与-4的两侧.当x 在3的右边时,如解图,易知x ≥4.当x 在-4的左边时,如解图,易知x ≤-5.∴原不等式的解为x ≥4或x ≤-5.(第21题图解)(3)原问题转化为: a 大于或等于|x -3|-|x +4|的最大值.当x ≥3时,|x -3|-|x +4|=-7≤0;当-4<x <3时,|x -3|-|x +4|=-2x -1随x 的增大而减小;当x ≤-4时,|x -3|-|x +4|=7,即|x -3|-|x +4|的最大值为7.故a ≥7.22.(本题8分)如图,长青化工厂与A ,B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(第22题图)(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售额比原料费与运输费的和多多少元?解:(1)设工厂从A 地购买了x (t)原料,制成运往B 地的产品y (t).由题意,得⎩⎪⎨⎪⎧1.5(10x +20y )=15000,1.2(120x +110y )=97200.解得⎩⎪⎨⎪⎧x =400,y =300. 答:工厂从A 地购买了400 t 原料,制成运往B 地的产品为300 t.(2)300×8000-400×1000-15000-97200=1887800(元).答:这批产品的销售额比原料费与运输费的和多1887800元.23.(本题10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出 45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元(利润=售价-进价)?解:(1)设第一批T 恤衫每件进价是x 元,由题意,得4500x =4950x +9, 解得x =90.经检验,x =90是分式方程的解且符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50(件). 由题意,得120×50×45+y ×50×15-4950≥650, 解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.24.(本题10分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车各可装多少件帐蓬.(2)如果这批帐篷有1490件,用甲、乙两种货车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐蓬,则乙种货车每辆车可装(x -20)件帐蓬.由题意,得1000x =800x -20,解得x =100. 经检验,x =100是原方程组的解且符合题意.∴x -20=100-20=80.答:甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬.(2)设甲种货车有z 辆,乙种货车有(16-z )辆.由题意,得100z +80(16-z -1)+50=1490,解得z =12,∴16-z =16-12=4.答:甲种货车有12辆,乙种货车有4辆.。
单元检测卷二 方程与不等式限时:____________分钟 总分:100分一、选择题(共大题共10小题,每小题3分,共30分) 1.方程3x +6=0的解是( ) A .2 B .-2 C .3D .-32.下列方程的变形中正确的是( ) A .由x +5=6x -7得x -6x =7-5 B .由-2(x -1)=3得-2x -2=3 C .由x -30.7=1得10x -307=10 D .由12x +9=-32x -3得2x =-123.(2016·武威)在数轴上表示不等式x -1<0的解集,正确的是( )4.若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x +3>y +3 C .-3x >-3yD .x 3>y35.(2016·南宁)超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=906.(2016·衡阳)关于x 的一元二次方程x 2+4x +k =0有两个相等的实根,则k 的值为( )A .k =-4B .k =4C .k ≥-4D .k ≥47.(2016·临沂)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =78,3x +2y =30B .⎩⎪⎨⎪⎧x +y =78,2x +3y =30C.⎩⎪⎨⎪⎧x +y =30,2x +3y =78D .⎩⎪⎨⎪⎧x +y =30,3x +2y =788.(2016·青岛)A ,B 两地相距180 km ,新修的高速公路开通后,在A ,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1 h .若设原来的平均车速为x km/h ,则根据题意可列方程为( )A.180x -180+x =1 B .180+x -180x =1C.180x-180-x=1D .180-x-180x=19.(2016·攀枝花)若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a的值为( )A .-1或4B .-1或-4C .1或-4D .1或410.(2016·凉山州)关于x 的方程 3x -2x +1=2+mx +1无解,则m 的值为( )A .-5B .-8C .-2D .5二、填空题(本大题共6小题,每小题4分,共24分) 11.(2016·金华)不等式3x +1<-2的解集是____________. 12.(2016·吉林)若x 2-4x +5=(x -2)2+m ,则m =____________.13.(2016·丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x ,则可列方程为____________.14.不等式组⎩⎪⎨⎪⎧5x +x -1-2x +53>x -2的解集是____________.15.已知x =2是关于x 的方程a (x +1)=12a +x 的解,则a 的值是____________.16.定义一种新的运算“※”,x ※y =ax +by (其中a ,b 为常数),已知3※5=15,4※7=28,则4※2=____________.三、解答题(本大题共7小题,共46分)17.(6分)解方程:(1)⎩⎪⎨⎪⎧2x +3y =7,①x -3y =8;②(2)2x 2-7x +3=0.18.(6分)解方程:(1)xx +1-4x 2-1=1; (2)2x 2x -1+xx -2=2. 19.(6分)(2016·广州)解不等式组:⎩⎪⎨⎪⎧2x <5,x +x +4并在数轴上表示解集.20.(6分)已知关于x 的一元二次方程x 2+2kx +k 2-k =0有两个不相等的实数根. (1)求实数k 的取值范围;(2)0可能是方程的一个根吗?若是,求出它的另一个根;若不是,请说明理由. 21.(7分)(2016·毕节)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6 000万元.2016年投入教育经费8 640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.22.(7分)(2016·沈阳)倡导健康生活,推进全民健身,某社区要购进A ,B 两种型号的健身器材若干套,A ,B 两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A ,B 两种型号的健身器材共50套,且恰好支出20 000元,求A ,B 两种型号健身器材各购买多少套?(2)若购买A ,B 两种型号的健身器材共50套,且支出不超过18 000元,求A 种型号健身器材至少要购买多少套?23.(8分)(2016·宁夏)某种型号油电混合动力汽车,从A 地到B 地燃油行驶纯燃油费用76元,从A 地到B 地用电行驶纯电费用26元.已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?参考答案:一、选择题1.B 2.D 3.C 4.C 5.A 6.B 7.D 8.A 9.C 10.A 二、填空题11.x <-1 12.1 13.60(1+x )2=100 14.-52≤x <4515.45 16.-92 三、解答题17.解:(1)①+②得,3x =15,解得x =5. 把x =5代入①得,10+3y =7,解得y =-1.故方程组的解为⎩⎪⎨⎪⎧x =5,y =-1.(2)原方程可变形为(2x -1)(x -3)=0,所以2x -1=0或x -3=0, 所以x 1=12,x 2=3.18.解:(1)去分母,得x (x -1)-4=x 2-1, 去括号,得x 2-x -4=x 2-1,解得x =-3. 经检验,x =-3是分式方程的解.(2)去分母,得2x (x -2)+x (2x -1)=2(2x -1)(x -2), 整理,得5x =4,解得x =45.经检验,x =45是原方程的根.19.解:⎩⎪⎨⎪⎧2x <5,①x +x +4,②解①,得x <52.解②,得x ≥-1.在数轴上表示为:20.解:(1)∵关于x 的一元二次方程x 2+2kx +k 2-k =0有两个不相等的实数根, ∴Δ=b 2-4ac =(2k )2-4(k 2-k )=4k >0.∴k >0. ∴实数k 的取值范围是k >0.(2)把x =0代入方程得:k 2-k =0,解得k =0或k =1, ∵k >0,∴k =1.即0是方程的一个根,把k =1代入方程得:x 2+2x =0, 解得x =0或x =-2, 即方程的另一个根为x =-2.21.解:(1)设该县投入教育经费的年平均增长率为x .则有: 6 000(1+x )2=8 640,解得x =0.2或x =-2.2(舍去). 答:该县投入教育经费的年平均增长率为20%.(2)因为2016年该县投入教育经费为8 640万元,且增长率为20%,所以2017年该县投入教育经费y =8 640×(1+0.2)=10 368(万元).答:预算2017年该县投入教育经费10 368万元.22.解:(1)设购买A 种型号健身器材x 套,B 种型号健身器材y 套,根据题意,得⎩⎪⎨⎪⎧x +y =50,310x +460y =20 000,解得⎩⎪⎨⎪⎧x =20,y =30.答:购买A 种型号健身器材20套,B 种型号健身器材30套. (2)设购买A 型号健身器材m 套,根据题意,得310m +460(50-m )≤18 000,解得m ≥1003.∵m 为整数,∴m 的最小值为34. 答:A 种型号健身器材至少要购买34套.23.解:(1)设每行驶1千米纯用电的费用为x 元, 76x +0.5=26x,解得x =0.26. 经检验,x =0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元. (2)从A 地到B 地油电混合行驶,用电行驶y 千米,0.26y +⎝ ⎛⎭⎪⎫260.26-y ×(0.26+0.5)≤39,解得y ≥74,即至少用电行驶74千米.。
第二章自我测试 方程与不等式一、选择题1.若m >n ,下列不等式不一定成立的是( D )A .m +2>n +2B .2m >2nC.m 2>n 2D .m 2>n 22.下列数值中不是不等式5x≥2x+9的解的是( D )A .5B .4C .3D .23.若⎩⎪⎨⎪⎧x =2,y =-1是二元一次方程组的解,则这个方程组是( C ) A.⎩⎪⎨⎪⎧x -3y =5,2x +y =5 B.⎩⎪⎨⎪⎧y =x -3,y -2x =5 C.⎩⎪⎨⎪⎧2x -y =5,x +y =1 D.⎩⎪⎨⎪⎧x =2y ,x =3y +1 4.(2016·长沙)不等式组⎩⎪⎨⎪⎧2x -1≥5,8-4x <0的解集在数轴上表示为( C )5.(2016·新疆)一元二次方程x 2-6x -5=0配方可变形为( A )A .(x -3)2=14B .(x -3)2=4C .(x +3)2=14D .(x +3)2=4 6.(2016·乐山)不等式组⎩⎪⎨⎪⎧x +2>0,2x -1≤0的所有整数解是( A ) A .-1,0 B .-2,-1C .0,1D .-2,-1,07.(2016·绵阳)若关于x 的方程x 2-2x +c =0有一根为-1,则方程的另一根为( D )A .-1B .-3C .1D .38.(2016·河北)在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( B )A.13x =18x -5 B.13x =18x +5 C.13x =8x -5 D.13x=8x +59.已知关于x 的分式方程x +k x +1-k x -1=1的解为负数,则k 的取值范围是( B ) A .k >12或k ≠1 B .k >12且k ≠1 C .k <12且k ≠1 D .k <12或k ≠1 10.(导学号 30042146)△ABC 的一边长为5,另两边分别是方程x 2-6x +m =0的两根,则m 的取值范围是( B )A .m >114 B.114<m ≤9 C.114≤m ≤9 D .m ≤114点拨:设三角形另两边分别为a ,b (a≥b ),根据题意得Δ=(-6)2-4m≥0,解得m≤9,a +b =6,ab =m ,∵a <b +5,即a -b <5,∴(a -b )2<25,∴(a +b )2-4ab <25,即36-4m <25,∴m >114,∴m 的取值范围是114<m≤9.故选B 二、填空题11.(2016·鄂州)方程x 2-3=0的根是.12.(2016·黑龙江)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是__180__元.13.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对__12__道题,成绩才能在60分以上.14.已知⎩⎪⎨⎪⎧x =5,y =7是方程kx -2y -1=0的解,则k 的值为__3__. 15.(导学号 30042147)关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,1-x >0的整数解共有3个,则a 的取值范围是__-3≤a <-2__.三、解答题16.(2016·台州)解方程:x x -7-17-x=2. 解:x =15,经检验x =15是分式方程的解17.(2016·新疆)解方程组⎩⎪⎨⎪⎧2x +3y =7,①x -3y =8.② 解:⎩⎪⎨⎪⎧x =5,y =-118.解不等式组:⎩⎪⎨⎪⎧4x +6>1-x ,3(x -1)≤x+5,并把解集在数轴上表示出来. 解:解集为-1<x ≤4,数轴略19.如图,某农场有一块长40 m ,宽32 m 的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140 m 2,求小路的宽.解:设小路的宽为x m ,依题意有(40-x )(32-x )=1140,整理,得x 2-72x +140=0.解得x 1=2,x 2=70(不合题意,舍去).答:小路的宽应是2 m20.(导学号 30042148)某体育馆计划从一家体育用品商店一次性购买若干个排球和篮球(每个排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个排球和2个篮球共需210元;购买2个排球和3个篮球共需340元.(1)每个排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买排球和篮球共50个,总费用不超过3200元,且购买排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?解:(1)设每个排球的价格是x 元,每个篮球的价格是y 元.根据题意得⎩⎪⎨⎪⎧x +2y =210,2x +3y =340,解得⎩⎪⎨⎪⎧x =50,y =80,所以每个排球的价格是50元,每个篮球的价格是80元 (2)设购买排球z 个,则购买篮球(50-z )个.根据题意得50z +80(50-z )≤3200,解得z≥2623,又∵排球的个数少于30个,∴排球的个数可以为27,28,29,∵排球比较便宜,则购买排球越多,总费用越低,∴当购买排球29个,篮球21个时,费用最低.最低费用为29×50+21×80=1450+1680=3130(元)。
第6讲 一元二次方程1.(2016·新疆)一元二次方程x 2-6x -5=0配方后可变形为( A )A .(x -3)2=14B .(x -3)2=4C .(x +3)2=14D .(x +3)2=42.(2016·天津)方程x 2+x -12=0的两个根为( D )A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=33.(2016·成都高新区一诊)下列一元二次方程中,没有实数根的是( A )A .4x 2-5x +2=0B .x 2-6x +9=0C .5x 2-4x -1=0D .3x 2-4x +1=04.(2016·凉山)已知x 1,x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是( D )A .-43 B.83 C .-83 D.435.(2016·自贡)已知关于x 的一元二次方程x 2+2x -(m -2)=0有实数根,则m 的取值范围是( C )A .m >1B .m <1C .m ≥1D .m ≤16.(2016·雅安)已知关于x 的一元二次方程x 2+mx -8=0的一个实数根为2,则另一实数根及m 的值分别为( D )A .4,-2B .-4,-2C .4,2D .-4,27.(2016·凉山模拟)李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n 人参加聚会,根据题意可列出方程为( B )A.n (n +1)2=20 B .n(n -1)=20 C.n (n -1)2=20 D .n(n +1)=20 8.(2016·凉山模拟)已知(m -1)x |m|+1-3x +1=0是关于x 的一元二次方程,则m =-1.9.(2016·雅安中学一诊)已知关于x 的方程x 2-6x +k =0的两根分别是x 1,x 2,且满足1x 1+1x 2=3,则k 的值是2. 10.(2016·眉山丹棱县一诊)设x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为27.11.(2016·绵阳平武县一模)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成蔬菜滞销,李伟为了加快销售,减少损失,对价格进行两次下调后,以每千克3.2元的单价对外批发销售.平均每次下调的百分率是20%.12.(2016·凉山模拟)若a 是方程x 2-2x -2 015=0的根,则a 3-3a 2-2 013a +1=-2_014.13.(2016·凉山模拟)某县2013年公共事业投入经费40 000万元,其中教育经费占15%,2015年教育经费实际投入7 260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8 000万元吗?解:(1)设每年平均增长的百分率为x.根据题意,得640 000×15%×(1+x)2=7 260.解得x 1=0.1=10%,x 2=-2.1(舍去).答:该县这两年教育经费平均增长率为10%.(2)2016年该县教育经费为7 260×(1+10%)=7 986(万元).∵7 986<8 000,∴2016年教育经费不会达到8 000万元.14.(2016·南充营山县一模)已知关于x 的一元二次方程mx 2-(m +2)x +2=0.(1)求证:不论m 为何值时,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.解:(1)证明:Δ=(m +2)2-8m =m 2-4m +4=(m -2)2.∵不论m 为何值时,(m -2)2≥0,∴Δ≥0.∴方程总有实数根.(2)解方程得x =m +2±(m -2)2m. ∴x 1=2m,x 2=1. ∵方程有两个不相等的正整数根,∴m =1或2.∵m =2不合题意,∴m =1.15.(2016·南充模拟)股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票票价的平均增长率为x ,则x 满足的方程是( B )A .(1+x)2=1110B .(1+x)2=109C .1+2x =1110D .1+2x =10916.(2016·成都锦江区一诊)小明设计了一个魔术盒,当任意实数对(a ,b)进入其中,会得到一个新的实数a 2-2b +3,若将实数对(x ,-2x)放入其中,得到一个新数为8,则x =-5或1.17.(2016·成都二诊)设α,β是方程x 2+2 013x -2=0的两根,则(α2+2 016α-1)(β2+2 016β-1)=-6_056.18.(2016·成都新区一诊)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑? 解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意,得(1+x)2=81.解得x 1=8,x 2=-10(不合题意,舍去).答:每轮感染中平均一台电脑会感染8台电脑.19.(2016·南充模拟)已知关于x 的一元二次方程(a +c)x 2+2bx +(a -c)=0,其中a ,b ,c 分别为△ABC 三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.解:(1)△ABC是等腰三角形.理由:∵x=-1是方程的根,∴(a+c)×(-1)2-2b+(a-c)=0.∴a+c-2b+a-c=0.∴a-b=0.∴a=b.∴△ABC是等腰三角形.(2)△ABC直角三角形.理由:∵方程有两个相等的实数根,∴(2b)2-4(a+c)(a-c)=0.∴4b2-4a2+4c2=0.∴a2=b2+c2.∴△ABC是直角三角形.(3)∵△ABC是等边三角形,∴(a+c)x2+2bx+(a-c)=0.∴x2+x=0.解得x1=0,x2=-1.。
一元二次方程1.(2016·安徽十校联考)将方程-3(x 2-3)=(x -1)2化为一元二次方程一般形式正确的是( C )A .-4x 2+2x +8=0B .4x 2-2x -8=0 C .2x 2-x -4=0 D .x 2-12x -2=02.(2016·沈阳)一元二次方程x 2-4x =12的根是( B ) A .x 1=2,x 2=-6 B .x 1=-2,x 2=6 C .x 1=-2,x 2=-6 D .x 1=2,x 2=63.关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0,则m 等于( B ) A .1 B .2 C .1或2 D .04.(2016·青岛)输入一组数据,按下列程序进行计算,输出结果如下表:分析表格中的数据,估计方程(x +8)-826=0的一个正数解x 的大致范围为( C ) A .20.5<x <20.6 B .20.6<x <20.7 C .20.7<x <20.8 D .20.8<x <20.95.(2016·兰州)公园有一块正方形空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了 2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形空地的边长为 x m ,则可列方程为( C )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=06.(2016·泰安)一元二次方程(x +1)2-2(x -1)2=7的根的情况是( C ) A .无实数根 B .有一正根一负根 C .有两个正根 D .有两个负根7.(2016·桐城模拟)已知a 是一元二次方程x 2+x -1=0的根,则a(1-2a)-3(a -2)的值为( C ) A .2 B .3 C .4 D .58.(2016·泰州)方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的解,则m 的值为-3.9.(2016·阜阳二模)某工厂生产一种产品,第一季度共生产了364个,其中1月份生产了100个,若2,3月份的平均月增长率为x ,则可列方程为100+100(1+x)+100(1+x)2=364.10.(2015·大连)解方程:x 2-6x -4=0.解:移项,得x 2-6x =4.配方,得x 2-6x +9=4+9,即(x -3)2=13. ∴x -3=±13.因此原方程的解为x 1=3+13,x 2=3-13.11.(2016·山西)解方程:2+2(x -3)2=x 2-9.解:解法一:原方程可化为2(x -3)2=(x +3)(x -3).2(x -3)2-(x +3)(x -3)=0. (x -3)[2(x -3)-(x +3)]=0. (x -3)(x -9)=0. ∴x -3=0或x -9=0. ∴x 1=3,x 2=9.解法二:原方程可化为x 2-12x +27=0. 这里a =1,b =-12,c =27. ∵b 2-4ac =(-12)2-4×1×27=36>0, ∴x =12±362×1=12±62.因此原方程的根为x 1=3,x 2=9.12.(2015·自贡)利用一面墙(墙的长度不限),另三边用58 m 长的篱笆围成一个面积为200 m 2的矩形场地,求矩形的长和宽.解:设垂直于墙的一边为x 米,得 x(58-2x)=200. 解得x 1=25,x 2=4.∴另一边为8米或50米.答:矩形长为25米宽为8米或矩形长为50米宽为4米.13.(2015·长沙)现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率; (2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员? 解:(1)设月平均增长率为x ,由题意得10(1+x)2=12.1.解得x 1=0.1,x 2=-2.1(不合题意,舍去). ∴该快递公司投递总件数的月平均增长率为10%. (2)6月份任务为12.1×(1+10%)=13.31(万件). ∵0.6×21=12.6<13.31,∴不能完成. (13.31-12.6)÷0.6≈2(名). 答:至少需增加业务员2名.14.(2014·合肥三十八中模拟)有一人患了流感,经过两轮传染后共有64人患了流感. (1)求每轮传染中平均一个人传染了几个人;(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均一个人传染了x 个人,由题意,得1+x +x(1+x)=64. 解得x 1=7,x 2=-9(不合题意,舍去). 答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:第三轮将又有448人被传染.15. (2016·台州)有x 支球队参加篮球比赛,共比赛45场,每两队之间都比赛一场,则下列方程中符合题意的是( A )A.12x(x -1)=45B.12x(x +1)=45 C .x(x -1)=45 D .x(x +1)=4516.(2015·广州)已知2是关于x 的方程x 2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为( B )A .10B .14C .10或14D .8或1017.(2016·赤峰)如图,一块长5米宽4米的地毯,为了美观,设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的1780.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价. 解:(1)设条纹的宽度为x 米,依题意得 5×4-(5-2x)(4-2x)=1780×5×4.解得x 1=174(舍去),x 2=14.答:配色条纹宽度为14米.(2)条纹造价为1780×5×4×200=850(元).其余部分造价为(1-1780)×4×5×100=1 575(元).∴总造价为850+1 575=2 425(元). 答:地毯的总造价为2 425元.18.方程x(x -1)=2(x -1)2的解为x =1或x =2.。
单元测试(二) 方程与不等式
(时间:45分钟 满分:100分)
一、选择题(每小题4分,共32分)
1.方程3x +2(1-x)=4的解是( C )
A .x =25
B .x =65
C .x =2
D .x =1 2.二元一次方程组⎩
⎪⎨⎪⎧x -y =-3,2x +y =0的解是( A ) A.⎩⎪⎨⎪⎧x =-1y =2 B.⎩⎪⎨⎪⎧x =1y =-2 C.⎩⎪⎨⎪⎧x =-1y =-2 D.⎩
⎪⎨⎪⎧x =-2y =1 3.一元一次不等式2(x +2)≥6的解在数轴上表示为( A )
4.下列方程有两个相等的实数根的是( C )
A .x 2+x +1=0
B .4x 2+x +1=0
C .x 2+12x +36=0
D .x 2+x -2=0 5.已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( B )
A .5
B .7
C .5或7
D .10
6.若关于x 的一元一次不等式组⎩
⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( C ) A .m >-23 B .m ≤23 C .m >23 D .m ≤-23
7.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2 700元购买A 型陶笛与用4 500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( D )
A.
2 700x -20=4 500x B.2 700x =4 500x -20 C.2 700x +20=4 500x D.2 700x =4 500x +20
8.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1 600时.设扩大后的正方形绿地边长为x m ,下面所列方程正确的是( A )
A .x(x -60)=1 600
B .x(x +60)=1 600
C .60(x +60)=1 600
D .60(x -60)=1 600
二、填空题(每小题3分,共18分)
9.满足不等式2(x +1)>1-x 的最小整数解是0.
10.若方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为3.
11.分式方程2x =5x +3
的解是x =2. 12.一元二次方程2x 2-3x +k =0有两个不相等的实数根,则k 的取值范围是k <98
. 13.某公司成立3年以来,积极向国家上缴利税,由第一年的200万元增长到800万元,则平均每年增长的百分数是100%.
14.如果实数x ,y 满足方程组⎩
⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为-54. 三、解答题(共50分)
15.(6分)解方程组:⎩
⎪⎨⎪⎧2x +y =3,①3x -5y =11.② 解:由①,得y =3-2x.③
把③代入②,得3x -5(3-2x)=11.解得x =2.
将x =2代入③,得y =-1.
∴原方程组的解为⎩
⎪⎨⎪⎧x =2,y =-1.
16.(6分)解方程:1x -3=1-x 3-x
-2. 解:方程两边同乘(x -3),得
1=x -1-2(x -3).
解得x =4.
检验:当x =4时,x -3≠0,
∴x =4是原分式方程的解.
17.(8分)解不等式组⎩⎪⎨⎪
⎧1+x >-2,
2x -13
≤1,并把解在数轴上表示出来. 解:由1+x >-2,得x >-3.
由2x -13≤1,得x≤2. ∴不等式组的解集为-3<x≤2.
解集在数轴上表示如下:
18.(8分)先化简,再求值:(x 2-2x +4x -1+2-x)÷x 2
+4x +41-x
,其中x 满足x 2-4x +3=0.
解:原式=x 2-2x +4+(2-x )(x -1)x -1÷(x +2)2
1-x
=x +2x -1·1-x (x +2)2 =-1x +2
. 解方程x 2
-4x +3=0,得(x -1)(x -3)=0,
∴x 1=1,x 2=3.
当x =1时,原分式无意义;
当x =3时,原式=-13+2=-15
.
19.(10分)2016年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷所用车辆与乙种货车装运800件帐篷所用车辆相等.
(1)求甲、乙两种货车每辆车可装多少件帐篷;
(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆?
解:(1)设乙种货车每辆车可装x 件帐篷,由题意,得
1 000x +20=800x
.解得x =80. 经检验,x =80是原方程的解,且符合实际情况.
答:甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷.
(2)设甲、乙两种货车分别有a 辆、b 辆,由题意,得⎩⎪⎨⎪⎧a +b =16,100a +(b -1)80+50=1 490.解得⎩⎪⎨⎪⎧a =12,b =4. 答:甲、乙两种货车分别有12辆,4辆.
20.(12分)某物流公司承接A 、B 两种货物的运输业务,已知5月份A 货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收运费9 500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B 货物40元/吨.该物流公司6月份承接的A 种货物和B 种货物数量与5月份相同,6月份共收取运费13 000元.问:
(1)该物流公司5月份运输两种货物各多少吨?
(2)该物流公司预计7月份运输这两种货物共330吨,且A 货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收取多少运输费?
解:(1)设该物流公司5月份运输A 、B 两种货物各x 吨、y 吨,依题意,得
⎩⎪⎨⎪⎧50x +30y =9 500,70x +40y =13 000.解得⎩⎪⎨⎪⎧x =100,y =150.
答:该物流公司5月份运输A 种货物100吨,运输B 种货物150吨.
(2)设物流公司7月份运输A 种货物a 吨,收取w 元运输费,则依题意,有
a ≤2(330-a).则a≤220.∴a 最大为220.
w =70a +40(330-a)=30a +13 200.
∵k =30>0,w 随a 的增大而增大.
∴当a=220时,w最大=30×220+13 200=19 800(元).答:该物流公司7月份最多将收取运输费19 800元.。