广东省河源市2013届高三质量检测数学理科卷4
- 格式:doc
- 大小:800.50 KB
- 文档页数:15
试卷类型:A广东省广州市2013届高三年级调研测试数 学(理 科) 2013.1本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点 涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 为虚数单位,则复数i 23(-i )对应的点位于A .第一象限B . 第二象限C .第三象限D .第四象限2.已知集合}4,3,2,1,0{=A ,集合},2|{A n n x x B ∈==,则=B AA .}0{B .}4,0{C .}4,2{D .}4,2,0{ 3.已知函数()2030x x x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是 A .9 B .19 C .9- D .19- 4.设向量=a ()21x ,-,=b ()14x ,+,则“3x =”是“a //b ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 5.函数)(x f y =的图象向右平移6π单位后与函数x y 2sin =的图象重合, 则)(x f y =的解析式是 A .()f x =)32cos(π-x B .()f x =)62cos(π-x C .()fx =)62cos(π+x D .()f x =)32cos(π+x俯视图侧视图正视图图16.已知四棱锥P ABCD -的三视图如图1所示, 则四棱锥P ABCD -的四个侧面中面积最大的是 A .3 B .C .6 D .87.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,, 则方程22221x y a b+=表示焦点在x 的椭圆的概率为A .12 B .1532C .1732D .3132 8.在R 上定义运算).1(:y x y x -=⊗⊗若对任意2x >,不等式()2x a x a -⊗≤+ 都成立,则实数a 的取值范围是 A .17,⎡⎤-⎣⎦ B .(3,⎤-∞⎦ C .(7,⎤-∞⎦D .()17,,⎤⎡-∞-+∞⎦⎣二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 已知等差数列}{n a 的前n 项和为n S , 若34512a a a ++=,则7S 的值为.10.若291()ax x-的展开式的常数项为84,则a 的值为 .11.若直线2y x m =+是曲线ln y x x =的切线, 则实数m 的值为 . 12.圆2224150x y x y +++-=上到直 线20x y -=的点的个数是 _ . 13.图2是一个算法的流程图,则输出S 的值是 . (二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =, 则PC 的长是图4M NBCDAP15.(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知ABC V 的内角A B C ,,的对边分别是a b c ,,,且123a b B ,,π===.(1) 求A sin 的值;(2) 求2C cos 的值. 17.(本小题满分12分)某市,,,A B C D 四所中学报名参加某高校今年自主招生的学生人数如下表所示:为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四 所中学的学生当中随机抽取50名参加问卷调查. (1)问,,,A B C D 四所中学各抽取多少名学生?(2)从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率; (3)在参加问卷调查的50名学生中,从来自,A C 两所中学的学生当中随机抽取两名学生,用ξ表示抽得A 中学的学生人数,求ξ的分布列.18. (本小题满分14分)如图4,已知四棱锥P ABCD -,底面ABCD 是正方形,PA ^面ABCD , 点M 是CD 的中点,点N 是PB 的中点,连接AM ,AN MN ,. (1) 求证:MN //面PAD ;(2)若5MN =,3AD =,求二面角N AM B --的余弦值.19.(本小题满分14分)如图5, 已知抛物线2P y x :=,直线AB 与抛物线P OA OB ^,OA OB OC uu r uu u r uu u r+=,OC 与AB 交于点M .(1) 求点M 的轨迹方程;(2) 求四边形AOBC 的面积的最小值.20.(本小题满分14分)在数1和2之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数 的乘积记为n A ,令2n n a A log =,n ∈N *. (1)求数列{}n A 的前n 项和n S ;(2)求2446222n n n T a a a a a a tan tan tan tan tan tan +=⋅+⋅++⋅ .21.(本小题满分14分)若函数()f x 对任意的实数1x ,2x D ∈,均有2121()()f x f x x x -≤-,则称函数()f x 是区间D 上的“平缓函数”.(1) 判断()sin g x x =和2()h x x x =-是不是实数集R 上的“平缓函数”,并说明理由; (2) 若数列{}n x 对所有的正整数n 都有 121(21)n n x x n +-≤+,设sin n n y x =,求证: 1114n y y +-<.广州市2013届高三年级调研测试 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.28 10. 1 11. -e 12. 4 13. 301814. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查同角三角函数的关系、正弦定理、二倍角、两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:∵123a b B ,,π===,依据正弦定理得:a bA Bsin sin =, …………… 1分即1Asin =解得A sin =. …………… 3分 (2)解:∵a b <, ∴02A B π<<<. …………… 4分∴4A cos ==. …………… 5分∴228A A A sin sin cos ==, …………… 6分 252128A A cos sin =-=. …………… 7分 ∵ABC π++=, ∴23C A π=-. …………… 8分 ∴4223C A cos cos π⎛⎫=-⎪⎝⎭…………… 9分 442233A A coscos sin sin ππ=+ …………… 10分152828=-⨯-⨯=-. …………… 12分17.(本小题满分12分)(本小题主要考查分层抽样、概率、离散型随机变量的分布列等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)(1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名, 抽取的样本容量与总体个数的比值为5011002=. ∴应从,,,A B C D 四所中学抽取的学生人数分别为15,20,10,5. …………… 4分 (2)解:设“从参加问卷调查的50名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件M ,从参加问卷调查的50名学生中随机抽取两名学生的取法共有C 250=1225种,… 5分 这两名学生来自同一所中学的取法共有C 215+C 220+C 210+C 25=350. …………… 6分 ∴()3501225P M ==27. 答:从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率为27. …………… 7分(3) 解:由(1)知,在参加问卷调查的50名学生中,来自,A C 两所中学的学生人数分别为15,10.E MNDCBAPMNDCBAP依题意得,ξ的可能取值为0,1,2, …………… 8分()0P ξ==210225C C 960=, ()1P ξ==111510225C C C =12,()2P ξ==215225C C 720=. …………… 11分 ∴ξ的分布列为:…………… 12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) (1)证法1:取PA 的中点E ,连接DE EN ,, ∵点N 是PB 的中点, ∴12EN AB EN AB //,=. …………… 1分 ∵点M 是CD 的中点,底面ABCD 是正方形,∴12DM AB DM AB //,=. …………… 2分 ∴EN DM EN DM //,=. ∴四边形EDMN 是平行四边形.∴MN DE //. …………… 3分 ∵DE ⊂平面PAD ,MN ⊄平面PAD , ∴MN //面PAD . …………… 4分证法2:连接BM 并延长交AD 的延长线于点E ,连接PE , ∵点M 是CD 的中点,∴12DM AB DM AB //,=, …………… 1分 ∴点M 是BE 的中点. …………… 2分∵点N 是PB 的中点,FEMNDCBAP ∴MN PE //. …………… 3分 ∵PE ⊂面PAD ,MN ⊄平面PAD ,∴MN //面PAD . …………… 4分 证法3: 取AB 的中点E ,连接NE ME ,, ∵点M 是CD 的中点,点N 是PB 的中点,∴ME AD //,NE PA //. ∵AD ⊂面PAD ,ME ⊄平面PAD ,∴ME //面PAD . …………… 1分 ∵PA ⊂面PAD ,NE ⊄平面PAD ,∴NE //面PAD . …………… 2分∵ME NE E = ,NE ⊂平面MEN ,ME ⊂平面MEN ,∴平面MEN //面PAD . …………… 3分∵MN ⊂平面MEN ,∴MN //面PAD . …………… 4分 (2)解法1:∵NE PA //,PA ^面ABCD ,∴NE ^面ABCD . …………… 5分 ∵AM ⊂面ABCD ,∴NE AM ⊥. …………… 6分 过E 作EF AM ⊥,垂足为F ,连接NF ,∵NE EF E = ,NE ⊂面NEF ,EF ⊂面NEF ,∴AM ⊥面NEF . …………… 7分 ∵NF ⊂面NEF ,∴AM NF ⊥. …………… 8分∴NFE ∠是二面角N AM B --的平面角. …………… 9分 在Rt △NEM 中,5MN =,3ME AD ==,得4NE ==,…………… 10分 在Rt △MEA 中,32AE =,得AM ==,5AE ME EF AM ==g . …………… 11分在Rt △NEF中,5NF ==, …………… 12分cos EF NFENF ?=…………… 13分 ∴二面角N AM B --. …………… 14分 解法2:∵NE PA //,PA ^面ABCD , ∴NE ^面ABCD .在Rt △NEM 中,5MN =,3ME AD ==,得4NE ==,…………… 5分以点A 为原点,AD 所在直线为x 轴,AB 所在直线为y 轴,AP 所在直线为z 轴, 建立空间直角坐标系A xyz -, …………… 6分则()333000300004222A M E N ,,,,,,,,,,,⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∴()004EN ,,= ,3302AM ,,⎛⎫= ⎪⎝⎭ ,3042AN ,,⎛⎫= ⎪⎝⎭. …………… 8分设平面AMN 的法向量为n ()x y z ,,=,由n 0AM ⋅= ,n 0AN ⋅=,得33023402x y y z ,.⎧+=⎪⎪⎨⎪+=⎪⎩ 令1x =,得2y =-,34z =. ∴n 3124,,⎛⎫=- ⎪⎝⎭是平面AMN 的一个法向量. …………… 11分又()004EN ,,=是平面AMB 的一个法向量, …………… 12分cos , n EN ==n ENnEN. …………… 13分 ∴二面角N AM B --的余弦值为89. …………… 14分 19. (本小题满分14分)(本小题主要考查抛物线、求曲线的轨迹、均值不等式等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识) 解法一:(1)解:设()()()221122M x y A y y B y y ,,,,,,∵OA OB OC +=,∴M 是线段AB 的中点. …………… 2分 ∴()222121212222y y y y y y x +-+==,① …………… 3分122y y y +=. ② …………… 4分 ∵OA OB ⊥, ∴0OA OB ⋅=.∴2212120y y y y +=. …………… 5分依题意知120y y ≠,∴121y y =-. ③ …………… 6分把②、③代入①得:2422y x +=,即()2112y x =-. …………… 7分∴点M 的轨迹方程为()2112yx =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形,∴四边形AOBC 的面积为S OA OB = =⋅…………… 9分===…………… 11分∵22121222y y y y +≥=,当且仅当12y y =时,等号成立, …………… 12分∴2S ≥=. …………… 13分∴四边形AOBC 的面积的最小值为2. …………… 14分 解法二:(1)解:依题意,知直线OA OB ,的斜率存在,设直线OA 的斜率为k , 由于OA OB ⊥,则直线OB 的斜率为1k-. …………… 1分 故直线OA 的方程为y kx =,直线OB 的方程为1y x k=-. 由2y kx y x ,.⎧=⎨=⎩ 消去y ,得220k x x -=. 解得0x =或21x k=. …………… 2分 ∴点A 的坐标为211k k ,⎛⎫⎪⎝⎭. …………… 3分 同理得点B 的坐标为()2k k ,-. …………… 4分∵OA OB OC +=,∴M 是线段AB 的中点. …………… 5分 设点M 的坐标为()x y ,,则221212k kx k k y ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩ …………… 6分消去k ,得()2112yx =-. …………… 7分 ∴点M 的轨迹方程为()2112y x =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为S OA OB ==⋅ (9)分=…………… 10分≥…………… 11分 2=. …………… 12分 当且仅当221kk=,即21k =时,等号成立. …………… 13分 ∴四边形AOBC 的面积的最小值为2. …………… 14分20. (本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1)解法1:设1232n b b b b ,,,,+ 构成等比数列,其中1212n b b ,+==,依题意,1212n n n A b b b b ++=⋅⋅⋅⋅ , ① …………… 1分 2121n n n A b b b b ++=⋅⋅⋅⋅ , ② …………… 2分 由于12213212n n n n b b b b b b b b +++⋅=⋅=⋅==⋅= , …………… 3分①⨯②得()()()()212211221n n n n n A b b b b b b b b ++++=⋅⋅⋅⋅ 22n +=.…………… 4分∵0n A >, ∴222n n A +=. …………… 5分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =,. …………… 7分∴1nn S ⎡⎤-⎢⎥=(41n⎡⎤=+-⎢⎥⎣⎦. …………… 8分 解法2: 设1232n b b b b ,,,,+ 构成等比数列,其中1212n b b ,+==,公比为q ,则121n n b b q ++=,即12n q +=. …………… 1分 依题意,得1212n n n A b b b b ++=⋅⋅⋅⋅ ()()()211111n b b q b q b q +=⋅⋅⋅⋅ …………… 2分()()212311n n b q++++++=⋅ …………… 3分()()122n n q ++= …………… 4分222n +=. …………… 5分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =,. …………… 7分∴1nn S ⎡⎤-⎢⎥=(41n⎡⎤=+-⎢⎥⎣⎦. …………… 8分 (2)解: 由(1)得2n n a A log =222222n n log ++==, …………… 9分 ∵()()()11111n nn n n ntan tan tan tan tan tan +-⎡⎤=+-=⎣⎦++⋅, ……………10分∴()()1111n nn n tan tan tan tan tan +-⋅+=-,n ∈N *. ……………11分∴2446222n n n T a a a a a a tan tan tan tan tan tan +=⋅+⋅++⋅ 2334tan tan tan tan tan =⋅+⋅++ ()()12n n tan +⋅+()()213243111111n n tan tan tan tan tan tan tan tan tan ⎛⎫+-+⎛⎫⎛⎫--=-+-++- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()221n n tan tan tan +--. …………… 14分21.(本小题满分14分)(本小题主要考查函数、绝对值不等式等基础知识,考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1) 解:()sin g x x =是R 上的“平缓函数”,但2()h x x x =-不是区间R 的“平缓函数”;设()sin x x x ϕ=-,则()1c o s 0x x ϕ'=-≥,则()sin x x x ϕ=-是实数集R 上的增函数,不妨设12x x <,则12()()x x ϕϕ<,即1122sin sin x x x x -<-,则2121sin sin x x x x -<-. ① …………… 1分 又sin y x x =+也是R 上的增函数,则1122sin sin x x x x +<+,即2112sin sin x x x x ->-, ② …………… 2分 由①、②得 212121()sin sin x x x x x x --<-<-.因此,2121sin sin x x x x -<-,对12x x <都成立. …………… 3分 当12x x >时,同理有2121sin sin x x x x -<-成立 又当12x x =时,不等式2121sin sin 0x x x x -=-=, 故对任意的实数1x ,2x ∈R ,均有2121sin sin x x x x -≤-.因此 ()sin g x x =是R 上的“平缓函数”. …………… 5分 由于121212()()()(1)h x h x x x x x -=-+- …………… 6分 取13x =,22x =,则1212()()4h x h x x x -=>-, …………… 7分因此, 2()h x x x =-不是区间R 的“平缓函数”. …………… 8分 (2)证明:由(1)得:()sin g x x =是R 上的“平缓函数”,则11sin sin n n n n x x x x ++-≤-, 所以 11n n n n y y x x ++-≤-. …………… 9分 而121(21)n n x x n +-≤+,∴ 12211111()(21)4441n n y y n n n n n +-≤<=-+++. …………… 10分 ∵11111221()()()()n n n n n n n y y y y y y y y y y ++----=-+-+-++- ,……… 11分 ∴1111221n n n n n y y y y y y y y ++---≤-+-++- . …………… 12分 ∴11111111[()()(1)]4112n y y n n n n +-≤-+-++-+- 11141n ⎛⎫=- ⎪+⎝⎭ …………… 13分14<. …………… 14分。
2013年佛山市普通高中高三教学质量检测(一)数 学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式:①柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高. ②锥体的体积公式13V Sh =,其中S 为柱体的底面积,h 为锥体的高. ③标准差222121[()()()]n s x x x x x x n=-+-++-,其中x 为样本12,,,n x x x 的平均数.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 为虚数单位,则复数i2i+等于 A .12i 55+ B . 12i 55-+ C .12i 55- D .12i 55--2.命题:p 2,11x x ∀∈+≥R ,则p ⌝是A .2,11x x ∀∈+<RB .2,11x x ∃∈+≤RC .2,11x x ∃∈+<RD .2,11x x ∃∈+≥R3.已知(1,2)=a ,(0,1)=b ,(,2)k =-c ,若(2)+⊥a b c ,则k = A .2 B .8 C .2- D .8-4.一个直棱柱被一个平面截去一部分后所剩几何体的 三视图如图所示,则该几何体的体积为 A .9 B .10C .11D .232221 31 正视图侧视图俯视图第4题图5.为了从甲乙两人中选一人参加数学竞赛,老师将两人最近的6次数学测试的分数进行统计,甲乙两人的得分情况如茎叶图所示,若甲乙两人的平均成绩分别是x 甲,x 乙,则下列说法正确的是A .x x >甲乙,乙比甲成绩稳定,应该选乙参加比赛B .x x >甲乙,甲比乙成绩稳定,应该选甲参加比赛C .x x <甲乙,甲比乙成绩稳定,应该选甲参加比赛D .x x <甲乙,乙比甲成绩稳定,应该选乙参加比赛6.已知实数,x y 满足11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值为A .3-B .12C .5D .6 7.已知集合{}|4||1|5M x x x =-+-<,{}6N x a x =<< ,且()2,MN b =,则a b +=A .6B .7C .8D .98.对于函数()y f x =,如果存在区间[,]m n ,同时满足下列条件:①()f x 在[,]m n 内是单调的;②当定义域是[,]m n 时,()f x 的值域也是[,]m n ,则称[,]m n 是该函数的“和谐区间”.若函数11()(0)a f x a a x+=->存在“和谐区间”,则a 的取值范围是 A .(0,1) B . (0,2) C .15(,)22D .(1,3)二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.已知函数()y f x =是奇函数,当0x >时,()f x =2log x ,则1(())4f f 的值等于 . 10.已知抛物线24x y =上一点P 到焦点F 的距离是5,则点P 的横坐标是_____. 11.函数sin sin 3y x x π⎛⎫=+-⎪⎝⎭的最小正周期为 ,最大值是 . ξ0 1 2 3第5题图12.某学生在参加政、史、地 三门课程的学业水平考试中,取得A 等级的概率分别为54、53、52, 且三门课程的成绩是否取得A 等级相互独立.记ξ为该生取得A 等级的课程数,其分布列如表所示,则数学期望ξE 的值为______________. 13.观察下列不等式: ①112<;②11226+<;③11132612++<;… 则第5个不等式为 .(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,直线l 过点(1,0)且与直线3πθ=(ρ∈R )垂直,则直线l 极坐标方程为 .15.(几何证明选讲)如图,M 是平行四边形ABCD 的边AB 的 中点,直线l 过点M 分别交,AD AC 于点,E F . 若3AD AE =,则:AF FC = .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分)如图,在△ABC 中,45C ∠=,D 为BC 中点,2BC =. 记锐角ADB α∠=.且满足7cos 225α=-. (1)求cos α;(2)求BC 边上高的值.P6125a b24125第15题图F ABCD E Ml第16题图CBD A17.(本题满分12分)数列{}n a 的前n 项和为122n n S +=-,数列{}n b 是首项为1a ,公差为(0)d d ≠的等差数列,且1311,,b b b 成等比数列.(1)求数列{}n a 与{}n b 的通项公式; (2)设nn nb c a =,求数列{}n c 的前n 项和n T .18.(本题满分14分)如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点, 且13AD DB =,点C 为圆O 上一点,且3BC AC =. 点P 在圆O 所在平面上的正投影为点D ,PD DB =. (1)求证:PA CD ⊥;(2)求二面角C PB A --的余弦值.19.(本题满分14分)某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式3C x =+,每日的销售额S (单位:万元)与日产量x 的函数关系式PABDCO第18题图35, (06)814, (6)k x x S x x ⎧++<<⎪=-⎨⎪≥⎩ 已知每日的利润L S C =-,且当2x =时,3L =.(1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.20.(本题满分14分)设椭圆22221(0)x y a b a b +=>>的左右顶点分别为(2,0),(2,0)A B -,离心率32e =.过该椭圆上任一点P 作PQ x ⊥轴,垂足为Q ,点C 在QP 的延长线上,且||||QP PC =. (1)求椭圆的方程;(2)求动点C 的轨迹E 的方程;(3)设直线AC (C 点不同于,A B )与直线2x =交于点R ,D 为线段RB 的中点,试判断直线CD 与曲线E 的位置关系,并证明你的结论.21.(本题满分14分)设()xg x e =,()[(1)]()f x g x a g x =λ+-λ-λ,其中,a λ是常数,且01λ<<.(1)求函数()f x 的极值;(2)证明:对任意正数a ,存在正数x ,使不等式11x e a x--<成立; (3)设12,λλ∈+R ,且121λλ+=,证明:对任意正数21,a a 都有:12121122a a a a λλ≤λ+λ.2013年佛山市普通高中高三教学质量检测(一)数学试题(理科)参考答案和评分标准一、选择题:本大题共8小题,每小题5分,满分40分. 题号 12345678 答案A CBCD C BA二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分. 9.1- 10.4± 11.2π(2分),3 (3分) 12.59 13.11111526122030++++< 14.2sin()16πρθ+=(或2cos()13πρθ-=、cos 3sin 1ρθρθ+=) 15.1:4三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分)解析:(1)∵27cos 22cos 125αα=-=-,∴29cos 25α=, ∵(0,)2πα∈,∴3c o s 5α=. -----------------5分(2)方法一、由(1)得24sin 1cos 5αα=-=,∵45CAD ADB C α∠=∠-∠=-,∴2sin sin()sin cos cos sin 44410CAD πππααα∠=-=-=,-----------------9分在ACD ∆中,由正弦定理得:sin sin CD ADCAD C=∠∠,∴21sin 25sin 210CD CAD CAD⨯⋅∠===∠,-----------------11分则高4sin 545h AD ADB =⋅∠=⨯=. -----------------12分 方法二、如图,作BC 边上的高为AH在直角△ADH 中,由(1)可得3cos 5DB AD α==, 则不妨设5,AD m = 则3,4DH m AH m ==-----------------8分第16题图 C BD AH注意到=45C ∠,则AHC ∆为等腰直角三角形,所以CD DH AH += , 则134m m +=-----------------10分 所以1m =,即4AH =-----------------12分17.(本题满分12分)解析:(1)当2n ≥,时11222n nn n n n a S S +-=-=-=, -----------------2分又111112222a S +==-==,也满足上式, 所以数列{na }的通项公式为2n n a =. -----------------3分 112b a ==,设公差为d ,则由1311,,b b b 成等比数列,得2(22)2(210)d d +=⨯+,-----------------4分解得0d =(舍去)或3d =,----------------5分 所以数列}{n b 的通项公式为31n b n =-. -----------------6分(2)由(1)可得312123nn nb b b b T a a a a =++++123258312222nn -=++++,-----------------7分121583122222n n n T --=++++,-----------------8分两式式相减得12133********n n nn T --=++++-,-----------------11分131(1)3135222512212n n n nn n T ---+=+-=--,-----------------12分18.(本题满分14分)解析:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO 的中点, 又∵AB 为圆O 的直径,∴AC CB ⊥, 由3AC BC =知,60CAB ∠=,∴ACO ∆为等边三角形,从而CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥. -----------------6分(注:证明CD ⊥平面PAB 时,也可以由平面PAB ⊥平面ACB 得到,酌情给分.) 法2:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆中设1AD =,由3AD D B =,3AC BC =得,3DB =,4AB =,23BC =,∴32BD BC BC AB ==,则BDC BCA ∆∆∽, ∴BCA BDC∠=∠,即C ⊥. -----------------3分∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥. -----------------6分 法3:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆中由3AC BC =得,30ABC ∠=, 设1AD =,由3AD DB =得,3DB =,23BC =,PABDCO由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=, ∴222CD DB BC +=,即C⊥. -----------------3分∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥. -----------------6分(Ⅱ)法1:(综合法)过点D 作DE PB ⊥,垂足为E ,连接CE . -----------------7分由(1)知CD ⊥平面PAB ,又PB ⊂平面PAB , ∴CD PB ⊥,又DE CD D =,∴PB ⊥平面CDE ,又CE ⊂平面CDE , ∴CE PB ⊥,-----------------9分∴DEC ∠为二面角C PB A --的平面角. -----------------10分 由(Ⅰ)可知3CD =,3PD DB ==,(注:在第(Ⅰ)问中使用方法1时,此处需要设出线段的长度,酌情给分.)∴32PB =,则932232PD DB DE PB ⋅===, ∴在Rt CDE ∆中,36tan 3322CD DEC DE ∠===, ∴15cos 5DEC ∠=,即二面角C P B --的余弦值为155. -----------------14分 法2:(坐标法)以D 为原点,DC 、DB 和DP 的方向分别为x 轴、y 轴和z 轴的正向,建立如图所示的空间直角坐标系. -----------------8分 (注:如果第(Ⅰ)问就使用“坐标法”时,建系之前先要证明CD AB ⊥,酌情给分.) 设1AD =,由3AD DB =,3AC BC =得,3PD DB ==,3CD =,PABDC OE∴(0,0,0)D ,(3,0,0)C ,(0,3,0)B ,(0,0,3)P , ∴(3,0,3)PC =-,(0,3,3)PB =-,(3,0,0)CD =-, 由CD ⊥平面PAB,知平面PAB的一个法向量为(3,0,0)CD =-. -----------------10分设平面PBC 的一个法向量为(,,)x y z =n ,则PC PB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即330330x y y z ⎧-=⎪⎨-=⎪⎩,令1y =,则3x =,1z =, ∴(3,1,1)=n ,-----------------12分 设二面角C PB A --的平面角的大小为θ, 则315cos 5||53CD CD θ⋅-===-⋅⨯n |n |,-----------------13分 ∴二面角C PB A --的余弦值为155.-----------------14分19.(本题满分14分) 解析:(Ⅰ)由题意可得:22,06811,6k x x L x x x ⎧++<<⎪=-⎨⎪-≥⎩,-----------------2分 因为2x =时,3L =,所以322228k=⨯++-.-----------------4分解得18k =.-----------------5分(Ⅱ)当06x <<时,18228L x x =++-,所以 1818182818=[2(8)]182********L x x x x x x=-++--++--⋅+=---≤()().-----------------8分 当且仅当182(8)8x x-=-,即5x =时取得等号. -----------------10分当6x ≥时,1L x =-≤. -----------------12分 所以当5x =时,L 取得最大值6.PABDCOyz x所以当日产量为5吨时,每日的利润可以达到最大值6万元. -----------------14分20.(本题满分14分)解析:(1)由题意可得2a =,32c e a ==,∴3c =, -----------------2分∴2221b a c =-=,所以椭圆的方程为2214x y +=. -----------------4分 (2)设(,)C x y ,00(,)P x y ,由题意得002x x y y =⎧⎨=⎩,即0012x x y x =⎧⎪⎨=⎪⎩, -----------------6分 又220014x y +=,代入得221()142x y +=,即224x y +=. 即动点C 的轨迹E 的方程为224x y +=. -----------------8分(3)设(,)C m n ,点R 的坐标为(2,)t ,∵,,A C R 三点共线,∴//AC AR ,而(2,)AC m n =+,(4,)AR t =,则4(2)n t m =+, ∴42n t m =+, ∴点R 的坐标为4(2,)2n m +,点D 的坐标为2(2,)2n m +, -----------------10分∴直线CD 的斜率为222(2)22244n n m n n mn m k m m m -+-+===---, 而224m n +=,∴224m n -=-,∴2mn m k n n ==--, -----------------12分∴直线CD 的方程为()m y n x m n-=--,化简得40mx ny +-=, ∴圆心O 到直线CD 的距离224424d r m n ====+, 所以直线CD 与圆O 相切. -----------------14分21.(本题满分14分)解析:(1)∵()[(1f x g x a g x λλλλ'''=+--, -----------------1分由()0f x '>得,[(1)]()g x a g x λλ''+->,∴(1)x a x λλ+->,即(1)()0x a λ--<,解得x a <,-----------------3分故当x a <时,()0f x '>;当x a >时,()0f x '<;∴当x a =时,()f x 取极大值,但()f x 没有极小值.-----------------4分(2)∵111x x e e x x x----=, 又当0x >时,令()1x h x e x =--,则()10x h x e '=->,故()(0)0h x h >=,因此原不等式化为1x e x a x--<,即(1)1x e a x -+-<, -----------------6分 令()(1)1xg x e a x =-+-,则()(1)x g x e a '=-+,由()0g x '=得:1x e a =+,解得ln(1)x a =+,当0ln(1)x a <<+时,()0g x '<;当ln(1)x a >+时,()0g x '>. 故当l n (1x a =+时,()g x 取最小值[ln(1)](1)ln(1)g a a a a +=-++, -----------------8分 令()ln(1),01a s a a a a =-+>+,则2211()0(1)1(1)a s a a a a '=-=-<+++. 故()(0)0s a s <=,即[ln(1)](1)ln(1)0g a a a a +=-++<.因此,存在正数ln(1)x a =+,使原不等式成立. -----------------10分(3)对任意正数12,a a ,存在实数12,x x 使11x a e =,22x a e =,则121122112212x x x x a a e e e λλλλλλ+=⋅=,12112212x x a a e e λλλλ+=+,原不等式12121122a a a a λλλλ≤+11221212x x x x e e e λλλλ+⇔≤+,11221122()()()g x x g x g x λλλλ⇔+≤+ -----------------14分由(1)()(1)()f x g a λ≤-恒成立,故[(1)]()(1)()g x a g x g a λλλλ+-≤+-,取1212,,,1x x a x λλλλ===-=,即得11221122()()()g x x g x g x λλλλ+≤+,即11221212x x xx e e e λλλλ+≤+,故所证不等式成立. -----------------14分。
东莞2012-2013学年度第—学期高三调研测试理科数学考生注意:本卷共三大题,满分150分,时问120分钟.不准使用计算器 参考公式:若事件A 与事件B 相互独立,则P (AB )=P (A )P (B ).一、选择题(本大题共8小题,每小题5分,满分40分.每小题各有四个选择支,仅有一 个选择支正确.请用2B 铅笔把答题卡中所选答案的标号涂黑.) 1.若a 实数,1(2)ai i i +=-,则a 等于A .2B .-1C .1D .-2 2.若函数21()cos ()2f x x x R =-∈,则()f x 是 A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数3.学校为了解学生在课外读物方面的支出情况,抽取了n个同学进行调查,结果显示这些同学的支出都在[10,50) (单 位:元),其中支出在[)30,50(单位:元)的同学 有67人,其频率分布直方图如右图所示,则n 的值为 A .100 B .120 C .130 D .390 4.等差数列{}n a 中,192a =-,352a =-,则该数列前n 项 和n S 取得最小值时n 的值是A .4B .5C .6D .75.设m 、n 是两条不同的直线,α,β是两个不同的平面,则m a ⊥的—个充分条件是A .m//n,n //β, αβ⊥B .,n //β,α//βmC .m//n ,n β⊥,α//β D .m n ⊥,n β⊥,αβ⊥6.甲、乙两位选手进行乒乓球比赛,采取3局2胜制(即3局内谁先赢2局就算胜出,比赛结束,每局比赛没有平局,每局甲获胜的概率为35,则比赛打完3局且甲取胜的概率为A .18125B .36125C .925D .18257.2012翼装飞行世界锦标赛在张家界举行,某翼人 空中高速飞行,右图反映了他从某时刻开始的15分钟内的速度()v x 与时间x 的关系,若定义“速度差函数”()u x 为时间段[]0,x 内的最大速度与最小速度的差,则()u x 的图像是8.设集合{}012,,S A A A =,在S 上定义运算⊕:i j k A A A ⊕=,其中k 为i j +被3除的余数,{},1,2,3i j ∈,则使关系式0()i j i A A A A ⊕⊕=成立的有序数对(,)i j 总共有 A .1对 B .2对 C .3对 D .4对 9.已知函数1()1f x x=-的定义域为M,()ln g x x =的定义域为N, 则MN = .10.已知变量x,y 满足120x y x y ≥⎧⎪≤⎨⎪-≤⎩则z x y =+的最小值是 。
河源市2012—2013学年第一学期期末教学质量检测高一数学一、选择题(50分)1.集合A ={x|2≤x <5},B={x|3x-7≥8-2x},则A ∩B 等于 ( ) A .Φ B .{x |2≤x ≤3} C .{x |x ≥3} D .{x |3≤x <5} 2.已知a =(4,2),b =(x,3)且a //b ,则x 等于=( ) A .93A .()f x =C . ()f x 4. A .125 A C6 A .a 7.已知函数()f x 对于任意的x R ∈,都有()()0f x f x +-=恒成立,且当x>0时,2()sin 2cos 3f x x x =+,则当x<0时,()f x = ). A.2sin 2cos 3x x + B .2sin 2cos 3x x -+C .2sin 2cos 3x x -D .2sin 2cos 3x x --8.下列命题正确的是( )A .,a b a c b c ==若则 B.+,0a b a b a b ==若|||-|则C.////,//a b b c a c 若,则 D. 1a b a b 若与是单位向量,则=9.已知()cos,3f x x π=,则(0)(1)(2)(12)f f f f ++++=( )A . 1B .2C .3D .0 10lg()sin 0x x -=的解的个数是( ) A.111121314()0f x >15、已知441()(cos sin )cos 2f x x x x x =-+, (1cos 22sin(2)26x x x π+=+参考公式:1、 2、221cos sin cos 22x x x -=) (1)化简()f x 为()sin()(0,0,||f x A x A ωϕωϕπ=+>><的形式; (2)若21,,(),()2432226f f πππαβπαπβ<<<<=-=,求sin()αβ+的值。
222N广州市2013届高三年级调研测试数学(理科)试题解析 2013-1-9一、选择题1. A分析:2i(23i)=2i3i2i332i,其对应的点为(3,2),位于第一象限2. D分析:{0,1,2,3,4}A=,{|2,}{0,2,4,6,8}B x x n n A∴==∈=,{0,2,4}A B∴=3. B分析:22211log log2244f-⎛⎫===-⎪⎝⎭,()2112349f f f-⎛⎫⎛⎫=-==⎪⎪⎝⎭⎝⎭4. A分析:当//a b时,有24(1)(1)0x x,解得3x=±;所以3//x a b=⇒,但//3a b x=,故“3x=”是“//a b”的充分不必要条件5. B分析:逆推法,将sin2y x=的图象向左平移6π个单位即得()y f x=的图象,即()sin2()sin(2)cos[(2)]cos(2)cos(2)632366f x x x x x xππππππ=+=+=-+=-+=-6. C分析:三棱锥如图所示,3PM=,142PDCS∆=⨯=,12332PBC PAD S S ∆∆==⨯⨯=,14362PAB S ∆=⨯⨯= 7. B分析:方程22221x y a b表示焦点在x 轴且离心率小于3的椭圆时,有222232a b c a b e a a ⎧>⎪⎨-==<⎪⎩,即22224a b a b⎧>⎨<⎩,化简得2a b a b >⎧⎨<⎩,又[1,5]a ∈,[2,4]b ∈, 画出满足不等式组的平面区域,如右图阴影部分所示,求得阴影部分的面积为154,故152432S P ==⨯阴影8. C分析:由题意得()()(1)x a x x a x ,故不等式()2x a x a 化为()(1)2x a x a ,化简得2(1)220x a x a -+++,故原题等价于2(1)220x a x a -+++在(2,)+∞上恒成立,由二次函数2()(1)22f x x a x a =-+++图象,其对称轴为12a x +=,讨论得 122(2)0a f +⎧⎪⎨⎪⎩ 或 1221()02a a f +⎧>⎪⎪⎨+⎪⎪⎩,解得3a 或 37a <, 综上可得7a二、填空题 9.28分析:方法一、(基本量法)由34512a a a 得11123412a d a d a d ,即13912a d += ,化简得134a d,故7117677(3)73282S a d a d方法二、等差数列中由173542a a a a a 可将34512a a a 化为173()122a a ,即178a a ,故1777()282a a S10.1分析:299183991C ()(1)C rr rr r rrax a x x,令6r =,得其常数项为6369(1)C 84a ,即38484a =,解得1a =11.e -分析:设切点为000(,ln )x x x ,由1(ln )ln ln 1y x x x xx x''==+=+得0ln 1k x =+, 故切线方程为0000ln (ln 1)()y x x x x x -=+-,整理得00(ln 1)y x x x =+-, 与2y x m =+比较得00ln 12x x m +=⎧⎨-=⎩,解得0e x =,故em =-503(1592009)503(59132013)=-+++++++++50315032013=-++ 12. 4分析:圆方程2224150x y x y +++-=化为标准式为22(1)(2)20x y +++=,其圆心坐标(1,2)--,半径r =,由点到直线的距离公式得圆心到直线20x y -=的距离d ==,由右图 所示,圆上到直线20x y -=413.3018 分析:由题意11cos112a π=⨯+=,222cos112a π=⨯+=-,333cos 112a π=⨯+=,444cos152a π=⨯+=,555cos 112a π=⨯+=,666cos 152a π=⨯+=-,777cos112a π=⨯+=,888cos 192a π=⨯+=,…20091a =, 20102009a =-, 20111a =,20122013a =;以上共503行, 输出的122012S a a a =+++3018=14.分析:如图,因为PC OP ⊥ ,所以P 是弦CD 中点,由相交弦定理知2PA PB PC =, 即28PC =,故PC =分析:圆C 的参数方程化为平面直角坐标方程为22(2)1x y +-=,直线l 的极坐标方程化为平面直角坐标方程为1x y +=,如右图所示,圆心到直线的距离2d ==故圆C 截直线l 所得的弦长为三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查同角三角函数的关系、正弦定理、二倍角、两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:∵123a b B ,,π===,依据正弦定理得:a bA Bsin sin =, …………… 1分即1A sin =,解得A sin =4. …………… 3分 (2)解:∵a b <, ∴02A B π<<<. …………… 4分∴A cos ==…………… 5分∴228A A A sin sin cos ==, …………… 6分 252128A A cos sin =-=. …………… 7分 ∵ABC π++=, ∴23C A π=-. …………… 8分 ∴4223C A cos cos π⎛⎫=-⎪⎝⎭…………… 9分442233A A cos cos sin sin ππ=+ …………… 10分1528=-⨯-⨯=-…………… 12分17.(本小题满分12分)(本小题主要考查分层抽样、概率、离散型随机变量的分布列等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)(1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名, 抽取的样本容量与总体个数的比值为5011002=. ∴应从,,,A B C D 四所中学抽取的学生人数分别为15,20,10,5. …………… 4分 (2)解:设“从参加问卷调查的50名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件M ,从参加问卷调查的50名学生中随机抽取两名学生的取法共有C 250=1225种,… 5分这两名学生来自同一所中学的取法共有C 215+C 220+C 210+C 25=350. (6)分∴()3501225P M ==27. 答:从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率为27. …………… 7分(3) 解:由(1)知,在参加问卷调查的50名学生中,来自,A C 两所中学的学生人数分别为15,10.依题意得,ξ的可能取值为0,1,2, (8)分()0 Pξ==210225CC960=,()1Pξ==111510225C CC=12,()2Pξ==215225CC720=. (11)分∴ξ的分布列为:EMNDCBAPNAP…………… 12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) (1)证法1:取PA 的中点E ,连接DE EN ,, ∵点N 是PB 的中点,∴12EN AB EN AB //,=. …………… 1分 ∵点M 是CD 的中点,底面ABCD 是正方形,∴12DM AB DM AB //,=. …………… 2分 ∴EN DM EN DM //,=. ∴四边形EDMN 是平行四边形.∴MN DE //. …………… 3分 ∵DE ⊂平面PAD ,MN ⊄平面PAD , ∴MN //面PAD . …………… 4分 证法2:连接BM 并延长交AD 的延长线于点E ,连接PE ,P∵点M 是CD 的中点,∴12DM AB DM AB //,=, …………… 1分 ∴点M 是BE 的中点. …………… 2分∵点N 是PB 的中点,∴MN PE //. …………… 3分∵PE ⊂面PAD ,MN ⊄平面PAD ,∴MN //面PAD . …………… 4分 证法3:取AB 的中点E ,连接NE ME ,,∵点M 是CD 的中点,点N 是PB 的中点,∴ME AD //,NE PA //. ∵AD ⊂面PAD ,ME ⊄平面PAD ,∴ME //面PAD . …………… 1分∵PA ⊂面PAD ,NE ⊄平面PAD ,∴NE //面PAD . …………… 2分 ∵MENE E =,NE ⊂平面MEN ,ME ⊂平面MEN ,∴平面MEN//面PAD. …………… 3分∵MN 平面MEN,∴MN//面PAD. …………… 4分(2)解法1:∵NE PA //,PA 面ABCD ,∴NE面ABCD . …………… 5分∵AM ⊂面ABCD ,∴NE AM ⊥. …………… 6分 过E 作EF AM ⊥,垂足为F ,连接NF , ∵NEEF E =,NE ⊂面NEF ,EF ⊂面NEF ,∴AM ⊥面NEF . …………… 7分∵NF ⊂面NEF ,∴AM NF ⊥. …………… 8分∴NFE ∠是二面角N AM B 的平面角. (9)分在Rt △NEM 中,5MN,3ME AD ==,得4NE ==,…………… 10分在Rt △MEA 中,32AE,得AM ==355AE ME EF AM . …………… 11分在Rt △NEF 中,5NF ==, …………… 12分 389cos 89EF NFE NF . …………… 13分∴二面角NAM B的余弦值为89. …………… 14分 解法2:∵NE PA //,PA 面ABCD ,∴NE面ABCD .在Rt △NEM 中,5MN ,3ME AD ==,得4NE ==, (5)分以点A 为原点,AD 所在直线为x 轴,AB 所在直线为y 轴,AP 所在直线为z 轴,建立空间直角坐标系A xyz -, …………… 6分则()333000300004222A M E N ,,,,,,,,,,,⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴()004EN ,,=,3302AM ,,⎛⎫= ⎪⎝⎭,3042AN ,,⎛⎫= ⎪⎝⎭. …………… 8分设平面AMN 的法向量为n ()x y z ,,=, 由n 0AM ⋅=,n 0AN ⋅=,得33023402x y y z ,.⎧+=⎪⎪⎨⎪+=⎪⎩令1x =,得2y =-,34z =. ∴n 3124,,⎛⎫=- ⎪⎝⎭是平面AMN 的一个法向量. …………… 11分又()004EN ,,=是平面AMB 的一个法向量, …………… 12分cos ,n EN ==n ENn EN. …………… 13分∴二面角N AM B . …………… 14分 19. (本小题满分14分)(本小题主要考查抛物线、求曲线的轨迹、均值不等式等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)解法一:(1)解:设()()()221122M x y A y y B y y ,,,,,, ∵OA OB OC +=,∴M 是线段AB 的中点. …………… 2分∴()222121212222y y y y y y x +-+==,① …………… 3分122y y y +=. ② …………… 4分 ∵OA OB ⊥, ∴0OA OB ⋅=.∴2212120y y y y +=. …………… 5分依题意知120y y ≠,∴121y y =-. ③ …………… 6分把②、③代入①得:2422y x +=,即()2112y x =-. …………… 7分∴点M 的轨迹方程为()2112yx =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为==⋅ (9)S OA OB分=== (11)分∵22121222y y y y +≥=,当且仅当12y y =时,等号成立, (12)分∴2S ≥=. …………… 13分∴四边形AOBC 的面积的最小值为2. …………… 14分解法二:(1)解:依题意,知直线OA OB ,的斜率存在,设直线OA 的斜率为k , 由于OA OB ⊥,则直线OB 的斜率为1k-. …………… 1分 故直线OA 的方程为y kx =,直线OB 的方程为1y x k=-. 由2y kx y x ,.⎧=⎨=⎩ 消去y ,得220k x x -=.解得0x =或21x k =. …………… 2分∴点A 的坐标为211k k ,⎛⎫⎪⎝⎭. …………… 3分 同理得点B 的坐标为()2k k ,-. …………… 4分∵OA OB OC +=,∴M 是线段AB 的中点. …………… 5分 设点M 的坐标为()x y ,,则221212k k x k k y ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩ …………… 6分消去k ,得()2112yx =-. …………… 7分 ∴点M 的轨迹方程为()2112y x =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC的面积为S OA OB ==⋅…………… 9分=…………… 10分≥…………… 11分2=. …………… 12分 当且仅当221kk=,即21k =时,等号成立. …………… 13分 ∴四边形AOBC 的面积的最小值为2. …………… 14分20. (本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1)解法1:设1232n b b b b ,,,,+构成等比数列,其中1212n b b ,+==,依题意,1212n n n A b b b b ++=⋅⋅⋅⋅, ① …………… 1分2121n n n A b b b b ++=⋅⋅⋅⋅, ② …………… 2分由于12213212n n n n b b b b b b b b +++⋅=⋅=⋅==⋅=, …………… 3分①⨯②得()()()()212211221n n n n n A b b b b b b b b ++++=⋅⋅⋅⋅22n +=.…………… 4分∵0n A >,∴222n n A +=. …………… 5分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =,的等比数列. …………… 7分∴n S =(41⎡⎤=+-⎢⎥⎣⎦. …………… 8分 解法2: 设1232n b b b b ,,,,+构成等比数列,其中1212n b b ,+==,公比为q ,则121n n b b q ++=,即12n q +=. …………… 1分依题意,得1212n n n A b b b b ++=⋅⋅⋅⋅()()()211111n b b q b q b q +=⋅⋅⋅⋅ (2)分()()212311n n b q++++++=⋅ (3)分()()122n n q ++= (4)分222n +=. (5)分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =,的等比数列. …………… 7分∴n S =(41⎡⎤=+-⎢⎥⎣⎦. …………… 8分 (2)解: 由(1)得2n n a A log =222222n n log ++==, …………… 9分∵()()()11111n nn n n ntan tan tan tan tan tan +-⎡⎤=+-=⎣⎦++⋅, ……………10分∴()()1111n nn n tan tan tan tan tan +-⋅+=-,n ∈N *. ……………11分∴2446222n n n T a a a a a a tan tan tan tan tan tan +=⋅+⋅++⋅2334tan tan tan tan tan =⋅+⋅++()()12n n tan +⋅+()()213243111111n n tan tan tan tan tan tan tan tan tan ⎛⎫+-+⎛⎫⎛⎫--=-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()221n n tan tan tan +--. (14)分21.(本小题满分14分)(本小题主要考查函数、绝对值不等式等基础知识,考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识)(1) 解:()sin g x x =是R 上的“平缓函数”,但2()h x x x =-不是区间R 的“平缓函数”;设()sin x x x ϕ=-,则()1cos 0x x ϕ'=-≥,则()sin x x x ϕ=-是实数集R 上的增函数,不妨设12x x <,则12()()x x ϕϕ<,即1122sin sin x x x x -<-,则2121sin sin x x x x -<-. ① …………… 1分 又sin y x x =+也是R 上的增函数,则1122sin sin x x x x +<+,即2112sin sin x x x x ->-, ② …………… 2分由①、②得 212121()sin sin x x x x x x --<-<-.因此,2121sin sin x x x x -<-,对12x x <都成立. …………… 3分当12x x >时,同理有2121sin sin x x x x -<-成立 又当12x x =时,不等式2121sin sin 0x x x x -=-=,故对任意的实数1x ,2x ∈R ,均有2121sin sin x x x x -≤-.因此 ()sin g x x =是R 上的“平缓函数”. …………… 5分由于121212()()()(1)h x h x x x x x -=-+- …………… 6分取13x =,22x =,则1212()()4h x h x x x -=>-, …………… 7分因此, 2()h x x x =-不是区间R 的“平缓函数”. …………… 8分(2)证明:由(1)得:()sin g x x =是R 上的“平缓函数”,则11sin sin n n n n x x x x ++-≤-, 所以 11n n n n y y x x ++-≤-. …………… 9分而121(21)n n x x n +-≤+, ∴ 12211111()(21)4441n n y y n n n n n +-≤<=-+++. …………… 10分 ∵11111221()()()()n n n n n n n y y y y y y y y y y ++----=-+-+-++-,……… 11分∴1111221n n n n n y y y y y y y y ++---≤-+-++-. …………… 12分∴11111111[()()(1)]4112n y y n n n n+-≤-+-++-+-11141n ⎛⎫=- ⎪+⎝⎭ (13)分14<. …………… 14分友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
广东省佛山市2013届高三4月教学质量检测(二)理科综合一、单项选择题:本大题共6小题,每小题4分。
共24分。
在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。
1. 下列哪种物质是用右图所示的运输方式进入细胞的?()A.CO2B.甘油C.氨基酸D.胰岛素2. 关于组成细胞的有机物,下列叙述正确的是()A.盘曲和折叠的肽链被解开时,蛋白质的特定功能可能会发生改变B.RNA与DNA的分子结构很相似,由四种核苷酸组成,但不能储存遗传信息C.葡萄糖和蔗糖都可以被细胞直接用于呼吸作用D.组成细胞膜的脂质是磷脂,不含胆固醇3. 甲至丁为二倍体生物卵巢中的一些细胞分裂图,有关判断正确的是()A.若图中所示细胞分裂具有连续性,则顺序依次为乙→丙→甲→丁B.甲、乙、丙细胞中含有的染色体组数目依次为4、2、1C.若乙的基因组成为AAaaBBbb,则丁的基因组成为AaBbD.乙是次级卵母细胞,丁可能为卵细胞4. 下列有关种群和群落的叙述不.正确的是()A.种间关系属于群落水平的研究内容B.随着时间的推移,弃耕的农田可能演替成森林C.群落中动物的垂直分层现象与植物有关D.出生率和死亡率是种群最基本的数量特征5. 某同学绘制的生态系统概念图如下,下列叙述不.正确的是()A.①表示生态系统的组成成分B.③越复杂,生态系统的抵抗力稳定性越强C.④中可能有微生物D.该图漏写了生态系统的某项功能6. 下列有关实验的叙述正确的是()A.经甲基绿染色的口腔上皮细胞,可在高倍镜下观察到蓝绿色的线粒体B.在噬菌体侵染细菌的实验中,用35S 标记噬菌体的蛋白质C.用于观察质壁分离与复原的洋葱表皮细胞也可以用来观察有丝分裂D.可用标志重捕法精确地得到某地野驴的种群密度7.下列说法不正确...的是A.天然气的主要成分是甲烷B.蛋白质、糖类物质都能发生水解反应C.煤的干馏是化学变化,石油的分馏是物理变化D.乙醇、乙烯、乙醛都可被酸性高锰酸钾溶液氧化8.下列离子反应方程式正确的是A.氨水吸收过量的SO2:OH-+SO2=HSO3-B.FeSO4溶液被氧气氧化:4Fe2++O2+2H2O=4Fe3++4OH-C.NaAlO2溶液中加入过量稀硫酸:AlO2-+H++H2O=Al(OH)3↓D.Cl2与稀NaOH溶液反应:Cl2+2OH-=Cl-+ClO-+ H2O9.N A为阿伏加德罗常数,下列叙述正确的是A.22.4L NH3中含氮原子数为N AB.1 mol Na2O2与水完全反应时转移的电子数为N AC.1 L 0.1mol·L-1碳酸钠溶液的阴离子总数小于0.1 N AD.1 mol O2和2 mol SO2在密闭容器中充分反应后的分子数等于2N A10.下列说法正确的是A.用盐析法分离NaCl溶液和淀粉胶体B.工业制硫酸的吸收塔中用水吸收SO3C.加足量的稀盐酸可除去BaCO3固体中少量的BaSO4D.向硝酸银稀溶液中逐滴加入稀氨水至白色沉淀恰好溶解,即得银氨溶液11.A、B、C为短周期元素,A的最外层电子数是次外层的3倍,B是最活泼的非金属元素,C的氯化物是氯碱工业的原料,下列叙述正确的是A.A是O,B是ClB.A、B、C的原子半径大小关系是:A>C>BC.B的气态氢化物比A的稳定D.向AlCl3溶液中加过量C的最高价氧化物对应水化物可得白色沉淀12.有关右图的说法正确的是A.构成原电池时溶液中SO 2移向Cu极4B.构成原电池时Cu极反应为:Cu﹣2e-=Cu2+C.构成电解池时Fe极质量既可增也可减D.a和b分别接直流电源正、负极,Fe极会产生气体13.夏天将密闭有空气的矿泉水瓶放进低温的冰箱中会变扁,此过程中瓶内空气(可看成理想气体)A.内能减小,外界对其做功B.内能减小,吸收热量C.内能增加,对外界做功D.内能增加,放出热量14.下列说法正确的是A.布朗运动就是液体分子的无规则运动B.单晶体和多晶体都有规则的几何外形C.当两分子间距离的增大时,分子引力增大,分子斥力减小D.热量不会自动地从低温物体传给高温物体而不引起其他变化15.如图所示,当公共汽车水平向前加速时,车厢中竖直悬挂的重物会向后摆,摆到悬绳与θ前后竖直方向成θ角时相对车保持静止。
广东省河源市2013届高三质量检测数学理科卷7一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}{220A x x x =-≤,}{11B x x =-<<, 则A B =A .}{01x x ≤< B .}{10x x -<≤ C .}{11x x -<< D .}{12x x -<≤ 2. 若复数(1-i )(a +i )是实数(i 是虚数单位),则实数a 的值为A .2-B .1-C .1D .2 3. 已知向量p ()2,3=-,q (),6x =,且//p q ,则+p q 的值为A .5 D .13 4. 函数ln xy x=在区间()1,+∞上 A .是减函数 B .是增函数 C .有极小值 D .有极大值 5. 阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56. “a b >” 是“22a b ab +⎛⎫> ⎪⎝⎭”成立的A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件7. 将18个参加青少年科技创新大赛的名额分配给3所学校, 要求每校 至少有一个名额且各校分配的名额互不相等, 则不同的分配方法种数为 A .96 B .114C .128D .136NMD1C 1B 1A 1DCBA图3(度)图1 8. 如图2所示,已知正方体1111ABCD A BC D -的棱长为2, 长 为2的线段MN 的一个端点M 在棱1DD 上运动, 另一端点N 在正方形ABCD 内运动, 则MN 的中点的轨迹的面积为 A .4π B .2π C .π D .2π图2 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.为了了解某地居民月均用电的基本情况, 抽 取出该地区若干户居民的用电数据, 得到频 率分布直方图如图3所示, 若月均用电量在 区间[)110,120上共有150户, 则月均用电量在区间[)120,150上的居民共有 户10. 以抛物线2:8C y x =上的一点A 为圆心作圆,若该圆经过抛物线C 的顶点和焦点, 那么该圆的方程为 .11. 已知数列{}n a 是等差数列, 若468212a a a ++=, 则该数列前11项的和为 . 12. △ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知3,,3c C π== 2a b =,则b 的值为 .13. 某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是 名.D (二)选做题(14~15题,考生只能从中选做一题)14. (几何证明选讲选做题)如图4, CD是圆O的切线,点A、B在圆O上,1,30BC BCD︒=∠=,则圆O15. (坐标系与参数方程选讲选做题)在极坐标系中,若过点(极轴垂直的直线交曲线4cosρθ=于A、B两点,则AB图4三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()2sin cos cos2f x x x x=+(x∈R).(1)当x取什么值时,函数()f x取得最大值,并求其最大值;(2)若θ为锐角,且83fπθ⎛⎫+=⎪⎝⎭,求tanθ的值.17.(本小题满分12分)某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为4.9元.表1 表2(1) 求,a b的值;DC 1A 1B 1CBA(2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.18.(本小题满分14分)如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点, 12A A AB ==.(1) 求证:1//AB 平面1BC D ;(2) 若四棱锥11-B AAC D 的体积为3, 求二面角1--C BC D 的正切值.图519.(本小题满分14分)已知直线2y =-上有一个动点Q ,过点Q 作直线1l 垂直于x 轴,动点P 在1l 上,且满足 OP OQ ⊥(O 为坐标原点),记点P 的轨迹为C . (1) 求曲线C 的方程;(2) 若直线2l 是曲线C 的一条切线, 当点()0,2到直线2l 的距离最短时,求直线2l 的方程.20.(本小题满分14分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且 1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式; (2) 求函数()g x 的单调区间;(3) 研究函数()g x 在区间()0,1上的零点个数.21.(本小题满分14分)已知函数y =()f x 的定义域为R , 且对于任意12,x x ∈R ,存在正实数L ,使得 ()()1212f x f x L x x -≤-都成立. (1) 若()f x =求L 的取值范围;(2) 当01L <<时,数列{}n a 满足()1n n a f a +=,1,2,n = .① 证明:112111nkk k aa a a L+=-≤--∑; ② 令()121,2,3,k k a a a A k k ++== ,证明:112111nk k k A A a a L +=-≤--∑.参考答案一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 说明:第10小题写对一个答案给3分. 9. 325 10. ()(2219x y -+±=14. π15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解: ()2sin cos cos2f x x x x =+sin 2cos 2x x =+ …… 1分22x x ⎫=⎪⎪⎭…… 2分24x π⎛⎫=+ ⎪⎝⎭. …… 3分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()f x 取得最大值,…… 5分 (2)解法1:∵83f πθ⎛⎫+= ⎪⎝⎭,223πθ⎛⎫+= ⎪⎝⎭. …… 6分 ∴1cos 23θ=. …… 7分∴sin 2θ==…… 8分∴sin 2tan 2cos 2θθθ==…… 9分∴22tan 1tan θθ=-. …… 10分2tan 0θθ+=.∴)(1tan 0θθ-=.∴tan 2θ=或tan θ=不合题意,舍去) …… 11分∴tan 2θ=. …… 12分解法2: ∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分 ∴212cos 13θ-=. …… 8分∵θ为锐角,即02πθ<<,∴cos 3θ=. …… 9分∴sin θ==…… 10分∴sin tan cos 2θθθ==. …… 12分解法3:∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分∴sin2θ==…… 8分∴sintancosθθθ=…… 9分22sin cos2cosθθθ=…… 10分sin21cos2θθ=+2=. …… 12分17.(本小题满分12分)(本小题主要考查数学期望、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:…… 2分∴60.6540.1 4.9E a bξ=⨯++⨯-=,即50.9a b-=. …… 3分∵0.60.20.11a b++++=, 即0.3a b+=, …… 4分解得0.2,0.1a b==.∴0.2,0.1a b== . …… 6分(2)解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都是一等品或2件一等品,1件二等品. …… 8分故所求的概率P=30.6+C2230.60.2⨯⨯0.432=. …… 12分18.(本小题满分14分)(本小题主要考查空间线面关系、二面角的平面角、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)GFEODC 1A 1B 1CBA(1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点. ∵D 为AC 的中点, ∴OD 为△1ABC 的中位线,∴ 1//OD AB . …… 2分 ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D , ∴1//AB 平面1BC D . …… 4分 (2)解: 依题意知,12AB BB ==,∵1⊥AA 平面ABC ,1AA ⊂平面11AAC C ,∴ 平面ABC ⊥平面11AAC C ,且平面ABC 平面11AAC C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C , ……6分 设BC a =,在Rt △ABC中,AC =AB BC BE AC ==∴四棱锥11-B AAC D 的体积()1111132V AC AD AA BE =⨯+126=a =. …… 8分依题意得,3a =,即3BC =. …… 9分 (以下求二面角1--C BC D 的正切值提供两种解法)解法1:∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C , ∴AB ⊥平面11BB C C .取BC 的中点F ,连接DF ,则DF //AB ,且112DF AB ==. ∴DF ⊥平面11BB C C .作1FG BC ⊥,垂足为G ,连接DG , 由于1DF BC ⊥,且DF FG F = , ∴1BC ⊥平面DFG . ∵DG ⊂平面DFG , ∴1BC ⊥DG .∴DGF ∠为二面角1--C BC D 的平面角. …… 12分 由Rt △BGF ~Rt △1BCC ,得11GF BFCC BC =,得1132BF CC GF BC ⨯=== ,在Rt △DFG 中, tan DF DGF GF ∠==∴二面角1--C BC D. …… 14分 解法2: ∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .以点1B 为坐标原点,分别以11B C ,1B B ,11B A y 轴和z 轴,建立空间直角坐标系1B xyz -. 则()0,2,0B ,()13,0,0C ,()0,2,2A ,3,2,12D ⎛⎫⎪⎝⎭.∴()13,2,0BC =- ,3,0,12BD ⎛⎫= ⎪⎝⎭设平面1BC D 的法向量为n (),,x y z =,由n 10BC = 及n 0BD = ,得320,30.2x y x z -=⎧⎪⎨+=⎪⎩令2x =,得3,3y z ==-.故平面1BC D 的一个法向量为n ()2,3,3=-, …… 11分又平面1BC C 的一个法向量为()0,0,2AB =-,∴cos 〈n ,AB 〉= ⋅n AB n AB200323⨯+⨯+-⨯-==…… 12分 ∴sin 〈n ,AB 〉==. …… 13分 ∴tan 〈n ,AB 〉=. ∴二面角1--C BCD . …… 14分 19.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、点到直线的距离、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1) 解:设点P 的坐标为(),x y ,则点Q 的坐标为(),2x -. ∵OP OQ ⊥,∴1OP OQ k k =- .当0x ≠时,得21y x x-=-,化简得22x y =. …… 2分 当0x =时, P 、O 、Q 三点共线,不符合题意,故0x ≠.∴曲线C 的方程为22x y =()0x ≠. …… 4分 (2) 解法1:∵ 直线2l 与曲线C 相切,∴直线2l 的斜率存在.设直线2l 的方程为y kx b =+, …… 5分 由2,2,y kx b x y =+⎧⎨=⎩ 得2220x kx b --=. ∵ 直线2l 与曲线C 相切,∴2480k b ∆=+=,即22k b =-. …… 6分点()0,2到直线2l的距离d =212=…… 7分12⎫= …… 8分12≥⨯…… 9分=…… 10分=k =.此时1b =-. ……12分∴直线2l10y --=10y ++=. …… 14分 解法2:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中21112y x =, 则直线2l 的方程为:()111y y x x x -=-,化简得211102x x y x --=. …… 6分 点()0,2到直线2l的距离d =212=…… 7分12⎫= …… 8分12≥⨯…… 9分=…… 10分=,即1x =. ……12分∴直线2l10y --=10y ++=. …… 14分 解法3:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中211102y x =>, 则直线2l 的方程为:()111y y x x x -=-,化简得110x x y y --=. …… 6分 点()0,2到直线2l的距离d ==…… 7分12⎫= …… 8分12≥⨯…… 9分=…… 10分=11y =时,等号成立,此时1x =……12分∴直线2l10y --=10y ++=. …… 14分 20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1) 解:∵()00f =,∴0c =. …… 1分∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 的对称轴为12x =-,即122b a -=-,得a b =. …… 2分 又()f x x ≥,即()210ax b x +-≥对于任意x ∈R 都成立, ∴0a >,且∆()210b =-≤. ∵()210b -≥, ∴1,1b a ==.∴()2f x x x =+. …… 4分(2) 解:()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩…… 5分① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞⎪⎝⎭上单调递增; …… 6分 若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫ ⎪⎝⎭上单调递减.…… 7分 ② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<, 则函数()g x 在11,2λλ+⎛⎫-⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减.…… 8分 综上所述,当02λ<≤时,函数()g x 单调递增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,单调递减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭; …… 9分当2λ>时,函数()g x 单调递增区间为11,2λλ+⎛⎫-⎪⎝⎭和1,2λ-⎛⎫+∞ ⎪⎝⎭,单调递减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭和11,2λλ-⎛⎫ ⎪⎝⎭. …… 10分(3)解:① 当02λ<≤时,由(2)知函数()g x 在区间()0,1上单调递增, 又()()010,1210g g λ=-<=-->,故函数()g x 在区间()0,1上只有一个零点. …… 11分 ② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭, ()121g λ=--,(ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥, 此时,函数()g x 在区间()0,1上只有一个零点; …… 12分 (ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时,函数()g x 在区间()0,1上有两个不同的零点. …… 13分 综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点;当3λ>时,函数()g x 在区间()0,1上有两个不同的零点.…… 14分 21.(本小题满分14分)(本小题主要考查函数、数列求和、绝对值不等式等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1) 证明:对任意12,x x ∈R ,有 ()()12f x f x -===. …… 2分由()()1212f x f x L x x -≤-,12L x x ≤-.当12x x ≠时,得L ≥.12,x x >>且1212x x x x +≥+,12121x x x x +<≤+. …… 4分∴要使()()1212f x f x L x x -≤-对任意12,x x ∈R 都成立,只要1L ≥. 当12x x =时, ()()1212f x f x L x x -≤-恒成立.∴L 的取值范围是[)1,+∞. …… 5分 (2) 证明:①∵()1n n a f a +=,1,2,n = ,故当2n ≥时,()()111n n n n n n a a f a f a L a a +---=-≤-()()21212112n n n n n L f a f a L a a L a a -----=-≤-≤≤- .… 6分∴112233411nkk n n k aa a a a a a a a a ++=-=-+-+-++-∑()21121n L L La a -≤++++- …… 7分 1211nL a a L-=--. …… 8分 ∵01L <<, ∴112111nk k k a a a a L+=-≤--∑(当1n =时,不等式也成立). …… 9分 ②∵12kk a a a A k++=,∴1212111k k k k a a a a a a A A k k ++++++++-=-+()()12111k k a a a ka k k +=+++-+()()()()()12233411231k k a a a a a a k a a k k +=-+-+-++-+()()12233411231k k a a a a a a k a a k k +≤-+-+-++-+ . …… 11分 ∴1122311nkk n n k AA A A A A A A ++=-=-+-++-∑ ()()122311111121223123341a a a a n n n n ⎛⎫⎛⎫≤-++++-+++ ⎪ ⎪ ⎪ ⎪⨯⨯+⨯⨯+⎝⎭⎝⎭()()34111113344511n n a a n a a n n n n +⎛⎫+-+++++-⨯ ⎪ ⎪⨯⨯++⎝⎭ 1223112111111n n n a a a a a a n n n +⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≤12231n n a a a a a a +-+-++- 1211a a L≤--. ……14分。
绝密★启用前 试卷类型:A汕头市2013届高三上学期期末统一检测理科数学本试卷共4页,21小题,满分150分.考试用时120分钟.第一部分(选择题 满分40分)一、选择题:本大题共10小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}5,3,1{=A ,集合},,2{b a B =,若A ∩B {1,3}=,则b a +的值是( ).A.10B.9C.4D.7 2.如图在复平面内,复数21,z z 对应的向量分别是OB OA ,, 则复数12z z 的值是( ). A .i 21+- B .i 22-- C .i 21+ D .i 21- 3.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其 中支出在[50,60)元的同学有30人,则n 的值为( ).A.100B.1000C.90D.9004.若向量)1,1(),0,2(==b a ,则下列结论正确的是( ).A .1=⋅ B.||||a = C .b b a ⊥-)( D .// 5.如图正四棱锥(底面是正方形,顶点在底面的射影是底 面的中心)P-ABCD 的底面边长为6cm ,侧棱长为 5cm ,则它的侧视图的周长等于( ).A.17cmB.cm 5119+C.16cmD.14cm6.设命题p :函数y =sin2x 的最小正周期为2π; 命题q :函数y =cosx 的图象关于直线x =2π对称,则下列的判断正确的是( )A 、p 为真B 、⌝q 为假C 、p ∧q 为假D 、p q ∨为真7、若(9,a )在函数2log y x =的图象上,则有关函数()x xf x a a-=+性质的描述,正确提( )A 、它是定义域为R 的奇函数B 、它在定义域R 上有4个单调区间C 、它的值域为(0,+∞)D 、函数y =f (x -2)的图象关于直线x =2对称 8、计算机中常用的十六进制是逢16进1的数制,采用数字0-9和字母A-F 共16个记数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E +D =1B ,则A×B =( ) A 、6E B 、72 C 、5F D 、5F D 、B0第二部分 (非选择题 满分110分)二、填空题:本大题共6小题,每小题5分,满分30分. (一)必做题:.9、已知数列{n a }的前几项为:1925,2,,8,,18222---⋅⋅⋅用观察法写出满足数列的一个通项公式n a =___10、72()x x-的展开式中,x 3的系数是____(用数字作答)11、已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,c = A +B =2C ,则sinB =____ 12、已知x >0,y >0,且19x y+=1,则2x +3y 的最小值为____ 13、设f (x )是R 是的奇函数,且对x R ∀∈都有f (x +2)=f (x ),又当x ∈[0,1]时,f (x )=x 2,那么x ∈[2011,2013]时,f (x )的解析式为_____(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14. (坐标系与参数方程)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则直线21x t y t=--⎧⎨=-⎩(t 为参数)截圆22cos ρρθ+-3=0的弦长为____15. (几何证明选讲)已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为,AB =3,则切线AD 的长为____三、解答题:本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数1()tan()36f x x π=-(I)求f (x )的最小正周期; (II)求3()2f π的值; (皿)设71(3)22f απ+=-,求sin()cos())4πααππα-+-+的值.17.(本小题满分12分)汕头市澄海区以塑料玩具为主要出口产品,塑料厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(I)若厂家库房中的每件产品合格的概率为0.8,从中任意取出3件进行检验.求恰有1件是合格品的概率;(H)若厂家发给商家20件产品,其中有3件不合格,按合同规定,该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收,求该商家可能检验出不合格产品数ξ的分布列及期望E ξ,并指出该商家拒收这批产品的概率。
河源市2012—2013学年第一学期期末教学质量检测 高一数学
一、选择题(50分) 1.集合A={x|2≤x<5},B={x|3x-7≥8-2x},则A∩B等于 ( ) A.Φ B.{x|2≤x≤3} C.{x|x≥3} D.{x|3≤x<5} 2.已知a=(4,2),b=(x,3)且a//b,则x等于=( ) A.9 B.6 C.5 D.3 3.下列四组函数,各组中表示同一函数的是( )
A.2,()fxgxxx B.2,()fxxgxxx C. 2ln,()2lnfxxgxx D.33log(0,1),()xafxaagxxa 4.cos40cos20sin40sin20。。。。-=( ) A.12 B.12- C.32 D.32- 5.要得到3sin(2)4yx的图象,只需将3sin2yx的图象( ) A.向左平移4个单位 B.向右平移8个单位 C.向左平移4个单位 D.向右平移8个单位 6.已知函数2()23fxxax在(,2]x是减函数,则a取值范围是() A.2a B.2a C.2a D.2a 7.已知函数()fx对于任意的xR,都有()()0fxfx恒成立,且当x>0时,2()sin2cos3fxxx,则当x<0时,()fx= ).
A.2sin2cos3xx B.2sin2cos3xx C.2sin2cos3xx D.2sin2cos3xx 8.下列命题正确的是( ) A.,abacbc若则 B.+,0ababab若|||-|则 C.////,//abbcac若,则 D. 1abab若与是单位向量,则= 9.已知()cos,3fxx,则(0)(1)(2)(12)ffff( ) A. 1 B.2 C.3 D.0 10.方程lg()sin0xx的解的个数是( ) A.1 B. 2 C.3 D.4 二、填空题(本大题有4小题,每小题5分,共20分,把正确答案写在答题卷的相应位置上)
·1· 广东省河源市2013届高三质量检测数学理科卷4 第Ⅰ卷 (选择题, 共40分) 一、选择题(本大题共8题,每小题5分,共40分. 在每题列出的四个选项中,只有一项是最符合题目要求的)
1. 已知复数(1+)zii(i为虚数单位),则复数z在复平面上所对应的点位于 ( )A.第一象限 B. 第二象限 C.第三象限 D. 第四象限 2. 等差数列na中,若58215aaa,则5a等于( ) A.3 B.4 C.5 D.6 3. 已知向量(cos,2),(sin,1),//tan()4abab且,则等于( )A.3 B. 3
C. 31 D. 31 4. 直线02:ayaxl在x轴和y轴上的截距相等,则a的值是( )A.1 B.1 C.2 或1 D.2或1
5. 设变量,xy满足约束条件20701xyxyx,则yx的最大值为( )
A.95 B.3 C.4 D.6 6. “22ab”是 “22loglogab”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D. 既不充分也不必要条件
7. 若一个底面边长为62,棱长为6的正六棱柱的所有顶点都在一个球的面上,则此球的体积为
A.722π B.323π C.92π D. 43π 8. 设S是至少含有两个元素的集合. 在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应). 若对于任意的a,b∈S,有a*( b * a)=b,则对任意的a,b∈S,下列等式中不能..成立的是( ) A. ( a * b) * a =a B . [ a*( b * a)] * ( a*b)=a C. b*( b * b)=b D. ( a*b) * [ b*( a * b)] =b 第Ⅱ卷 (非选择题, 共110分) 二、填空题(本大题共7小题,分为必做题和选做题两部分.考生作答6小题,每小题5分,满分30分) ·2·
BODA
C
(一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9. 232()xx的展开式中的常数项为 . 10. 如果执行右面的程序框图,那么输出的S_________ 11.若直线:10 (0,laxbyab始终平分圆M:
228210xyxy的周长,则14ab的最小值为 .
12. 如图所示,在一个边长为1的正方形AOBC内,曲线2yx和曲线yx围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是___________
13. 某班有50名学生,一次考试的成绩()N服从正态分布2(100,10)N. 已知(90100)0.3P,估计该班数学成绩在110
分以上的人数为______________. (二)选做题:第14、15题为选做题,考生只能选做其中的一题,两题全答的,只计算前一题的得分. 14.(几何证明选讲选做题)如图,从圆O外一点A引圆的切线AD和割线ABC,已知
23AD,6AC,圆O的半径为3,则圆心O到AC的距离为 .
15. (坐标系与参数方程选做题)在极坐标系中,若过点)0,3(A且与极轴垂直的直线交曲线cos4于A、B两点,则||AB______ _. 三、解答题(本大题共6小题, 共80分, 解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)已知向量(sin,cos)mAA,(3,1)n,且 1mn,A为锐角. (Ⅰ)
求角A的大小; (Ⅱ)求函数()cos24cossin()fxxAxxR的值域.
17.(本小题满分12分) 在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚
第12题图 开始 1k0S 50?k≤是 2SSk
1kk
否 输出S 结束 ·3· 度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的. 假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的. (1)求蜜蜂落入第二实验区的概率; (2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率; (3)记X为落入第一实验区的蜜蜂数,求随机变量X的数学期望.
18.(本小题满分14分)在四棱锥PABCD中,底面ABCD是一直角梯形,aBCABBCADBAD,//,90,PDABCDPAaAD,,2底面与底面成30角. (1)若
EPDAE,为垂足,求证:PDBE; (2)在(1)的条件下,
求异面直线AE与CD所成角的余弦值; (3)求平面PAB与平面PCD所成的锐二面角的正切值.
19.(本小题满分14分)已知直线10xy与椭圆22221(0)xyabab相交于A、B两点,M是线段AB上的一点,AMBM,且点M在直线1:2lyx上,(1)求椭圆的离心率;(2)若椭圆的焦点关于直线l的对称点在单位圆221xy上,求椭圆的方程. 20.(本小题满分14分)已知函数()(2)(1)2lnfxaxx. (I)当1,()afx时求的单调区间; (II)若函数1()(0,),2fxa在上无零点求的最小值; (III)若,0mn求证:mnmnm2lnln. ·4·
21.(本小题满分14分)设单调递增函数()fx的定义域为0,,且对任意的正实数x,y有:()()()fxyfxfy且1()12f.
⑴、一个各项均为正数的数列na满足:()()(1)1nnnfsfafa其中nS为数列na的前n项和,求数列na的通项公式; ⑵、在⑴的条件下,是否存在正数M使下列不等式:
1212221(21)(21)(21)nnnaaaMnaaa
对一切*nN成立?若存在,求出M的取值范围;若不存在,请说明理由.
参考答案 一、 选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分. 题号 1 2 3 4 5 6 7 8 ·5·
答案 B C B D D B D A 1.选B.提示:因为(1+)=-1+ziii,所以(1+)=-1+ziii对应的点在复平面的第二象限.
2.选C.提示:58215aaa 得2855215aaaa,所以5a=5. 3.选B.提示: //cos+2sin=,tan=-,tan()=-4ab由,得0即2所以3 4.选D.提示:注意直线可以过原点和同截正负半轴(截距有正负之分)两种情形. 5.选D.提示:画出可行域,在数形结合中的斜率解决. 6.选B.提示:注意a.b的正负号. 7.选D.提示: 把六棱柱镶嵌到球体里面中,注意半径、棱柱的高、及棱柱底面边长的关系. 8.选A.提示:此题为信息题,认真反复阅读理解题意,依样画葫芦.
二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.
9. 12 10. 2550 11. 16
12. 13 13. 10 14.5 15.23 9. 12.提示: 2322322322()()()xCxxx2+1的展开式中的常数项即T. 10. 2550 .提示:.依照框图运行.
11. 16.提示:始终平分圆就是圆心在直线上,然后用基本不等式. 12. 13.提示:此题为几何概型,用定积分求出面积的比值. 13. 10提示:有正态分布的性质知,90~110有30人,90分以下和110以上.分别10人.
14. 5提示:先用切割线定理求出BC的长度,然后21()2drBC2距离
15. 23.提示:全部转化到直角坐标系中去解决. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16. (本小题满分12分) (本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力)
解:(Ⅰ)由题意得3sincos1,mnAA„„„2分 ·6·
2sin()1,6A
1sin().62A „„„4分
由A为锐角 得(,)663A,
,.663AA „„„6分
(Ⅱ)由(Ⅰ)可得 1cos,2A „„„7分
所以()cos22sinfxxx 212sin2sinxx
2132(sin).22x „„„9分
因为xR, 则sin1,1x,
当1sin2x时, ()fx有最大值32.
当sin1x时, ()fx有最小值3, „„„11分
故所求函数()fx的值域是33,2. „„„12分 17. (本小题满分12分) (本小题主要考查几何概型、二项分布、数学期望等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)
解:(1)记“蜜蜂落入第一实验区”为事件A, “蜜蜂落入第二实验区”为事件B.„„„1分