1.2.2同角三角函数的基本关系教案3(免费)(人教A必修4)-7ea03c4be45c3b3567ec8bd4
- 格式:pdf
- 大小:938.71 KB
- 文档页数:3
同角三角函数的基本关系教学设计一、引言同角三角函数是初中数学中的重要内容,也是高中数学和大学数学的基础。
本文将介绍同角三角函数的基本关系教学设计。
二、教学目标1. 理解同角三角函数的定义及其意义;2. 掌握正弦、余弦、正切、余切四种同角三角函数的基本关系;3. 能够运用同角三角函数解决实际问题。
三、教学过程1. 同角三角函数的定义及其意义1.1 定义:对于任意一个锐角∠A,其正弦值sinA等于∠A所在直角三角形中对边与斜边之比,余弦值cosA等于邻边与斜边之比,正切值tanA等于对边与邻边之比,余切值cotA等于邻边与对边之比。
1.2 意义:同一锐角所对应的四个函数值互相依赖,其中一个确定时其他三个也随之确定。
因此,在求解某些几何问题时可以通过已知一个函数值来求出其他函数值。
2. 正弦、余弦、正切、余切四种同角三角函数的基本关系2.1 正弦和余弦:sin²A + cos²A = 1证明:根据勾股定理可得sin²A + cos²A = 1 - sin²A,即sin²A + sin²A = 1,故sin²A + cos²A = 1。
2.2 正切和余切:tan A × cot A = 1证明:tan A × cot A = (sin A / cos A) × (cos A / sin A) = 1。
2.3 正弦和余切:sin A × cot A = cos A证明:sin A × cot A = sin A × (cos A / sin A) = cos A。
2.4 余弦和正切:cos A × tan A = sin A证明:cos A × tan A = cos A × (sin A / cos A) = sin A。
3. 运用同角三角函数解决实际问题3.1 求解直角三角形的边长对于一个已知锐角∠A及其对边a或邻边b,可以通过正弦、余弦、正切、余切四种函数求出其他两个未知量。
《1.2.2同角三角函数的基本关系(第一课时)》教学设计贵阳第十中学杨亮一、指导思想与理论依据以学生为本,学生是学习的主体。
核心素养就是一个人在复杂情境中解决问题的能力和品质,是学习个体在与情境的互动中不断解决问题、产生新问题的过程中逐步养成的,在教学中以知识为载体,以学生发展为目标,精心设计系列探究活动,给学生更多尝试、探究发现机会,从学生数学知识发生发展过程的合理性,从学生思维过程的合理性上思考,从学生已有的知识出发,以新旧知识的连接点为教学起点,感受学习数学的乐趣,落实学科素养。
二、教学背景分析1.本课在教材中的地位本课是《普通高中课程标准实验教材A版▪必修4》第一章第二节的内容。
同角三角函数是学生学习了任意角和弧度值,任意角的三角函数后,继续深入学习的内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数的基础,在教材中起着承上启下的作用。
同时,它体现的数学思想与方法在整个中学数学学习中都有着重要的作用。
所以本节课的重点是同角三角函数基本关系式及在求值、证明中的应用上。
2.学生学情学生从认知角度上看,已经比较熟练的掌握了三角函数定义的两种推导方法,从方法上看,学生已经对数形结合,猜想证明有所了解。
从学习情感方面看,大部分学生愿意主动学习。
从能力上看,学生主动学习能力、合作探究的能力较弱。
三、教学目标的确定及依据1.知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:(1)已知一个角的一个三角函数值能求这个角的其他三角函数值;(2)证明简单的三角恒等式。
2.过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
4-1.2.2同角三角函数的基本关系教学目的:知识目标:1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系;2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力;教学重点:同角三角函数的基本关系式教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程:一、复习引入:1.任意角的三角函数定义:设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为(0)r r ==>,那么:sin y r α=,cos x r α=,tan yxα=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果53sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系?二、讲解新课:(一)同角三角函数的基本关系式:(板书课题:同角的三角函数的基本关系)1. 由三角函数的定义,我们可以得到以下关系:2. (1)商数关系:αααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等;②注意这些关系式都是对于使它们有意义的角而言的,如tan cot 1(,)2k k Z πααα⋅=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α=, 22sin 1cos αα=-, sin cos tan ααα=等。
2.例题分析: 一、求值问题 例1.(1)已知12sin 13α=,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4cos 5α=-,求sin ,tan αα. 解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313αα=-=-=又∵α是第二象限角, ∴cos 0α<,即有5cos 13α=-,从而sin 12tan cos 5ααα==-, 15cot tan 12αα==-(2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=,又∵4cos 05α=-<, ∴α在第二或三象限角。
1.2.2 同角三角函数的基本关系自主学习知识梳理1.同角三角函数的基本关系式(1)平方关系:____________________.(2)商数关系:____________________.2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=__________;cos 2α=__________;(sin α+cos α)2=__________;(sin α-cos α)2=____________;(sin α+cos α)2+(sin α-cos α)2=________;sin α·cos α=____________=____________.(2)tan α=sin αcos α的变形公式:sin α=____________; cos α=____________.自主探究1.利用任意角三角函数的定义推导平方关系.2.已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α.对点讲练知识点一 已知某一个三角函数值,求同角的其余三角函数值例1 已知cos α=-817,求sin α、tan α.回顾归纳 同角三角函数的基本关系式揭示了同角之间的三角函数关系,其最基本的应用是“知一求二”,要注意这个角所在的象限,由此来决定所求的是一解还是两解,同时应体会方程思想的应用.变式训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.知识点二 利用同角的三角函数基本关系式化简例2 化简:1cos α1+tan 2α+1+sin α1-sin α-1-sin α1+sin α.回顾归纳 解答此类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系.化简过程中常用的方法有:(1)化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号,达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解.变式训练2 化简:1-cos 4α-sin 4α1-cos 6α-sin 6α.知识点三 利用同角的三角函数基本关系式证明恒等式例3 求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α.回顾归纳 证明三角恒等式的实质是清除等式两端的差异,有目的地进行化简. 证明三角恒等式的基本原则:由繁到简.常用方法:从左向右证;从右向左证;左、右同时证.常用技巧:切化弦、整体代换.变式训练3 求证:1-2sin 2x cos 2x cos 22x -sin 22x =1-tan 2x 1+tan 2x.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin 22α+cos 22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”.2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在进行三角函数式的求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.课时作业一、选择题1.化简sin 2β+cos 4β+sin 2βcos 2β的结果是( )A.14B.12 C .1 D.322.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-13.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±434.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是( ) A.13 B .3 C .-13D .-3 5.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .8二、填空题6.已知α是第二象限角,tan α=-12,则cos α=________. 7.已知sin αcos α=18且π4<α<π2,则cos α-sin α= ______________________________________________________________________.8.若sin θ=k +1k -3,cos θ=k -1k -3,且θ的终边不落在坐标轴上,则tan θ的值为________.三、解答题9.证明:(1)1-cos 2αsin α-cos α-sin α+cos αtan 2α-1=sin α+cos α; (2)(2-cos 2α)(2+tan 2α)=(1+2tan 2α)(2-sin 2α).10.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π) 求:(1)m 的值;(2)方程的两根及此时θ的值.1.2.2 同角三角函数的基本关系答案知识梳理1.(1)sin 2α+cos 2α=1 (2)tan α=sin αcos α (α≠k π+π2,k ∈Z ) 2.(1)1-cos 2α 1-sin 2α 1+2sin αcos α1-2sin αcos α 2 (sin α+cos α)2-121-(sin α-cos α)22(2)cos αtan α sin αtan α自主探究1.解 ∵sin α=y r ,cos α=x r ,tan α=y x,x 2+y 2=r 2, ∴sin 2α+cos 2α=y 2r 2+x 2r 2=x 2+y 2r 2=1 (α∈R ). sin αcos α=y r x r=y x =tan α (α≠k π+π2,k ∈Z ). 2.解 关于sin α、cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(1)原式=4tan α-23tan α+5=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 对点讲练例1 解 ∵cos α=-817<0且cos α≠-1, ∴α是第二或第三象限的角.(1)如果α是第二象限的角,可以得到sin α=1-cos 2α= 1-⎝⎛⎭⎫-8172=1517. tan α=sin αcos α=1517-817=-158. (2)如果α是第三象限的角,可得到:sin α=-1517,tan α=158. 变式训练1 解 由tan α=sin αcos α=43, 得sin α=43cos α. ① 又sin 2 α+cos 2α=1, ②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 例2 解 原式=1cos α 1+sin 2αcos 2α+(1+sin α)21-sin 2α -(1-sin α)21-sin 2α =|cos α|cos α+1+sin α|cos α|-1-sin α|cos α|=⎩⎪⎨⎪⎧1+2tan α(α为第一或第四象限角),-1-2tan α(α为第二或第三象限角). 变式训练2 解 原式=(1-cos 4 α)-sin 4 α(1-cos 6 α)-sin 6 α=(1-cos 2α)(1+cos 2α)-sin 4 α(1-cos 2α)(1+cos 2α+cos 4 α)-sin 6 α=sin 2α(1+cos 2α)-sin 4 αsin 2α(1+cos 2α+cos 4 α)-sin 6 α=1+cos 2α-sin 2α1+cos 2α+cos 4 α-sin 4 α=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 例3 证明 左边=cos α(1+cos α)-sin α(1+sin α)(1+sin α)(1+cos α)=cos 2α-sin 2α+cos α-sin α1+sin α+cos α+sin αcos α=(cos α-sin α)(cos α+sin α+1)12(cos α+sin α)2+sin α+cos α+12=2(cos α-sin α)(cos α+sin α+1)(sin α+cos α+1)2=2(cos α-sin α)1+sin α+cos α=右边. ∴原式成立.变式训练3 证明 左边=cos 22x +sin 22x -2sin 2x cos 2x cos 22x -sin 22x=(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )=cos 2x -sin 2x cos 2x +sin 2x=1-tan 2x 1+tan 2x=右边.∴原等式成立.课时作业1.C [sin 2β+cos 4β+sin 2βcos 2β=sin 2β+cos 2β(cos 2β+sin 2β)=sin 2β+cos 2β=1.]2.B [∵α为第三象限角,cos α<0,sin α<0,∴原式=cos αcos 2α+2sin αsin 2α=cos α-cos α+2sin α-sin α=-3.] 3.A [α为第二象限角,sin α=45,cos α=-35, tan α=-43.] 4.C [1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)·(sin α+cos α)(sin α+cos α)·(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13.] 5.C [tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α. ∵sin αcos α=1-(sin α-cos α)22=-18, ∴tan α+1tan α=-8.] 6.-255 解析 由α是第二象限的角且tan α=-12,则⎩⎪⎨⎪⎧sin α=-12cos αsin 2α+cos 2α=1,则⎩⎨⎧ sin α=55cos α=-255.7.-32解析 (cos α-sin α)2=1-2sin αcos α=34,∵π4<α<π2,∴cos α<sin α.∴cos α-sin α=-32.8.34解析 ∵sin 2θ+cos 2θ=⎝ ⎛⎭⎪⎫k +1k -32+⎝ ⎛⎭⎪⎫k -1k -32=1,∴k 2+6k -7=0,∴k 1=1或k 2=-7. 当k =1时,cos θ不符合,舍去.当k =-7时,sin θ=35,cos θ=45,tan θ=34.9.证明 (1)左边=sin 2αsin α-cos α-sin α+cos αsin 2αcos 2α-1=sin 2αsin α-cos α-sin α+cos αsin 2α-cos 2αcos 2α=sin 2αsin α-cos α-cos 2α(sin α+cos α)sin 2α-cos 2α=sin 2αsin α-cos α-cos 2αsin α-cos α=sin 2α-cos 2αsin α-cos α=sin α+cos α=右边.∴原式成立.(2)∵左边=4+2tan 2α-2cos 2α-sin 2α =2+2tan 2α+2sin 2α-sin 2α=2+2tan 2α+sin 2α右边=(1+2tan 2α)(1+cos 2α)=1+2tan 2α+cos 2α+2sin 2α=2+2tan 2α+sin 2α∴左边=右边,原式成立.10.解 (1)由韦达定理知⎩⎨⎧ sin θ+cos θ=3+12①sin θ·cos θ=m2 ②由①式可知1+2sin θcos θ=1+32, ∴sin θcos θ=34,∴m2=34,∴m =32, (2)当m =32时,原方程2x 2-(3+1)x +32=0, ∴x 1=32,x 2=12. ∵θ∈(0,2π)∴⎩⎨⎧ sin θ=32cos θ=12或⎩⎨⎧ sin θ=12cos θ=32. ∴θ=π3或θ=π6.。
1.2.2 同角三角函数的基本关系整体设计教学分析与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin 24π+cos 24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tan α中的α是使得tan α有意义的值,即α≠k π+2,k∈Z . 已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.三维目标1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明.3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.重点难点教学重点:课本的三个公式的推导及应用.教学难点:课本的三个公式的推导及应用.课时安排1课时教学过程导入新课思路1.先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:(1)sin 290°+cos 290°;(2)sin 230°+cos 230°;(3) 60cos 60sin ;(4)135cos 135sin . 推进新课新知探究提出问题①在以下两个等式中的角是否都可以是任意角?若不能,角α应受什么影响?图1如图1,以正弦线MP 、余弦线OM 和半径OP 三者的长构成直角三角形,而且OP=1.由勾股定理有OM 2+MP 2=1.因此x 2+y 2=1,即sin 2α+cos 2α=1(等式1).显然,当α的终边与坐标轴重合时,这个公式也成立.根据三角函数的定义,当α≠k π+2π,k∈Z 时,有 aa cos sin =tan α(等式2). 这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.②对于同一个角的正弦、余弦、正切,至少应知道其中的几个值才能利用基本关系式求出其他的三角函数的值.活动:问题①先让学生用自己的语言叙述同角三角函数的基本关系,然后教师点拨学生思考这两个公式的用处.同时启发学生注意“同一个角”这个前提条件,及使等式分别有意义的角的取值范围.问题②可让学生展开讨论,点拨学生从方程的角度进行探究,对思考正确的学生给予鼓励,对没有思路的学生教师点拨其思考的方法,最后得出结论“知一求二”.讨论结果:①在上述两个等式中,不是所有的角都可以是任意角,在第一个等式中,α可以是任意角,在第二个等式中α≠k π+2π,k∈Z . ②在上述两个等式中,只要知道其中任意一个,就可以求出其余的两个.知道正弦(余弦),就可以先求出余弦(正弦),用等式1;进而用第二个等式2求出正切.应用示例思路1例1 已知sin α=54,并且α是第二象限的角,求cos α,tan α的值. 活动:同角三角函数的基本关系学生应熟练掌握,先让学生接触比较简单的应用问题,明确和正确地应用同角三角函数关系.可以引导学生观察与题设条件最接近的关系式是sin 2α+cos 2α=1,故cos α的值最容易求得,在求cos α时需要进行开平方运算,因此应根据角α所在的象限确定cos α的符号,在此基础上教师指导学生独立地完成此题.解:因为sin 2α+cos 2α=1,所以cos 2α=1-sin 2α=1-(54)2=259. 又因为α是第二象限角,所以cos α<0.于是cos α=259-=53-, 从而tan α=a a cos sin =54×(35-)=34-.点评:本题是直接应用关系求解三角函数值的问题,属于比较简单和直接的问题,让学生体会关系式的用法.应使学生清楚tan α=34-中的负号来自α是第二象限角,这也是根据商数关系直接运算后的结果,它不同于在选用平方关系式的三角函数符号的确定.例2 已知cos α=178-,求sin α,tan α的值. 活动:教师先引导学生比较例1、例2题设条件的相异处,根据题设条件得出角的终边只能在第二或第三象限.启发学生思考仅有cos α<0是不能确定角α的终边所在的象限,它可能在x 轴的负半轴上(这时cos α=-1).解:因为cos α<0,且cos α≠-1,所以α是第二或第三象限角.如果α是第二象限角,那么sin α=a 2cos -1=2)178(1--=1715, tan α=a a cos sin =1715×(817-)=815-, 如果α是第三象限角,那么sin α=175-,tan α=34-. 点评:在已知角的一个三角函数值但是不知道角所在的象限的时候,应先根据题目条件讨论角的终边所在的象限,分类讨论所有的情况,得出所有的解.思路2例1 已知tan α为非零实数,用tan α表示sin α、cos α.活动:引导学生思考讨论:角的终边在什么位置;能否直接利用基本关系式求出sin α或cos α的值.由tan α≠0,只能确定α的终边不在坐标轴上.关于sin α、cos α、tan α的关系式只有tan α=aa cos sin ,在这个式子中必须知道其中两个三角函数值,才能求出第三个,因此像这类问题的求解,不能一步到位,需要公式的综合应用.其步骤是:先根据条件判断角的终边的位置,讨论出现的所有情况.然后根据讨论的结果,利用基本关系式求解.分情况求出cos α,进而求出sin α.解:因为sin 2α+cos 2α=1,所以sin 2α=1-cos 2α.又因为tan α=a a cos sin ,所以tan 2α=a a 22cos sin =1cos 1cos cos 1222-=-aa a . 于是a 2cos 1=1+tan 2α,cos 2α=a2tan 11+. 由tan α为非零实数,可知角α的终边不在坐标轴上,从而cos α=⎪⎪⎩⎪⎪⎨⎧+-+,,,tan 11,,tan 1122第三象限角为第二当第四象限角为第一当a a、a asin α=cos αtan α=⎪⎪⎩⎪⎪⎨⎧+-+.,tan 1tan ,,,tan 1tan 22第三象限角为第二当第四象限角为第一当、a aa a a 点评:要求学生灵活运用三角函数公式进行变形、化简、求解.需要学生认真细致分析题目的条件,灵活运用公式,需要较高的思维层次.变式训练已知cos α≠0,用cos α表示sin α、tan α.解:本题仿照上题可以比较顺利完成.sin α=⎪⎩⎪⎨⎧---,、a a ,、a ,a 第四象限角为第三当第二象限角为第一当,cos 1cos 122tan α=⎪⎪⎩⎪⎪⎨⎧---.cos cos 1,cos cos 122第四象限角为第三当第二象限角为第一当、a ,,、a αααα例2 求证:.cossin 1sin 1cos x x x +=- 活动:先让学生讨论探究证明方法,教师引导思考方向.教材中介绍了两种证明方法:证法一是从算式一边到另一边的证法,算式右边的非零因式1+sin α,在左边没有出现,可考虑左边式子的分子、分母同乘以1+sinx,再化简;在证法二中可以这样分析,要让算式成立,需证cos 2x=(1+sinx)(1-sinx),即cos 2x=1-sin 2x,也就是sin 2x+cos 2x=1,由平方关系可知这个等式成立,将上述分析过程逆推便可以证得原式成立.证法一:由cosx≠0,知sinx≠1,所以1+si nx≠0,于是左边=右边=+=-+=-+=+-+x x xx x x x x x x x x x cos sin 1sin 1)sin 1(cos sin 1)sin 1(cos )sin 1)(sin 1()sin 1(cos 22 所以原式成立.证法二:因为(1-sinx)(1+sinx)=1-sin 2x=cos 2x=cosxcosx,且1-sinx≠0,cosx≠0,所以.cos sin 1sin 1cos xx x x +=-教师启发学生进一步探究:除了证法一和证法二外你可否还有其他的证明方法.教师和学生一起讨论,由此可探究出证法三.依据“a -b=0⇔a=b”来证明恒等式是常用的证明方法,由学生自己独立完成.证法三:因为0cos )sin 1(cos cos cos )sin 1()sin 1(cos cos )sin 1()sin 1)(sin 1(cos cos cos sin 1sin 1cos 2222=--=---=--+-=+--x x x x x x x x x x x x x x x x x 所以.cos sin 1sin 1cos xx x x +=- 点评:这是一道很有训练价值的经典例题,教师要充分利用好这个题目.从这个例题可以看出,证明一个三角恒等式的方法有很多.证明一个等式,可以从它的任何一边开始,证得它等于另一边;还可以先证得另一个等式成立,从而推出需要证明的等式成立.例3 化简.440sin -12︒活动:引导学生探究:原式结果为cos440°时是不是最简形式,还应怎么办?教师引导学生运用诱导公式一化简为cos 80°,由于cos80°>0,因此︒80cos 2=|cos80°|=cos80°,此题不难,让学生独立完成.解:原式=)80(360sin -12︒+︒=︒80sin -12=︒80sin -12=cos80°.点评:恰当利用平方关系和诱导公式化简三角函数式.提醒学生注意化简后的简单的三角函数式应尽量满足以下几点:(1)所含的三角函数种类最少;(2)能求值(指准确值)的尽量求值;(3)不含特殊角的三角函数值.变式训练化简:︒︒cos402sin40-1答案:cos40°-sin40°.点评:提醒学生注意:1±2sin αcos α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2,这是一个很重要的结论.知能训练课本本节练习.解答:1.sin α=53-,tan α=43. 2.当φ为第二象限角时,sin φ=23,cos φ=21- 当φ为第四象限角时,sin φ=23-,cos φ=21. 3.当θ为第一象限角时,cos θ≈0.94,tan θ≈0.37.当θ为第二象限角时,cos θ≈-0.94,tan θ≈-0.37.4.(1)cos θtan θ=cos θθθcos sin =sin θ; (2)1sin cos sin cos sin 2)cos (sin )cos (sin cos 2sin 211cos 2222222222222=--=-++-=--aa a a a a a a a a a a 5.(1)左=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-cos 2α=右;(2)左=sin 2α(sin 2α+cos 2α)+cos 2α=sin 2α+cos 2α=1=右.课堂小结由学生回顾本节所学的方法知识:①同角三角函数的基本关系式及成立的条件,②根据一个任意角的正弦、余弦、正切中的一个值求出其余的两个值(可以简称“知一求二”)时要注意这个角的终边所在的位置,从而出现一组或两组或四组(以两组的形式给出).“知一求二”的解题步骤一般为:先确定角的终边位置,再根据基本关系式求值,若已知正弦或余弦,则先用平方关系,再用其他关系求值;若已知正切或余切,则构造方程组求值. 教师和学生一起归纳三角函数式化简与三角恒等式的证明的一般方法及应注意的问题,并让学生总结本节用到的思想方法.作业1.化简(1+tan 2α)cos 2α;2.已知tan α=2,求a a a a cos sin cos sin -+的值. 答案:1.1;2.3.。
1.2.2 同角三角函数的基本关系整体设计教学分析与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵. 同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin 24π+cos 24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tanα中的α是使得tanα有意义的值,即α≠kπ+2,k ∈Z . 已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.三维目标1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明.3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.重点难点教学重点:课本的三个公式的推导及应用.教学难点:课本的三个公式的推导及应用.课时安排1课时教学过程导入新课思路1.先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:(1)sin 290°+cos 290°;(2)sin 230°+cos 230°;(3) 60cos 60sin ;(4)135cos 135sin . 推进新课新知探究提出问题①在以下两个等式中的角是否都可以是任意角?若不能,角α应受什么影响?图1如图1,以正弦线MP 、余弦线OM 和半径OP 三者的长构成直角三角形,而且OP=1.由勾股定理有OM 2+MP 2=1.因此x 2+y 2=1,即sin 2α+cos 2α=1(等式1).显然,当α的终边与坐标轴重合时,这个公式也成立.根据三角函数的定义,当α≠kπ+2π,k ∈Z 时,有 aa cos sin =tanα(等式2). 这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.②对于同一个角的正弦、余弦、正切,至少应知道其中的几个值才能利用基本关系式求出其他的三角函数的值.活动:问题①先让学生用自己的语言叙述同角三角函数的基本关系,然后教师点拨学生思考这两个公式的用处.同时启发学生注意“同一个角”这个前提条件,及使等式分别有意义的角的取值范围.问题②可让学生展开讨论,点拨学生从方程的角度进行探究,对思考正确的学生给予鼓励,对没有思路的学生教师点拨其思考的方法,最后得出结论“知一求二”.讨论结果:①在上述两个等式中,不是所有的角都可以是任意角,在第一个等式中,α可以是任意角,在第二个等式中α≠kπ+2π,k ∈Z . ②在上述两个等式中,只要知道其中任意一个,就可以求出其余的两个.知道正弦(余弦),就可以先求出余弦(正弦),用等式1;进而用第二个等式2求出正切.应用示例思路1例1 已知sinα=54,并且α是第二象限的角,求cosα,tanα的值. 活动:同角三角函数的基本关系学生应熟练掌握,先让学生接触比较简单的应用问题,明确和正确地应用同角三角函数关系.可以引导学生观察与题设条件最接近的关系式是sin 2α+cos 2α=1,故co sα的值最容易求得,在求cosα时需要进行开平方运算,因此应根据角α所在的象限确定cosα的符号,在此基础上教师指导学生独立地完成此题.解:因为sin 2α+cos 2α=1,所以cos 2α=1-sin 2α=1-(54)2=259. 又因为α是第二象限角,所以cosα<0.于是cosα=259−=53−, 从而tanα=a a cos sin =54×(35−)=34−.点评:本题是直接应用关系求解三角函数值的问题,属于比较简单和直接的问题,让学生体会关系式的用法.应使学生清楚tanα=34−中的负号来自α是第二象限角,这也是根据商数关系直接运算后的结果,它不同于在选用平方关系式的三角函数符号的确定.例2 已知cosα=178−,求sinα,tanα的值. 活动:教师先引导学生比较例1、例2题设条件的相异处,根据题设条件得出角的终边只能在第二或第三象限.启发学生思考仅有cosα<0是不能确定角α的终边所在的象限,它可能在x 轴的负半轴上(这时cosα=-1).解:因为cosα<0,且cosα≠-1,所以α是第二或第三象限角.如果α是第二象限角,那么 sinα=a 2cos -1=2)178(1−−=1715, tanα=a a cos sin =1715×(817−)=815−, 如果α是第三象限角,那么sinα=175−,tanα=34−. 点评:在已知角的一个三角函数值但是不知道角所在的象限的时候,应先根据题目条件讨论角的终边所在的象限,分类讨论所有的情况,得出所有的解.思路2例1 已知tanα为非零实数,用tanα表示sinα、cosα.活动:引导学生思考讨论:角的终边在什么位置;能否直接利用基本关系式求出sinα或cosα的值.由tanα≠0,只能确定α的终边不在坐标轴上.关于sinα、cosα、tanα的关系式只有tanα=aa cos sin ,在这个式子中必须知道其中两个三角函数值,才能求出第三个,因此像这类问题的求解,不能一步到位,需要公式的综合应用.其步骤是:先根据条件判断角的终边的位置,讨论出现的所有情况.然后根据讨论的结果,利用基本关系式求解.分情况求出cosα,进而求出sinα. 解:因为sin 2α+cos 2α=1,所以sin 2α=1-cos 2α.又因为tanα=a a cos sin ,所以tan 2α=a a 22cos sin =1cos 1cos cos 1222−=−aa a . 于是a 2cos 1=1+tan 2α,cos 2α=a2tan 11+. 由tanα为非零实数,可知角α的终边不在坐标轴上,从而c osα=⎪⎪⎩⎪⎪⎨⎧+−+,,,tan 11,,tan 1122第三象限角为第二当第四象限角为第一当a a、a asinα=cosαtanα=⎪⎪⎩⎪⎪⎨⎧+−+.,tan 1tan ,,,tan 1tan 22第三象限角为第二当第四象限角为第一当、a aa a a 点评:要求学生灵活运用三角函数公式进行变形、化简、求解.需要学生认真细致分析题目的条件,灵活运用公式,需要较高的思维层次.变式训练已知cosα≠0,用cosα表示sinα、tanα.解:本题仿照上题可以比较顺利完成. sinα=⎪⎩⎪⎨⎧−−−,、a a ,、a ,a 第四象限角为第三当第二象限角为第一当,cos 1cos 122 tanα=⎪⎪⎩⎪⎪⎨⎧−−−.cos cos 1,cos cos 122第四象限角为第三当第二象限角为第一当、a ,,、a αααα 例2 求证:.cossin 1sin 1cos x x x +=− 活动:先让学生讨论探究证明方法,教师引导思考方向.教材中介绍了两种证明方法:证法一是从算式一边到另一边的证法,算式右边的非零因式1+sinα,在左边没有出现,可考虑左边式子的分子、分母同乘以1+sinx,再化简;在证法二中可以这样分析,要让算式成立,需证cos 2x=(1+sinx)(1-sinx),即cos 2x=1-sin 2x,也就是sin 2x+cos 2x=1,由平方关系可知这个等式成立,将上述分析过程逆推便可以证得原式成立.证法一:由cosx≠0,知sinx≠1,所以1+sinx≠0,于是左边=右边=+=−+=−+=+−+x x xx x x x x x x x x x cos sin 1sin 1)sin 1(cos sin 1)sin 1(cos )sin 1)(sin 1()sin 1(cos 22 所以原式成立.证法二:因为(1-sinx)(1+sinx)=1-sin 2x=cos 2x=cosxcosx,且1-sinx≠0,cosx≠0,所以.cos sin 1sin 1cos xx x x +=−教师启发学生进一步探究:除了证法一和证法二外你可否还有其他的证明方法.教师和学生一起讨论,由此可探究出证法三.依据“a -b=0⇔a=b”来证明恒等式是常用的证明方法,由学生自己独立完成.证法三:因为0cos )sin 1(cos cos cos )sin 1()sin 1(cos cos )sin 1()sin 1)(sin 1(cos cos cos sin 1sin 1cos 2222=−−=−−−=−−+−=+−−x x x x x x x x x x x x x x x x x 所以.cos sin 1sin 1cos xx x x +=− 点评:这是一道很有训练价值的经典例题,教师要充分利用好这个题目.从这个例题可以看出,证明一个三角恒等式的方法有很多.证明一个等式,可以从它的任何一边开始,证得它等于另一边;还可以先证得另一个等式成立,从而推出需要证明的等式成立.例3 化简.440sin -12︒活动:引导学生探究:原式结果为cos440°时是不是最简形式,还应怎么办?教师引导学生运用诱导公式一化简为cos80°,由于cos80°>0,因此︒80cos 2=|cos80°|=cos80°,此题不难,让学生独立完成.解:原式=)80(360sin -12︒+︒=︒80sin -12=︒80sin -12=cos80°.点评:恰当利用平方关系和诱导公式化简三角函数式.提醒学生注意化简后的简单的三角函数式应尽量满足以下几点:(1)所含的三角函数种类最少;(2)能求值(指准确值)的尽量求值;(3)不含特殊角的三角函数值.变式训练化简:︒︒cos402sin40-1答案:cos40°-sin40°.点评:提醒学生注意:1±2sinαcosα=sin 2α+cos 2α±2sinαcosα=(sinα±cosα)2,这是一个很重要的结论.知能训练课本本节练习.解答:1.sinα=53−,tanα=43. 2.当φ为第二象限角时,sinφ=23,cosφ=21− 当φ为第四象限角时,sinφ=23−,cosφ=21. 3.当θ为第一象限角时,cosθ≈0.94,tanθ≈0.37.当θ为第二象限角时,cosθ≈-0.94,tanθ≈-0.37. 4.(1)cosθtanθ=cosθθθcos sin =sinθ; (2)1sin cos sin cos sin 2)cos (sin )cos (sin cos 2sin 211cos 2222222222222=−−=−++−=−−aa a a a a a a a a a a 5.(1)左=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-cos 2α=右;(2)左=sin 2α(sin 2α+cos 2α)+cos 2α=sin 2α+c os 2α=1=右.课堂小结由学生回顾本节所学的方法知识:①同角三角函数的基本关系式及成立的条件,②根据一个任意角的正弦、余弦、正切中的一个值求出其余的两个值(可以简称“知一求二”)时要注意这个角的终边所在的位置,从而出现一组或两组或四组(以两组的形式给出).“知一求二”的解题步骤一般为:先确定角的终边位置,再根据基本关系式求值,若已知正弦或余弦,则先用平方关系,再用其他关系求值;若已知正切或余切,则构造方程组求值.教师和学生一起归纳三角函数式化简与三角恒等式的证明的一般方法及应注意的问题,并让学生总结本节用到的思想方法.作业1.化简(1+tan 2α)cos 2α;2.已知tanα=2,求aa a a cos sin cos sin −+的值. 答案:1.1;2.3.设计感想公式的推导和应用是本节课的重点,也是本节课的难点.公式的应用实际上是求可化为完全平方的三角函数式的“算术平方根”的化简题和证明题,这类问题可按下列情形分别处理:(1)如果这个三角函数式的值的符号可以确定,则可以根据算术平方根的定义直接得到结果;(2)如果这个三角函数式的值的符号不可以确定,则可根据题设条件,经过合理的分类讨论得到结果.三角函数式的化简,体现了由繁到简的最基本的数学解题原则,它不仅需要学生能熟悉和灵活运用所学的三角公式,还需要熟悉和灵活运用这些公式的等价形式,同时,这类问题还具有较强的综合性,对其他非三角知识的灵活运用也具有较高的要求,在教学时要注意进行相关知识的复习.证明恒等式的过程实质上就是分析转化和消去等式两边差异来促成统一的过程,证明时常用的方法一般有以下三种:(1)依据相等关系的传递性,从等式一边开始,证明它等于另一边,证明时一般遵循由繁到简的原则.(2)依据“等于同量的两个量相等”证明左、右两边等于同一个式子.(3)依据等价转化思想,证明与原式等价的另一个式子成立,从而推出原式成立.教材上在运用这一方法时使用的是综合法,初学恒等式的证明时,运用等价转化的方法可以使证明的思路更清楚一些,实际上,使用综合法时不一定要求进行等价转化,只需证明等式成立的充分条件即可(教师知道即可),证明方法中分别运用到了分式的基本性质和算式的基本性质.使学生明白,如果算式中含有正弦、余弦、正切等三角函数,为了便于将算式两边沟通,可通过“切化弦”使两边的三角函数相同.。
1.2.2《同角三角函数的基本关系》班级 小组 姓名 评价一【学习目标】1. 经历同角三角函数的基本关系的探索、发现过程,培养动手实践、探索、研究能力。
2. 理解同角三角函数的基本关系式,并能初步运用他们解决一些三角函数的求值、证明等问题【重点】,培养运算能力,逻辑推理能力;3.通过对同角三角函数的基本关系的学习,揭示事物之间的普遍联系规律,培养辩证唯物主义世界观及逻辑推理能力。
通过基本关系式的选取培养思维的灵活性。
【难点】二【复习回顾】(1)三角函数的定义设P 是角α终边上任意一点(x,y ), 它与原点的距离是r , 则 =2rsin α=cos α=tan α=(2)三角函数在各象限的的符号sin α cos α tan α二【新知预习】仔细阅读教材必修四P18-P2021要部分用红笔勾出,然后合上课本,独立完成预习新知部分,同角三角函数基本关系基本关系关系式 文字表述 平方关系 商数关系(1)同角三角函数基本关系中,角α是否为任意角?(2)如何理解同角三角函数中的同角?(3)同角三角函数基本关系有哪些变形?四【合作探究】尽自己最大努力独立思考探究,然后在课堂中进行合作交流展示探究1、 已知sin α=12,且α是第一象限角,求cos α,tan α探究2、 已知cos α=45,求sin α,tan α的值.探究3、已知tan α=2,求sin α,cos α的值.探究4、求证x x x x cos sin 1sin 1cos +=-四【课堂小结】这节课你学到了什么?你想进一步探究的问题是什么?。
《同角三角函数的基本关系》教学设计理解同角三角函数的基本关系式:sin 2x + cos 2x = 1,sin x cos x= tan x ,体会三角函数的内在联系性,通过运用基本关系式进行三角恒等变换,发展数学运算素养.教学重点:同角三角函数的基本关系式.教学难点:对三角函数内在联系性的认识.PPT 课件. (一)新知探究 问题1:诱导公式一表明,终边相同的角的同一三角函数的值相等.因为三个三角函数的值都是由角的终边与单位圆的交点坐标所唯一确定的,所以它们之间一定有内在联系.那么,终边相同的角的三个三角函数之间有什么关系呢?预设的师生活动:教师引导学生讨论,利用公式一,可以把问题转化为“同一个角的三个三角函数之间的关系”.然后让学生自主探究,得出“同角三角函数的基本关系”.预设答案:sin 2α+cos 2α=1 ;sin αcos α= tan α. 即同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.设计意图:“终边相同的角的三个三角函数的值都由单位圆上同一点的坐标所唯一确定,它们之间一定有内在联系”是发现问题的关键思想;由“终边相同的角的同一三角函数的值相等”引出“终边相同的角的不同三角函数之间有什么关系”的问题,再转化为“同一个角的三个三角函数之间关系”的研究,可以培养学生发现和提出问题的能力.借助单位圆上点的坐标的意义,由三角函数定义可以直接得出“同角三角函数的基本关系”.问题2:总结上述研究过程,你能说说我们是从哪些角度入手发现三角函数性质的?你认为还可以从哪些方面入手研究三角函数的性质?预设的师生活动:先由学生独立思考、交流讨论,再由教师帮助学生总结.预设答案:借助单位圆,从三角函数的定义出发,我们从三角函数值的符号规律、终边相同的角的三角函数的关系入手发现了诱导公式一和同角三角函数的基本关系.自然而然地,我们还可以研究“终边不同的角的三角函数有什么关系”.设计意图:引导学生归纳三角函数性质的表现方式,培养学生的“数学的眼光”.结合圆的对称性,容易把研究方向指向“终边具有轴对称关系”“终边具有中心对称关系”或“终边具有某种特殊对称关系(如关于直线y =x 对称)”的角的三角函数的关系,这就是下一单元要研究的诱导公式二~五.这是三角函数“与众不同”的性质.例1 已知sin α=53-,求cos α,tan α的值. 预设的师生活动:可以由学生独立完成,并作课堂展示.预设答案:因为sin α<0,sin α≠-1,所以α是第三或第四象限角.由sin 2α+cos 2α=1得cos 2α=1-sin 2α=1-253⎪⎭⎫ ⎝⎛-=2516; 如果α是第三象限角,那么cos α<0.于是cos α=542516-=-, 从而tan α = sin αcos α = 434553=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-; 如果α是第四象限角,那么cos α>0.于是cos α=542516=, 从而tan α =sin αcos α = 434553-=⨯⎪⎭⎫ ⎝⎛-. 追问:你能对这种“已知一个三角函数值,求同角的另两个三角函数值”(简称“知一求二”)题型总结出解题步骤吗?预设答案:解题步骤如下:第一步,先根据条件判断角所在的象限;第二步,确定各三角函数值的符号;第三步,利用基本关系求解.设计意图:本题属于用同角三角函数基本关系求值的基本问题类型,通过灵活运用性质的训练,提升数学运算素养.例2 求证:cos x 1-sin x= 1+sin x cos x . 预设的师生活动:由学生独立完成,并作课堂展示.教师可以鼓励学生采用不同的变形方法得出答案.预设答案:证法一:由cos x ≠0,知sin x ≠-1,所以1+sin x ≠0,于是左边=x x xx x x x x x x x x cos sin 1cos )sin 1(cos sin 1)sin 1(cos )sin 1)(sin 1()sin 1(cos 22+=+=-+=+-+=右边. 所以,原式成立.证法二:因为(1-sin x )(1+sin x )=1-sin 2x =cos 2x =cos x cos x ,且1-sin x ≠0,cos x ≠0,所以cos x 1-sin x= 1+sin x cos x . 设计意图:例2实际上是sin 2x +cos 2x =1的变形,采用分析法、综合法都可以证明,还可以从不同方向进行推导.本题可以提高学生对三角函数基本性质的理解水平.(二)课堂练习教材练习题.师生活动:上述题目都比较简单,学生解答完成后,公布答案自我检查即可.设计意图:检验学生对定义的理解情况,通过应用三角函数的基本性质解决一些简单问题,进一步理解这些性质.(三)归纳小结教师引导学生回顾本单元学习内容,并回答下面问题:(1)概述本单元知识发生发展过程的基本脉络,能不能画一个结构图来反映本单元的研究思路及内容?(2)任意角三角函数的现实背景是什么?(3)叙述任意角三角函数的定义过程,说明任意角三角函数与锐角三角函数区别与联系.(4)我们是如何发现诱导公式一和同角三角函数的基本关系的?在发现这些性质的过程中,有哪些值得总结的思想方法或有益经验?预设的师生活动:提出问题后,先让学生思考并作适当交流,再让学生发言,教师帮助完善.预设答案:(1)基本脉络是“现实背景—获得研究对象—分析对应关系的本质—下定义—研究性质”;(2)一些周期现象;(3)定义过程包括背景的简化、本质化,借助单位圆进行对应关系的分析,确认弧度制下角的集合R 到区间[-1,1](角的终边与单位圆交点的横、纵坐标的取值范围)的对应关系是函数关系,引进符号sin α,cos α表示函数值,进而引进函数tan α,完善函数的定义域等等.任意角三角函数与锐角三角函数的区别是:锐角三角函数是用直角三角形边长的比来刻画的,它的引入与“解三角形”有直接关系;而任意角的三角函数是通过角的终边与单位圆的交点坐标或坐标比来定义的,它主要是用来刻画周期变化现象的.它们的联系是:当x ∈⎪⎭⎫ ⎝⎛2π0,时,对应的函数值相等. (4)三角函数的定义是借助于单位圆来定义的,因此其性质必然与单位圆的几何性质有关,又因为三角函数是一个背景下同时得到三个定义,所以,它们之间一定有某种内在的联系,在此基础上,发现了诱导公式一和同角三角函数的基本关系.此过程可以培养我们的数学基本思想,积累基本活动经验,提高发现和提出问题的能力.设计意图:(1)通过不断重复这一过程,使学生逐步掌握研究一个数学对象的基本套路.(2)明确三角函数的现实背景,可以使学生明白这类函数区别于其他基本初等函数的主要特征,为三角函数的应用奠定基础.(3)强调任意角三角函数与锐角三角函数的区别,主要是它们的研究背景(要解决的现实问题)不同,是两类完全不同的函数;建立它们的联系,可以把锐角三角函数纳入到任意角三角函数的系统中(对角的取值范围作出限制即可),从而形成清晰的、可辨别的三角函数认知结构,有利于三角函数的应用.(4)对“如何发现性质”的反思,可以培养数学基本思想,积累基本活动经验,发展发现和提出问题的能力,这是落实数学学科核心素养的重要环节.要关注如下几点:①从定义出发;②发挥单位圆的作用,从中体会“三角函数的性质是圆的几何性质的解析表示”的观点; ③三角函数与其他基本初等函数的最大不同点是它的周期性,由此并结合定义可以得到诱导公式一;三角函数是“一个背景定义三个函数”,因此可以预见它们一定有内在联系,而且可以相互转化,这是发现同角三角函数基本关系的指路明灯,其中蕴含的思想具有可迁移性,有利于提升核心素养.(四)布置作业教科书习题.(五)目标检测设计1.已知tan α=3,π<α<23π,求cos α-sin α的值. 预设答案:由已知可知sin α=23-,cos α=21-,因此cos α-sin α=213-. 设计意图:考查同角三角函数的基本关系.2.求证:tan 2α-sin 2α= tan 2αsin 2α.预设答案:tan 2αsin 2α= tan 2α(1-cos 2α)= tan 2α-tan 2αcos 2α=tan 2α-sin 2α.设计意图:考查同角三角函数的基本关系,代数变形能力.。