2017年秋九年级数学上册41正弦和余弦第1课时正弦及30°角的正弦值湘教版!
- 格式:doc
- 大小:60.50 KB
- 文档页数:2
三角函数教案4.1 正弦和余弦(1)教学设计教学内容教学分析教学重点1、理解和掌握锐角正弦的定义。
2、根据定义求锐角的正弦值。
教学难点探索“在直角三角形中,任意锐角的对边与斜边的比值是一个常数”的过程教学准备教具学具补充材料课件、计算器、量角器、刻度尺教学流程第1 课时教学环节教师活动预设学生活动预设设计意图执教者个性化调整一、创设情景引入新课[活动1]1、上图是学校举行升国旗仪式的情景,你能想办法求出旗杆的高度吗?(课件演示)2、学习了本章内容你就能简捷地解决这类问题,本章将介绍的锐角三角形函数,它们的本事可大了,可以用来解决实际问题,今天我们来学习第一节“正弦和余弦”(第一课时)学生可能会采用相似三角形的知识来解决,也可能无法解决,从而带着问题学习。
对章前图的说明和本章内容的简单介绍,明确本章研究的内容,让学生有个基本的了解。
通过实例创设情境,引入新课,体现了数学知识的实用性,也容易激发学生学习的兴趣和探索的热情。
二、师生互动探究新知[活动2]如图2一艘轮船从西向东航行到B学生观察,思考,建立几何模型,将实际问题转化为直角三角形中边角关让学生带着问题学习,激发探索欲望。
65°BAC⌒北东由于各人画的直角三角形大小不一样,所以量得的长度也不一样,但比值为什么相等呢?学生议论纷纷,激起疑问。
发现:在有一个锐角为65°的直角三角形中,65°角的对边与斜边的比值是一个常数,它约等于0.9。
的观点,激起疑问。
算结果大体一致,便于对后面知识的探究,故对教科书上要求的精确度进行了修改。
(3)为什么演扳的两位同学画的直角三角形大小不一样,但65°角的对边与斜边的比值:与相等呢?你能证明这个结论吗?∵∠D =∠D ′ ∠E =∠E ′ ∴△DEF ∽△D ′E ′F ′∴即: 因此:在有一个锐角等于65°的所有直角三角形中,65°角的对边与同桌之间将各自所画图形放在一起,合作探究。
初中数学试卷 桑水出品4.1 正弦与余弦知识点一 正弦的意义1.如图在Rt ABC ∆中,090C ∠=,则sin A = = ,sin B = = 2.在ο90,=∠∆C ABC Rt 中,若将各边长度都扩大为原来的2倍,则∠A 的正弦值 ( ).A .扩大2倍B .缩小2倍C .扩大4倍D .不变 3.在Rt △ABC 中,∠C=90°,若AC=2BC,则sin A 的值是 ( ) .A .12B .2C .5D .5 4.已知在Rt △ABC 中,∠C =90°,直角边AC 是直角边BC 的2倍,则sin ∠A 的值是 .5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .知识点二 余弦的意义6如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的邻边b 与斜边c 的比叫做∠A 的______,记作=_________,即cosA=______=_____.7.在Rt △ABC 中,∠C=90°,AB=5,BC=4,则cosA = .8.在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( ). A .53 B .54 C .43 D .55 9.如图,在△ABC 中,5AB =,13BC =,AD 是BC 边上的高,4AD =,则CD = ,sin B = .A C第9题图10.如图,在Rt △ABC 中,∠C=900,BC=6,sinA=53,求cosA 和tanB的值.技能点一利用网格求三角函数11.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .22C .3D .3 技能点二 利用三角函数解决实际问题 12.如图,90ACB ∠=o ,13AB =,12AC =,BCM BAC ∠=∠,求sin BAC ∠ 和点B 到直线MC 的距离.CAB第12题图 第11题图 第10题图参考答案1.BCABacACABbc2.D 3.C45.4 56.余弦cos A ACABbc7.3 58.B9.10.4cos5A=4tan3B=11.B12.5sin13BAC∠=点B到直线MC的距离为2513.。
三角函数正弦余弦表
正弦和余弦是三角函数中最基本的两个函数,它们在数学、物理、工程等领域都有广泛的应用。
下面是正弦和余弦表:一、正弦表角度0°30°45°60°90°
sinθ0 1/2 √2/2√3/2 1二、余弦表角度 0° 30°45° 60° 90°
cosθ 1 √3/2 √2/2 1/2 0
从上述表格可以看出,当角度为0时,正弦值为0,余弦值为1;当角度为30时,正弦值为1/2,余弦值为√3/2;当角度为45时,正弦值和余弦值均为√( ) / ( ) ,即根号二分之一;当角度为60时,正弦值和余弧值分别是√( ) / ( ) 和半径的一半;而当角底等于90时,则正弧值等于半径长(即单位圆的直径),而其餘则无定义。
需要注意的是,在三维空间中存在着双曲线函数tanh(x)与双曲线反函数arctanh(x),这些也被称作“超越函数”,但它们并不属于三角函数的范畴。
正弦和余弦【基础知识精讲】1.基本概念Rt △ABC ,∠C 为直角,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA.把∠A 的邻边和斜边的比叫做∠A 的余弦,记作cosA,即,sinA=斜边的对边A ∠,cosA=斜边的邻边A ∠. 如图1,sinA=c a ,cosA=cb .注意:正弦、余弦是一种比值,当∠A 确定时,这个比值是不变的.2.取值范围由于直角三角形中斜边大于直角边,从而有:0<c a <1,0<cb <1,所以当∠A 为锐角时,0<sinA <1,0<cosA <1.3.特殊角的正、余弦的数值由直角三角形的有关性质及正、余弦定义,可以推出:sin30°=21,sin45°=22,sin60°=23;cos30°=23,cos45°=22,cos60°=21. 4.互余角的正、余弦函数之间的关系由图6-1知,sinA=c a ,cosB=ca ,从而可得:sinA=cosB.同理可证:cosA=sinB ,又A+B=90°,∴sinA=cos(90°-A),cosA=sin(90°-A)(A 为锐角).5.在0°—90°之间正、余弦值的变化情况从正、余弦表中可以看出:当角度在0°—90°是变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的减小(或增大)而增大(或减小).【重点难点解析】本节的重点是理解正弦函数和余弦函数的概念,熟记特殊三角函数值.难点在于搞清sinA 、ocsA 的意义,它提示了直角三角形边角之间内在联系,是后面解直角三角的基础.例1 如图2,在Rt △ABC 中,∠C=90°,AC=8,BC=4.(1)求sinA 、cosA 的值;(2)sin 2A+cos 2A 的值;(3)比较sinA 与cosB 的大小.解:(1)∵∠C=90°,AC=8,BC=4,∴AB=22BC AC +=2248+=45.∴sinA=551=AB BC ,cosA=552=AB AC . (2)sin 2A+cos 2A=cos2A=(551)2+(552)2=1. (3)∵cosB=551=AB BC ,sinA=551, ∴sinA=cosB(或由公式得出).点拨:熟练地依据正弦函数、余弦函数的概念求直角形中各锐角的正、余弦值是本节的基本技能;此题为求正、余弦值,必先求出斜边的长,再由定义得出,在问题(3)中我们以具体实例验证了公式sinA=cos(90°-A).例2 求下列各式的值(1)sin30°·sin45°+cos30°·cos45°. (2)2sin45°+sin30°·cos60°.解:(1)sin30°·sin45°+cos30°·cos45°=22232221⨯⨯⨯=641241+. (2)2sin45°+sin30°·cos60°=2×22+21×21=45. 点拨:熟记特殊角的正、余弦值有利于快速、准确的计算.例 3 已知sin35°=0.5736,sin67°18′=0.9225,求cos60°cos55°-2cos22°42′的值.解:∵cos55°=cos(90°-35°)=sin35°=0.5736,cos22°42′=sin67°18′=0.9225,∴cos60°cos55°-2cos22°42′ =21×0.5736-2×0.9225 =-1.5582.简析:运用公式sinA=cos(90°-A)解题,明确互余角之间三角函数关系. 例4 不查表,比较sin46°与cos46°的大小.解:∵46>45 ∴sin46°>sin45°,cos46°<cos45°,又sin45°=22=cos45°,∴sin46°>cos46°. 点拨:45°的正、余弦值相等以及0°—90°之间正、余弦值变化情况是解决本题的关键.例5 已知Rt △ABC 中∠C=90°,∠B=60°,a+b=6,求a 、b 、c.解:∵sinB=sin60°=23,∴b=23c.① ∵cosB=cos60°=21,∴a=21c.② 又知a+b=6,③由①②③知:a=33-3,b=9-33,c=63-6.点拨:此题由角B 的正、余弦的定义得出等式①②,再由已知③解方程解决问题.【课本难题解答】1.证明:sin 2A+cos 2A=1(A 为锐角).证明:在Rt △ABC 中(∠C=90°),sinA=c a ,cosA=cb , sin 2A+cos 2A=22222c c c b a =+=1. 点拨:用定义及勾股定理直接解题.2.已知sinA=54,求cosA 的值.(∠A 为锐角). 解:∵∠A 为锐角,∴cosA >0.又sin 2A+cos 2A=1,∴cosA=A sin 12-=53. 点拨:本题有两点值得注意,一是sinA 与cosA 之间的关系(即其平方和为1),二是由等式sin 2A+cos 2A=1得出的是cosA=±A sin 12-,再由A 是锐角,cosA 大于0,得出正确结论.【典型热点考题】例1 计算:(2+1)0-|sin60°-1|-(213+)-1+(-1)3. 解:(2+1)0-|sin60°-1|-(213+)-1+(-1)3 =1-(1-23)-(3-1)+(-1) =-321. 点拨:简单运用sin60°的值进行计算.例 2 在斜边为10的Rt △ABC 中,∠C=90°,两直角边a 、b 是方程x 2-mx+3m+6=0的两个根.(1)求m 的值;(2)求两个锐角的正弦值.解:依题意:a+b=m,ab=3m+6,∵a 2+b 2=102 ,∴m 2-2(3m+6)=102 .解这个方程得:m 1=-8,m 2=14.∵a+b >0,∴m=14.原方程为:x 2-14x+48=0.解之得:x 1=8,x 2=6.∴当a=6,b=8,c=10,sinA=53,sinB=54. 当a=8,b=6,c=10时,sinA=54,sinB=53. 点拨:(1)是用方程的有关知识解题,问题(2)是用定义解题,关键注意题中没有明确a 、b 的大小,从而需加以讨论说明.例 3 已知△ABC 的边AC=2,∠A=45°,cosA 、cosB 是方程4x 2-2(1+2)x+m=0的两根,求∠B 的度数.解:∵∠A=45°,∴sinA=22. 由根与系数的关系:cosA+cosB=21(1+2), ∴cosB=21,∠B=60°. 点拨:此题将一元二次方程和三角函数结合在一起,要求我们具有综合运用知识的能力.【同步达纲练习】(时间:45分钟,满分:100分)一、填空(6分×5=30分)(1)若sinB=21,则∠B= 度;sinA=23,则∠A=_____度. (2)当α为锐角时,2)1(sin -α= . (3)2)145(sin -︒+|1-cos60°|= .(4)已知2sin α-3=0,则α= .(5)在Rt △ABC 中,∠C=90°,AC=3,BC=2,则sinA= ,sinB= ,cosA= .二、选择题(6分×5=30分)(1)已知α为锐角,且sin α=m,则m 的取值范围是( )A.一切实数B.m >0C.0<m <1D.m >1(2)已知cosA(A 为锐角)是方程3x 2-43x+3=0的实根,则cosA 等于( ) A.3 B.33 C. 3或33 D.m >1 (3)已知锐角∠AOB ,P 是OB 边上任一点,过P 作PQ ⊥OA 于Q ,设OQ=x ,QP=y,OP=r ,则比值yx x y r x r y ,,,的大小与点P 及∠AOB 的关系是( ) A.由P 点的位置决定,与∠AOB 的大小无关B.由∠AOB 的大小决定,与点P 位置无关C.由∠AOB 的大小和点P 位置决定D.与∠AOB 的大小和点P 位置无关(4)中△ABC 中,∠C=90°,sinA=53,则cosB=( ) A. 53 B.54 C.2516 D.259 (5)已知Q 为锐角,则下列等式中,可能成立的是( )①sinQ=3 ②sinQ+cosQ=0③cosQ=a11(a >0) ④sinQ-cosQ=0 A.①② B.②③ C.③④ D.①④三、解答题(8分×5=40分)(1)已知三角形三边长分别是5,12,13.①判断此三角形的形状;②求最小角的正弦和余弦值.(2)在Rt △ABC 中,∠C=90°,a:b=4:5,求sinA 、cosA 的值.(3)计算2)170(cos +︒-22)60sin 60(cos ︒+︒+|sin20°-1|.(4)计算sin45°·cos45°-cos 245°+sin 230°.(5)已知sin75°=426+,求︒︒+︒30sin 15cos 75sin 的值.【素质优化训练】1.设cosQ+sin 2Q=1,Q 为锐角,下而的结论正确的是( )A.sinQ+sin 2Q >1B.sinQ+sin 2Q=1C.sinQ+sin 2Q <1D.sinQ+sin 2Q 与1的大小关系不能确定2.已知在Rt △ABC 中,∠C=90°,且sinA 和cosB 是方程4x 2+px+1=0的两根,(1)求证:p+4=0;(2)求∠A 和∠B 的度数.3.已知17cosA+13cosB=17,17sinA=13sinB,且A 、B 都是锐角,求2A +B 的值.【生活实际运用】一般向正东方向航行,上午十时在灯塔的西南方58.4海里处,到上午十二时船到达灯塔的正南方,求船航行的速度.参考答案【同步达纲练习】一、(1)30°、60°(2)1-sin α (3)2-2122- (4)60°(5)515,515,510 二、C B B A C三、(1)Rt △,sinA=135,cosA=1312 (2)设a=4k ,则b=5k,∴c=41k,∴sinA=41414.cosA=41415. (3)1-3 (4)41(5)∵sin75°=cos15°,∴原式=26+.【素质优化训练】1.D2.∵A+B=90°,∴sinA=cosB,∴方程4x 2+px+1=0有两个实根,∴△=p 2-16=0,p=±4当p=4时,x=-21,此时sinA <0,舍去,当p=-4时,x=21,即sinA=cosB=21.∴∠A=30°∠B=60°,p+4=0.3.作△ABC 中,使AB=AC=13,过点C 作CD ⊥AB 于点D.在△ABC 中,CD=17,sinA=13cosB,AD=17cosA,BD=13cosB,且17cosA+13cosB=AB=17,则在△ABC 中,∠A 、∠B 符合题目条件,又∠A+2∠B=180°,∴2A +B=90°. 【生活实际运用】AC=AB ·cos45°=58.4×22=29.22,∴速度V=2AC =14.62海里/时.。
正弦和余弦【学习目标】1.了解正弦、余弦的概念的意义(用直角三角形中直角边与斜边的比表示),知道当锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.2.熟记30°、45°、60°角的正弦、余弦值,并会根据这些数值说出对应的特殊角的度数.3.了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系. 4.会查“正弦和余弦表”,即由已知锐角求对应的正弦、余弦值,已知正弦、余弦值求对应的锐角(或运用计算器).5.会用上述知识解决一些求三角形中未知元素的简单问题. 【主体知识归纳】1.如图6—1,在Rt △ABC 中,如果∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,那么∠A 的正弦sin =ca ,∠A 的余弦cos =cb .2.特殊角的正弦、余弦值.3.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.即sinA =cos (90°-A ),cosA =sin (90°-A ).4.三角函数表三角函数值的变化规律是使用三角函数表的依据.当角度在0°~90°变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大).【基础知识讲解】1.正弦、余弦的概念是本章的起点,同时又是重点、关键.这是本章知识的基础.在直角三角形ABC 中,当一个锐角(∠A )取固定值时,它的直角边与斜边的比值也是一个固定值.ABBC A A =∠=斜边的对边sin ,cos =ABAC A =∠斜边的邻边.实际上它们是一个函数关系,它的自变量的取值范围是大于0°且小于90°的所有角度. 在直角三角形中,由于斜边最长,所以函数值的范围是大于0且小于1的所有实数. 2.在查“正弦和余弦表”时,需要明确以下四点:(1)这份表的作用是:求锐角的正弦、余弦值,或由锐角的正弦、余弦值,求这个锐角;(2)这份表中,角精确到1′,正弦、余弦值具有四个有效数字; (3)凡查表所得的值,在教科书中习惯用等号“=”,而不用约等号“≈”;根据查表所得的值进行近似计算,结果经四舍五入后,一般用约等号“≈”来表示;(4)通过查表要知道:sin0°=0,sin90°=1,cos0°=1,cos90°=0.在使用余弦表中的修正值时,如果角度增加(1′~3′),相应的余弦值要减小一些;如果角度减小(1′~3′),相应的余弦值要增加.【例题精讲】例1:如图6—2,已知在△ABC 中,∠ACB =90°,CD ⊥AB ,且AC =4,CD =3,求∠B 的正弦值和余弦值.剖析:任意一个锐角的三角函数值,一般是利用一个直角三角形中相应的边的比值表示,因此要求∠B 的正弦、余弦值,首先要观察∠B 是否在一个直角三角形中,边的比值可否求出.解:∵AC ⊥BC ,C D⊥AB ,∴△ACD ∽△ABC .∴∠ACD =∠B .又∵AC =4,C D=3,由勾股定理,得AD =7. ∴sinB =sin ∠ACD =47,cosB =cos ∠ACD =43.例2:如图6—3,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,写出等于∠A 的正弦的线段比.剖析:根据三角函数定义知,在直角三角形中,角的正弦值等于对边比斜边,余弦值等于邻边比斜边.这里的前提条件一定要注意,是在直角三角形中.错解:sin =AB BC AB CD =.正解:sin =BCBD ABBC ACCD ==.说明:错解之一是所答线段比ABCD ,因为它们不在同一个直角三角形中,错解之二是所答线段比不全,不全的原因是在三种情况下形成的:一是∠A 是Rt △ABC 和Rt △ACD 的公共角,应有两个比,二是∠A =∠BCD ,则sin =sin ,三是∠A +∠ACD =90°,∠A +∠B =90°,cosACD =sinA =ACCD ,cosB =sin ∠BCD =BCBD .只不过第三种情况的比包含在前两种情况之中了.例3:如图6—4,在△ABC 中,AB =AC =5,BC =6,求cos ∠A .剖析:我们所求的任意一个锐角的三角函数值,都是根据三角函数定义,利用一个直角三角形中相应边的比值来表示.求锐角A 的三角函数值时,要观察∠A 是否存在于一个直角三角形中,如果题中没有给出这样的条件,我们要通过添加辅助线,构造出∠A 所在的直角三角形.解:作△ABC 的高AD 、BE .∵AB =AC =5,BC =6,∴BD =21BC =21³6=3.在Rt △ABD 中,由勾股定理,得 AD =222235-=-BDAB =4.∵S △ABC =21BC ²AD =21AC ²BE ,∴BC ²AD =AC ²BE , 即6³4=5³BE . ∴BE =524.在Rt △ABE 中,由勾股定理,得 AE =57)524(52222=-=-BEAB .∴cos =257=ABAE .说明:任意锐角的正弦、余弦值都是存在的,因此在求某一个锐角的正弦值、余弦值时,可把该锐角放到某一直角三角形中(如本例通过添加辅助线,构造出直角三角形),也可以利用某直角三角形中的一个和它相等的角替代(如例1中,求∠B 的三角函数值可转化为求∠ACD 的三角函数值).例4:计算:cos 245°–︒+︒60sin 2360cos 3+cos 230°+sin 245°–sin 230°.剖析:本题主要考查特殊角的三角函数值及数的运算,所以做题时,一是要牢记特殊角的三角函数值,二是运算要准确.解:原式=(22)2–211+2323⨯+(23)2+(22)2–(21)2=21–2+1+43+21–41=21.说明:牢记特殊角的三角函数值是做题的前提,运算正确是关键. 例5:在△ABC 中,若|sin –22|+(23–cos)2=0,∠A 、∠B 都是锐角,则∠C 的度数是( ) A .75°B .90°C .105°D .120°剖析:本题主要考查非负数的性质及正、余弦函数的有关知识,在△ABC 中,要求∠C 的度数,首先要确定∠B 、∠C 的度数.解:∵|sin –22|+(23–cos)2=0,∴|sin –22|=0,(23–cos)2=0,∴sin –22=0, 23–cos =0.即sin =22,cos =23.∴∠A =45°,∠B =30°. ∵∠A +∠B +∠C =180°, ∴∠C =105°. 故应选C .例6:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则BBA s in c o s c o s ∙的值是( ) A .ca B .ac C .baD .ab剖析一:四个选择支均为边的比值,因此想到将sinB 、cosB 、cosA 转化边的比,根据锐角三角函数的定义,cosA =cb ,sinB =cb ,cosB =ca ,化简得ca ,所以选A .剖析二:利用互余两角三角函数间的关系,得cosA =sinB ,即Bsin Bcos A cos ⋅=cosB =ca .因此选A .说明:(1)在解题中,常常利用锐角三角函数的定义,将锐角三角函数转化为边的比,或将边的比转化成锐角三角函数;(2)求三角函数式的值、化简三角函数式、或证明三角函数恒等式,常常利用互为余角的三角函数间的关系.将不同角的三角函数变为同角的三角函数.例7:若α是锐角,且sin α=322,求cos α的值.解:如图6—5,设∠A =α,∠C =90°,不妨设BC =22,AB =3,∴AC =2222)22(3-=-BC AB =1.∴cos α=31=ABAC .说明:(1)因α是锐角,可构造一个直角三角形,使α是其中的一个锐角,从而转化为利用锐角三角函数定义来解决问题.(2)已知sin α=322,运用特例的思想,可设BC =22,AB =3,从而转化为在直角三角形内的问题.这种解法在做选择题、填空题时应用更为广泛.(3)此题还可应用同角之间的三角函数关系求解,这将在以后的学习中学到. 【知识拓展】培养学习数学好习惯学习习惯是长时期逐渐养成的、一时不容易改变的学习行为方式和行为倾向,一个人养成什么样的学习习惯,会对其学习成绩直接产生有利或有害的影响.同学们养成怎样的学习习惯才对学习有利呢? (1)独立思考的习惯 爱因斯坦说过:“学习知识要善于思考、思考、再思考,我就是靠这个学习方法成为科学家的.” 课堂上对于老师的讲解,不要只是听或认真听,而要经过思考:老师为什么要这样讲?此题为什么要这样解?辅助线为什么要这样添?还有没有其他解法?长期坚持下去,既培养了自己独立思考的习惯,又真正掌握了知识,提高了能力,只有这样才有助于学习成绩的提高.(2)善于求异和质疑的习惯具体内容是:①独立思考问题,自己从书中、演算中或从分析自己的错例中寻找问题的答案,不畏困难,积极思考.②敢于提出自己的疑问并寻根问底,敢于提出自己不同意见.③在解题、讨论或研究问题时能突破条条框框的约束,不墨守成规,能从不同角度多方面的思考问题,寻求出创造性的解题方法.纠正懒于思考,事事依赖老师、家长、同学或单纯靠记忆模仿、照搬等不良的思维习惯.养成求异和质疑的好习惯对发展创造性思维,及将来的进一步学习都有重要的作用.要养成这种好习惯,首先要认真阅读课本,对书上的结论、注解要多问几个为什么;其次在听懂老师讲解后,要独立思考,看看所讲例题有没有别的解法;再次,就是在研究一题多解的基础上,勤积累,多思考.【同步达纲练习】1.选择题(1)下列各式中,正确的是( ) A .sin60°=21 B .cos (90°-30°)=sin60° C .cos60°=21D .sin 2x =sinx 2(2) 21cos30°+22cos45°+sin60°²cos60°等于( ) A . 22B .23 C .221+D .231+(3)在Rt △ABC 中,∠C =90°,a :b =3:4,则cosB 等于( ) A .54 B .53 C .43 D .34(4)已知在Rt △ABC 中,∠C =90°,AC =12,AB =13,那么sinA 的值是( ) A .1312 B .1213C .131 D .135(5)在Rt △ABC 中,∠C =90°,若c =2,sinA =41,则b 的值是( ) A .21 B .1C .215 D .以上都不对(6)在Rt △ABC 中,各边的长都扩大两倍,那么锐角A 的正弦值( )A .扩大两倍B .缩小到一半C .没有变化D .不能确定(7)在Rt △ABC 中,sinB =23,则cos 2B 等于( )A .21 B .23C .±23 D .以上答案都不对(8)若0°<α<45°,那么cos α–sin α的值( )A .大于零B .小于零C .等于零D .不能确定(9)α是锐角,且cos α=43,则α( ) A .0°<α<30°B .30°<α<45°C .45°<α<60°D .60°<α<90°(10)在Rt △ABC 中,∠C =90°,CD ⊥AB ,垂足为D ,AB :AC =3:2,则∠BC D的正弦值为( )A .35 B .32 C .23 D .53(11)在△ABC 中,∠C =90°,则下列叙述中正确的是( ) A .∠A 的邻边与斜边之比是∠A 的正弦B .∠A 的对边与邻边之比是∠A 的正弦C .∠A 的对边与斜边之比是∠B 的余弦D .∠A 的邻边与斜边之比是∠B 的余弦(12)在Rt △ABC 中,∠C =90°,∠A =30°,则sinA +cosA 等于( ) A .1B .231+ C .221+ D .41(13)下列等式中正确的是( ) A .sin20°+sin40°=sin60° B .cos20°+cos40°=cos60° C .sin (90°-40°)=cos40° D .cos (90°-30°)=sin60° (14)下列不等式中正确的是( ) A .cos42°>cos40°B .cos20°<cos70°C .sin70°>sin20°D .sin42°<sin40°(15)在Rt △ABC 中,∠C =90°,下列等式一定成立的是( ) A .sinA =sinB B .sinA =cosA C .sin (A +B )=cos D .sinA=cosB(16)化简22)80sin 20(sin 20sin 80sin )80cos 1(︒-︒︒-︒-︒-的结果是( )A .1–cos80°B .–cos80°C .cos80°D .cos80°–1(17)若α是锐角,sin40°=cos α,则α等于( ) A .40° B .50° C .60° D .不能确定(18)已知α、β是两个锐角,sin α=0.412,sin β=0.413,则有( ) A .α>βB .α<βC .α=βD .不能确定α、β的大小(19)已知α、β是两个锐角,cos α=0.43,cos β=0.44,则有( ) A .α>β B .α<β C .α=β D .不能确定α、β的大小(20)如果α是锐角,且cos α=54,则sin (90°-α)的值等于( )A .259 B .54C .53 D .2516(21)在△ABC 中,如果sinA =cosB =21,则△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .以上答案都不对2.填空题(1)计算:4sin60°+23cos30°-6cos 245°=__________;(2)一个直角三角形的两直角边分别为5和12,则较小锐角的正弦值是__________;(3)化简:︒+︒∙︒-︒90sin 60cos 70sin 470sin 22+cos20°的结果为__________;(4)若锐角α满足2sin α-1=0,则α=__________;(5)不查表,比较大小:sin25°_____sin24°30′,cos82°25′_______cos82°26′; (6)△ABC 的面积为24cm 2,∠B =90°,一直角边AB 为6 cm ,则sinA =__________; (7)若三角形的三边长之比为1:3:2,则此三角形的最小内角的正弦值为__________; (8)在Rt △ABC 中,∠C =90°,a =8,b =15,则sinA +sinB =__________;(9)若锐角α满足等式2sin(α+15°)–1=0,则∠α=__________,cos2α=__________. (10)如果2+3是方程x 2–8xcos α+1=0的一个根,且α是锐角,则α=__________. (11)若ααααcos sin cos sin -+没有意义,则锐角α__________.3.用符号表示: (1)∠A 的正弦; (2)∠B 的余弦; (3)40°角的正弦; (4)47°5′角的余弦. 4.求下列各式的值:(1)sin30°+2cos60°;(2)sin 230°+cos 230°;(3)2sin45°²cos45°; (4)︒︒45cos sin45-1;(5)sin30°²cos45°+cos30°²sin45°.5.把下列各角的正弦(余弦)改写成它的余角的余弦(正弦): (1)sin17°; (2)cos39°; (3)sin41°12′; (4)cos62°27′.6.在△ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ;先根据下列条件求出∠A 的正弦值和余弦值,然后直接写出∠B 的正弦值和余弦值.(1)a =5,c =29; (2)b =9,c =85; (3)a =7,b =4.7.已知△ABC 为等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE⊥AB ,垂足为E ,连结CE ,求cosAEC 的值.8.已知2+3是方程 x 2-5x ²sin θ+1=0的一个根,θ是锐角,试求sin θ、cos θ的值.参考答案【同步达纲练习】1.(1)C (2)D (3)B (4)D (5)C (6)C (7)B (8)A (9)B (10)A (11)C (12)A (13)C (14)C (15)D (16)B (17)B (18)B (19)A (20)B (21)A 2.(1)23 (2)135 (3)1 (4)45° (5)> > (6)54 (7)21 (8)1723 (9)15°23 (10)60° (11)=45°3.(1)sinA (2)cosB (3)sin40° (4)cos47°5′ 4.(1)23(2)1 (3)1 (4)0 (5)4625.(1)cos73° (2)sin51° (3)cos48°48′ (4)sin27°33′ 6.(1)sinA =cosB =29295,cosA =sinB =29292;(2)sinA =cosB =85852,cosA =sinB =85859; (3)sinA=cosB =65657,cosA =sinB =656547.cosAEC =558.sin θ=54,cos θ=53。
1
第4章 锐角三角函数
4.1 正弦和余弦
第1课时 正弦及30°角的正弦值
1.通过具体实例,分析、比较后,知道“当直角三角形的锐角固定时,它的对边与斜边的比值也固定”的事实.
2.了解正弦的概念,知道特殊角30°的正弦值,并能根据正弦的相关概念进行计算.(重点)
阅读教材P109~111,完成下列内容:
(一)知识探究
1.在有一个锐角等于α的所有直角三角形中,角α的对边与斜边的比值是一个________,与直角三角形的大小
________.
2.在直角三角形中,锐角α的对边与斜边的比叫作角α的正弦,记作sinα,即sinα=________.
3.sin30°=________.
(二)自学反馈
1.如图,在△ABC中,∠C=90°,AB=10,BC=6,则sinA的值是( )
A.35 B.45
C.53 D.54
2.在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AB=________.
活动1 小组讨论
例 如图,在Rt△ABC中,∠C=90°,BC=3,AB=5.
(1)求sinA的值;
(2)求sinB的值.
解:(1)∠A的对边BC=3,斜边AB=5,于是sinA=BCAB=35.
(2)∠B的对边AC,根据勾股定理,得AC2=AB2-BC2=52-32=16.于是AC=4.
因此sinB=ACAB=45.
在直角三角形中,求一个角的正弦值只需要用该角所对的直角边比斜边,如果所对直角边或斜边长未知
时,可首先通过勾股定理求解出长度.
易错提示:求一个角的正弦值必须在直角三角形中求解.
活动2 跟踪训练
1.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的2倍,则∠A的正弦值( )
A.扩大为原来的2倍 B.缩小为原来的12倍
C.扩大为原来的4倍 D.不变
2.在△ABC中,∠C=90°,BC∶CA=3∶4,那么sinA等于( )
2
A.34 B.43 C.35 D.45
3.如图,角α的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一点P(3,4),则sinα=________.
4.在Rt△ABC中,若∠C=90°,BC=4,sinB=35,则AB=________.
5.在Rt△ABC中,∠C=90°,AC=35AB,求sinB的值.
活动3 课堂小结
学生试述:今天学到了什么?
【预习导学】
知识探究
1.常数 无关 2.角α的对边斜边 3.12
自学反馈
1.A 2.2
【合作探究】
活动2 跟踪训练
1.D 2.C 3.45 4.5 5.∵Rt△ABC中,∠C=90°,AC=35AB,∴sinB=ACAB=35.