当前位置:文档之家› 利用傅里叶谐波分析法的时序数据周期迭代辨识算法-黄雄波

利用傅里叶谐波分析法的时序数据周期迭代辨识算法-黄雄波

利用傅里叶谐波分析法的时序数据周期迭代辨识算法-黄雄波
利用傅里叶谐波分析法的时序数据周期迭代辨识算法-黄雄波

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06 Heinrich · 6 个月前 作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生

上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ——————————————以上是定场诗—————————————— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

将下列各周期函数展开成傅里叶级数(下面给出函数在一个...

习题11-8 1. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式): (1))2 12 1(1)(2<≤--=x x x f ; 解 因为f (x )=1-x 2为偶函数, 所以b n =0(n =1, 2, ? ? ?), 而 611)1(4)1(2/1221 0221 020=-=-=??dx x dx x a , ?-=21022/1c o s )1(2/12dx x n x a n π 2 2 121 2 )1(2c o s )1(4π πn x d x n x n +-= -=? (n =1, 2, ? ? ?), 由于f (x )在(-∞, +∞)内连续, 所以 ∑ ∞ =+-+=1 2 1 2 2c o s )1(1 1211)(n n x n n x f ππ , x ∈(-∞, +∞). (2)?? ? ???? <≤-<≤<≤-=1 21 12 1 0 101 )(x x x x x f ; 解 2 1)(1 2 121 1 11 -=-+==????--dx dx xdx dx x f a n , ?? ??-+==--1 2 121 1 11 c o s c o s c o s c o s )(x d x n x d x n x d x n x x d x n x f a n ππππ 2 s i n 2])1(1[122πππ n n n n +--= (n =1, 2, ? ? ?), dx x n xdx n xdx n x xdx n x f b n ?? ??-+==--1 2 1210 1 1 1 sin sin sin sin )(ππππ π ππ n n n 12 c o s 2+-= (n =1, 2, ? ? ?).

(完整版)傅里叶变换分析

第一章 信号与系统的基本概念 1.信号、信息与消息的差别? 信号:随时间变化的物理量; 消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等 信息:所接收到的未知内容的消息,即传输的信号是带有信息的。 2.什么是奇异信号? 函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。例如: 单边指数信号 (在t =0点时,不连续), 单边正弦信号 (在t =0时的一阶导函数不连续)。 较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。 3.单位冲激信号的物理意义及其取样性质? 冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。 它表达的是一类幅度很强,但作用时间很短的物理现象。其重要特性是筛选性,即: ()()()(0)(0)t x t dt t x dt x δδ∞ ∞ -∞ -∞ ==? ? 4.什么是单位阶跃信号? 单位阶跃信号也是一类奇异信号,定义为: 10()00t u t t >?=?

12()()()x t ax t bx t =+,其中a 和b 是任意常数时, 输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+; 且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。 其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性; 如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。 线性时不变系统是最基本的一类系统,是研究复杂系统,如非线性、时变系统的基础。 6.线性时不变系统的意义与应用? 线性时不变系统是我们本课程分析和研究的主要对象,对线性时不变性进行推广,可以得到线性时不变系统具有微分与积分性质,假设系统的输入与输出信号分别为()x t 和()y t ,则 当输入信号为 ()dx t dt 时,输出信号则为() dy t dt ; 或者当输入信号为()t x d ττ-∞ ?时,输出信号则为()t y d ττ-∞ ?。 另外,线性时不变系统对信号的处理作用可以用冲激响应(或单位脉冲响应)、系统函数或频率响应进行描述。而且多个系统可以以不同的方式进行连接,基本的连接方式为:级联和并联。 假设两个线性时不变系统的冲激响应分别为:1()h t 和2()h t , 当两个系统级联后,整个系统的冲激响应为:12()()*()h t h t h t =; 当两个系统并联后,整个系统的冲激响应为:12()()()h t h t h t =+; 当0t <时,若()0h t =, 则此系统为因果系统; 若|()|h t dt ∞ -∞<∞?, 则此系统为稳定系统。 第二章 连续时间系统的时域分析 1.如何获得系统的数学模型? 数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。 不同的系统,其数学模型可能具有不同的形式和特点。对于线性时不变系统,其数学模型

傅里叶变换

1.课题综述 第一章中我们主要学习了信号、测试、测控、信号分析处理的概念、测试技术的应用情况、测试技术的发展动态及主要信号测试仪器生产厂商。信号是指那些代表一定意义的现象,比如声音、动作、旗语、标志、光线等,它们可以用来传递人们想表达的事情。从广泛意义上来说,信号是指事物运动变化的表现形式,它代表事物运动变化的特征。信号采集测量系统由传感器、中间变换装置和显示记录装置三部分组成,如今传感器技术越来越趋向于新型化和智能化。在工程领域,科学实验、产品开发、生产监督、质量控制等,都离不开测试技术。测试技术应用涉及到航天、机械、电力、石化和海洋运输等每一个工程领域。 第二章我们主要学习了信号分类方法、信号时域波形分析方法、信号时差域相关分析方法、信号频域频谱分析方法及其它信号分析方法。首先学习了信号的分类,其主要是依据信号波形特征来划分的,从信号描述上分可分为确定性信号与非确定性信号;从信号的幅值和能量上分可分为能量信号与功率信号;从分析域上分可分为时域与频域;从连续性上分可分为连续时间信号与离散时间信号;从可实现性上分可分为物理可实现信号与物理不可实现信号。 信号的时域波形分析,信号的时域波形分析是最常用的信号分析手段,用示波器、万用表等普通仪器直接显示信号波形,读取特征参数。可以求得信号的均值、均方值、方差以及概率密度函数等参数。信号的时差域相关分析,用相关函数来描述与时间有关的变量τ、x(t)和y(t),三者之间的函数关系,相关函数表征了x、y之间的关联程度。信号频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),频域分析能明确揭示信号的频率组成和各频率分量大小。 第三章我们主要学习了传感器的分类、常用传感器测量原理及传感器测量电路。传感器是借助检测元件将一种形式的信息转换成另一种信息的装置。传感器由敏感器件与辅助器件组成。敏感器件的作用是感受被测物理量,并对信号进行转换输出。辅助器件则是对敏感器件输出的电信号进行放大、阻抗匹配,以便于后续仪表接入。主要有电阻式、电容式、电感式、磁电式、压电式传感器,磁敏、热敏和气敏元件传感器,以及超声波、光电及半导体敏感元件传感器,光纤传感器等。 第四章我们主要学习了自动化工程机械分类、工程机械控制器及发展趋势、

用快速傅里叶变换对信号进行频谱分析

实验二 用快速傅里叶变换对信号进行频谱分析 一、实验目的 1.理解离散傅里叶变换的意义; 2.掌握时域采样率的确定方法; 3.掌握频域采样点数的确定方法; 4.掌握离散频率与模拟频率之间的关系; 5.掌握离散傅里叶变换进行频谱分析时,各参数的影响。 二、实验原理 序列的傅里叶变换结果为序列的频率响应,但是序列的傅里叶变换是频率的连续函数,而且在采用计算机计算时,序列的长度不能无限长,为了便于计算机处理,作如下要求:序列x (n )为有限长,n 从0~N -1,再对频率ω在0~2π范围内等间隔采样,采样点数为N ,采样间隔为2π/N 。第k 个采样点对应的频率值为2πk /N 。可得离散傅里叶变换及其逆变换的定义为 ∑-=-=1 02)()(N n n N k j e n x k X π (1) ∑-==1 02)(1)(N k k N n j e k X N n x π (2) 如果把一个有限长序列看作是周期序列的一个周期,则离散傅里叶变换就是傅里叶级数。离散傅里叶变换也是周期的,周期为N 。 数字频率与模拟频率之间的关系为 s f f /2πω=,即s s T f f πωπω22== (3) 则第k 个频率点对应的模拟频率为 N kf NT k T N k f s s s k ==?=ππ212 (4) 在用快速傅里叶变换进行频谱分析时,要确定两个重要参数:采样率和频域采样点数,采样率可按奈奎斯特采样定理来确定,采样点数可根据序列长度或频率分辨率△f 来确定 f N f s ?≤,则f f N s ?≥ (5) 用快速傅里叶变换分析连续信号的频谱其步骤可总结如下: (1)根据信号的最高频率,按照采样定理的要求确定合适的采样频率f s ; (2)根据频谱分辨率的要求确定频域采样点数N ,如没有明确要求频率分辨率,则根据实际需要确定频率分辨率; (3)进行N 点的快速傅里叶变换,最好将纵坐标根据帕塞瓦尔关系式用功率来表示,

实验应用快速傅里叶变换对信号进行频谱分析

实验二、应用快速傅里叶变换对信号进行频谱分析 一、 实验目的 1、 加深对DFT 算法原理和基本性质的理解,熟悉FFT 算法原理。 2、 掌握应用FFT 对信号进行频谱分析的方法。 3、 通过本实验进一步掌握频域采样定理。 4、 了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中 正确应用FFT 。 二、 实验原理 1、 一个连续时间信号()a x t 的频谱可以用它的傅里叶变换表示为: ()()j t a a X j x t e dt +∞ -Ω-∞ Ω=? 如果对信号进行理想采样,得: ()()a x n x nT =, 其中,T 为采样周期。对()x n 进行Z 变换,得: ()()n n X Z x n z +∞ -=-∞ = ∑ 当jwt z e -=时,我们便得到序列傅氏变换SFT : ()()jw jwn n X e x n e +∞ -=-∞ = ∑ 其中w 称为数字角频率:/s w T F =Ω=Ω。

2、12()[()]jw a m w m X e X j T T T π+∞=-∞=-∑,序列的频谱是 原模拟信号频谱的周期延拓,这样,可以通过分析序列的频谱,得到相应连续信号的频谱。 3、离散傅里叶变换(DFT )能更好的反映序列的频域特性。 当序列()x n 的长度为N 时,它的离散傅氏变换为: 1 0()[()]()N kn N n X k DFT X n x n W -===∑ 它的反变换为: 10 1()[()]()N kn N n x n IDFT X k X k W N --===∑ 比较Z 变换式和DFT 式,令k N z W -=,则 10 ()|()[()]k N N kn N z W n X z x n W DFT X n --====∑ 因此有 ()()|k N z W X k X z -== 即k N W -是z 平面单位圆上幅角为2/w k N π=的点,也即是将单位圆 N 等分后的第k 点。所以()X k 是()x n 的Z 变换在单位圆上的 等距采样,或者说是序列傅氏变换的等距采样。 三、 如何提高估计精度 增大做FFT 运算的点数 四、 幅频特性曲线及结果分析

傅里叶变换分析信号的缺点

傅里叶变换分析信号的缺点 基于傅里叶(Fourier)变换的信号频域表示,揭示了时间函数和频谱函数之间的内在联系,在传统的平稳信号分析和处理中发挥了极其重要的作用,很多理论研究和应用研究都把傅里叶变换当作最基本的经典工具来使用.但是傅里叶变换存在着严重的缺点:用傅里叶变换的方法提取信号频谱时,需要利用信号的全部时域信息,这是一种整体变换,缺少时域定位功能,因此必须对其加以改进. 傅里叶变换的特点及其局限性 设函数f(t)在(-,+)内有定义,且使广义积分 都收敛,则称(1)式定义的广义积分为函数f(t)的傅里叶变换,记为F{f(t)},(2)式定义的广义积分为逆傅里叶变换,记为{F()}。傅里叶变换可以完成从时域到频域的转换(正变换),也可以完成从频域到时域的转换(逆变换),但不能同时具有时域和频域信息。其核函数是,由于三角函数具有填满整个空间的特性,其在物理空间中是双向无限延伸的正弦波,在积分变换中体现为积分范围从+到-。因此,傅里叶变换是先天的非局限性,它对信号f(t)中体现任何局部信息处理都是相同的。而事实上,工程技术中的许多信号,如:语音信号、地震信号、心电图和各种电脉冲,他们的信号值只出现在一个短暂的时间间隔t内,以后快速减为零,t以外是未知的,可能为零,也可能是背景噪音,如果

用(1)式从信号中提取谱信号F(),就要取无限的时间量,使用过去的及将来的信号只为计算单个频谱,不能反映出随时间变化的频率,实际上我们需要的是确定的某个时间间隔内的频谱。这就使人们想到改进傅里叶变换使其能用来处理某个确定时间范围内的信号。Gabor提出的窗口傅里叶变换就是一个有效的方法。 另外,傅里叶变换之所得到广泛应用与透镜能实现傅里叶变换是分不开的。由公式 其中物平面为(,),焦平面为(),d0为物距,d1为象平面。要使=F{(,)},即准确实现傅里叶光学变换,只有在==f 时才能实现,否则将出现位相弯曲。并且,只有正透镜才能实现傅里叶变换,这些限制给工程技术中无疑增加了困难。这使得人们不得不寻求新得的方法,分数傅立叶变换不要求严频谱面,可根据需要在既包含空域信息也包括空频域信息的平面上进行处理,这使光学信息处理更具灵活性。 1傅里叶变换缺乏时间和频率的定位功能 傅里叶变换及其逆变换表示如下

对傅里叶分析的新颖理解

这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。 一、嘛叫频域 关键词:从侧面看 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢? 这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的: 上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。 现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。 将以上两图简化: 时域: 频域: 在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。 你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。

傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正/余弦波的叠加。在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。 而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),我们从简单的开始谈起。 二、傅里叶级数(Fourier Series) 如果说能用余弦曲线波叠加出一个带90度角的矩形波来,你会相信吗?但是看看下图: 第一幅图是一个郁闷的余弦波cos(x) 第二幅图是2个卖萌的余弦波的叠加cos(x)+a cos(3x) 第三幅图是4个发春的余弦波的叠加 第四幅图是10个便秘的余弦波的叠加 随着余弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理? 随着叠加的递增,所有余弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个余弦波叠加起来才能形成一个标准90度角的矩形波呢?不幸的告诉大家,答案是无穷多个。 不仅仅是矩形,你能想到的任何波形都是可以如此方法用正/余弦波叠加起来的。 这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。 还是上图的余弦波累加成矩形波,我们换一个角度来看看:

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开: 1. 三角形式: 周期信号()f t ,周期T ,基波频率12w T π=, 所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞ ==++∑ 其中:202 1()T T a f t dt T -=? 2122()cos T T n a f t nw tdt T -=? 212 2()sin T T n b f t nw tdt T -=? 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式: 011 ()cos()n n n f t c c nw t ?∞ ==++∑ 其中:00c a = n c = n n n b tg a φ=- (3)物理意义: (4)幅度谱和相位谱 2. 指数形式: 完备正交函数集 :复指数函数集{}1 jnw t e 1()jnw t n n f t F e ∞ =-∞ = ∑ 其中122 1()T jnw t T n F f t e dt T --=?

注意:(1)幅度谱和相位谱n j n n F F e φ= :偶谱和奇谱 与三角形式间的关系 (2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞ ==+∑ 0n b = 或011 ()cos()n n n f t c c nw t ?∞ ==++∑,00c a = ||n n c a = 0, 0,0n n n a a ?π>?=? ??=??

周期性函数分解的傅里叶级数

周期性函数分解的傅里叶级数 周期电压、电流等都可以用一个周期函数表示,即 210),()(、、 =+=k kt t f t f 式中T 是周期函数的周期,且 210、、 =k 如果给定的周期函数在有限的区间内,只有有限个第一类间断点和有限个极大值和极小值,那么就可以展开成一个收敛的级数(三角级数) 设给定的周期函数)(t f ,则)(t f 可展开成 ) ()(1)sin cos (sin cos )2sin 2cos ()sin cos ()(1022110 ∑∞ =++=+++++++=k k k k k t k b t k a a t k b t k a t b t a t b t a a t f ωωωωωωωω 上式中的系数,可按下列公式计算: ????? ?? ? - - -= ====== = π ππ π ππωωπ ωωπωωωπ ωωπω) (sin )(1 ) (sin )(1sin )(2)(cos )(1 ) (cos )(1cos )(2)(1 )(1 20 020 00 22 0t td k t f t td k t f tdt k t f T b t td k t f t td k t f tdt k t f T a dt t f T dt t f T a T k T k T T T )(2 这些公式的对导,主要的依据是利用三角函数的定积分的特点。 设m.n 是任意整数,则下列定积分成立: ?=π 200 sin mxdx ? =π 20 cos mxdx ?=π 200cos sin nxdx mx , n m ≠ ?=π 200 sin sin nxdx mx , n m ≠ ? =π 200cos cos nxdx mx , n m ≠ ? =π π 20 2)(sin dx mx ,

四种傅里叶变换

傅里叶变换 对信号和系统的分析研究可以在时间域进行,也可以在频域进行。连续时间信号是时间变量t 的函数,连续时间系统在时间域可以用线性常系数微分方程来描述,也可以用冲激响应来描述。离散时间信号(序列)是序数n 的函数,这里n 可以看成时间参量,离散时间系统在时间域可以用线性常系数差分方程来描述,也可以用单位脉冲响应来描述。 在时间域对信号和系统进行分析研究,比较直观,物理概念清楚,但仅在时间域分析研究并不完善,有些问题研究比较困难。比如,有两个序列,从时间波形上看,一个变化快,一个变化慢,但都混有噪声,希望用滤波器将噪声滤除。从信号波形观察,时域波形变化快,意味着含有更高的频率成分,因此这两个信号的频谱结构不同,那么对滤波器的性能要求也不同。为了设计合适的滤波器,就需要将时域信号转换到频率域,得到其频谱结构,分析其特性,进而得到所要设计的滤波器的技术指标,然后才能进行滤波器的设计。 在连续时间信号与系统中,其频域方法就是拉普拉斯变换与傅里叶变换。在离散时间信号与系统中,频域分析采用z 变换与傅里叶变换作为数学工具。现在针对几种傅里叶变换的基本概念、重要特点、相互关系作详细的介绍。 傅里叶变换的几种可能形式 对傅里叶变换的几种可能形式进行总结,再进一步引出周期序列的离散傅里叶级数及傅里叶变换表示。 一. 非周期连续时间信号的傅里叶变换 在“信号与系统”课程中,这一变换对为 ?∞ ∞-Ω-=Ωdt e t x j X t j a a )()( ΩΩ=?∞ ∞-Ωd e j X t x t j a a )(21 )(π 这一变换对的时频域示意图(只说明关系,不表示实际的变换对)如图所示。可以看出时域上是非周期连续信号,频域上是连续非周期的频谱。 二. 周期连续时间信号的傅里叶级数及傅里叶变换表示 非周期连续信号及其频谱 0Ω0

傅里叶分析应用于热传导问题

傅里叶分析应用于热传导问题 (物理系郭素梅指导教师陆立柱) 〔摘要〕傅里叶分析是一种重要的数学工具,本文综述了用傅里叶分析解决细杆的热传导问题,并进行了讨论。傅里叶分析包括傅里叶级数和傅里叶积分,用傅里叶级数法解决有界细杆的热传导问题,用含参数的傅里叶变换法解决无界细杆的热传导问题,比其它方法更系统,体现出一种数学与物理对应的美感。 〔关键词〕傅里叶级数傅里叶积分傅里叶变换细杆的热传导问题 引言 1822年,傅里叶在研究热传导问题时,创造了傅里叶分析,随着时代的进步,这一数学工具被广泛地应用于信号分析、匹配滤波、图象处理等方面,掌握这种具有广泛用途和发展前景的工具是十分必要的.热传导是历来研究的热点,尤其是随着计算机电子设备的高集成化发展,机器内发热部件和集成电路元件的发热量随之增加,传统的强制冷方式已不能达到理想效果,因此,热传导设计成了重要问题。万变不离其宗,为了更好地掌握傅里叶分析,为了更好地掌握热传导问题,本文就一维热传导问题对傅里叶分析作了全面详尽的论述。 1.傅里叶分析 1.1 傅里叶级数 傅里叶级数在应用上有以下优点[1]:能表示不连续的函数、周期函数,能对任意函数作调 和分析。 若函数() f x以2l为周期,即 +=[2] (2)() f x l f x (1.1.1)

则可取三角函数族 1, cos x l π,cos 2x l π, … cos n x l π ,… sin x l π,sin 2x l π, (i) n x l π , … (1.1.2) 作为基本函数族,将()f x 展开为级数[3] ()f x =0 a +1 (n n a ∞ =∑cos n x l π+ n b cos n x l π) (1.1.3) 可以证明,函数族(1.1.2)是正交完备的[4]。根据三角函数族的正交性,可求得(1.1.3)中的展 开系数为 1()cos 1()sin l n l n l n l n a f d l l n b f d l l πξξξδπξξξ--?=??? ?=?? ?? (1.1.4) 其中 2(0)1 (0) n n n δ?=?=? ≠?? (1.1.3)称为周期函数()f x 的傅里叶级数展开式,其中的展开系数 (1.1.4)称为傅里叶系数。关于傅里叶级数的收敛性问题[2],有Dirichlet 定理[4]。 若周期函数是奇函数,则由傅里叶系数计算公式(1.1.4)可见,0a 及诸k a 均等于零,展开式(1.1.3)为 () f x = 1 sin n n n x b l π∞ =∑,

利用Excel进行FFT和Fourier分析的基本步骤

利用Excel进行FFT和Fourier分析的基本步骤 实例:杭州市2000人口分布密度[根据2000年人口普查的街道数据经环带(rings)平均计算得到的结果,数据由冯健博士处理]。下面的变换实质是一种空间自相关的分析过程。 第一步,录入数据 在Excel中录入数据不赘述(见表1)。 表1 原始数据序列表2 补充后的数据序列 第二步,补充数据 由于Fourier变换(FT)一般是借助快速Fourier变换(Fast Fourier Transformation, FFT)算法,而这种算法的技术过程涉及到对称处理,故数据序列的长度必须是2N(N=1,2,3,…,)。如果数据序列长度不是2N,就必须对数据进行补充或者裁减。现在数据长度是26,介于24=16到25=32之间,而26到32更近一些,如果裁减数据,就会损失许多信息。因此,采用补充数据的方式。 补充的方法非常简单,在数据序列后面加0,直到序列长度为32=25为止(表2)。当然,延续到64=26也可以,总之必须是2的整数倍。不过,补充的“虚拟数据”越多,变换结果的误差也就越大。

第三步,Fourier变换的选项设置 沿着工具(Tools)→数据分析(Data Analysis)的路径打开数据分析复选框(图1)。 图1 数据分析(Data Analysis)的路径 在数据分析选项框中选择傅立叶分析(Fourier Analysis)(图2)。 图2 数据分析(Data Analysis) 在Fourier分析对话框中进行如下设置:在输入区域中输入数据序列的单元格范围“$B$1:$B$33”;选中“标志位于第一行(L)”;将输出区域设为“$C$2”或者“$C$2:$C$33”(图3a)。 a

大学物理实验 脉搏语音傅里叶分析实验报告

脉搏、语音 及图像信号的傅里叶分析 一、实验简介 任何波形的周期信号均可用傅里叶级数来表示。傅里叶级数的各项代表了不同频率的正弦或余弦信号,即任何波形的周期信号都可以看作是这些信号(谐波)的叠加。利用不同的方法,可以从周期信号中分解出它的各次谐波的幅值和相位。也可依据信号的傅里叶级数表达式,将各次谐波按表达式的要求叠加得到所期望的信号。 二、实验目的 1、了解常用周期信号的傅里叶级数表示。 2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程 3、理解体会傅里叶分析的理论及现实意义 三、实验仪器 脉搏语音实验仪器,数字信号发生器,示波器 四、实验原理 1、周期信号傅里叶分析的数学基础 任意一个周期为T 的函数f(t)都可以表示为傅里叶级数: 00010000 1 ()(cos sin ) 21()() 1 ()cos()()1 ()sin()()n n n n n f t a a n t b n t a f t d t a f t n t d t b f t n t d t π π π ππ πωωωωπ ωωωπ ωωωπ ∞ =-- - =++=== ∑??? 其中0ω为角频率,称为基频,0a 为常数,n a 和n b 称为第n 次谐波的幅值。任何

周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同次谐波的叠加。 对于如图1所示的方波,一个周期内的函数表达式为: (0t<)2() (-t 0)2 h f t h ππ? ≤??=? ?-≤

周期信号的傅里叶级数

《信号、系统与信号处理实验I》 实验报告 实验名称:周期信号的傅里叶级数 姓名:韩文草 学号:15081614 专业:通信工程 实验时间:2016.11.7 杭州电子科技大学 通信工程学院

一、实验目的 二、实验内容

三、实验过程及实验结果 1.1 t = 0:0.02:2*pi; %0-2π时间间隔为0.01 y = zeros(10, max(size(t))); %10*629(t的长度)的矩阵 x = zeros(10, max(size(t))); for k = 1:2:9 %奇次谐波1,3,5,7,9 x1 = 3*sin(k * t)/k; %各次谐波正弦分量 x(k,:) = x(k,:) + x1; %x第k(1,3,5,7,9)行存放k次谐波的629个值y((k+1)/2,:) = x(k,:); %矩阵非零行向量移至1-5行 subplot(7,1,(k+1) /2); plot(t,x(k,:)); end subplot(2,1,1); plot(t, y(1:5,:)); %绘制y矩阵中1-5行随时间波形 grid; halft = ceil(length(t)/2); %行向量长度减半(由对称前后段一致)subplot(2,1,2); %绘制三维图形:矩阵y中全部行向量的一半 mesh(t(1:halft), [1:10], y(:,1:halft));

1.2 t = -4.5 : 0.001 : 5.5; t1 = -4.499 : 0.001 : 5.5; x = [ones(1,1000) , zeros(1,1000)]; x = [x , x , x , x , x]; subplot(1 , 2 , 1); plot(t1 , x , 'b','linewidth', 1.5); axis([-4.5 , 5.5 , -0.5 , 1.5]); N = 10; c0 = 0.5; f1 = c0 * ones(1 , length(t)) for n = 1:N f1 = f1 + cos(pi * n * t)*sinc(n/2); end subplot(1,2,2); plot(t , f1 , 'r' , 'linewidth', 1.5); axis([-4.5, 5.5, -0.5, 1.5]);

傅里叶分析之掐死教程(完整版)

傅里叶分析之掐死教程(完整版) 投递人itwriter发布于2014-06-07 10:50 评论(24)有34667人阅读原文链接[收藏]?? 作者:韩昊 知乎:Heinrich 微博:@花生油工人 知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 ——更新于,想直接看更新的同学可以直接跳到第四章———— 我保证这篇文章和你以前看过的所有文章都不同,这是 12 年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此

对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗会死吗)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ————以上是定场诗———— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… .本文无论是 cos 还是 sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢 这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:

第三章傅里叶变换分析.doc

第三章 傅里叶变换分析 1.什么是频谱?如何得到信号的频谱? 目前我们熟悉的是信号幅度随着时间变化而变化的常见表示方式,比如正弦信号的幅度随着时间按正弦函数的规律变化;另一方面,对于正弦信号,如果知道其振幅、频率和相位,则正弦信号的波形也惟一确定。根据这个原理和傅里叶级数理论,满足一定条件的周期信号都可以分解为不同频率的正弦分量的线性组合,从而我们用各个正弦分量的频率-幅度、频率-相位来表示周期信号的描述方式就称为周期信号的频谱表示,随着对信号研究的深入,我们将周期信号的频谱表示又推广到非周期信号的频谱表示,即通常的傅里叶变换。 对于周期信号,其频谱一般用傅里叶级数表示,而傅里叶级数的系数就称为信号的频谱: ()0110111()cos sin cos()T n n n n n n f t a a n t b n t c c n t ωωω?∞∞ ===++=++∑∑ 或 1()jn t T n n f t F e ω∞=-∞= ∑ 其中: 122 00 1() 0,1,2,...,1() 1,2, (2) T jn t T n T n n n F f t e dt n T F a jb n F a ω--==±±±∞=-=∞=? 对于非周期信号,其频谱一般用傅里叶变换表示: 1 ()()2j t f t F j e d ωωωπ ∞-∞=? 其中: ()() j t F j f t e dt ωω∞--∞=? 2.周期信号和非周期信号的频谱有何不同? 周期信号的频谱可以用傅里叶级数表示,它是离散的、非周期的和收敛的。 而非周期信号的频谱用傅里叶变换表示,它是连续的、非周期的和收敛的。若假设周期信 号为()T f t , 非周期信号为0() ()220 otherwise T T T f t t f t ?-<≤?=???,并假设周期信号()T f t 的傅里叶级数 的系数为n F ,非周期信号0()f t 的傅里叶变换为()F j ω,则有如下的关系:

利用Excel进行FFT和Fourier分析的基本步骤

利用Excel 进行FFT 和Fourier 分析的基本步骤 实例:杭州市2000人口分布密度 [根据2000年人口普查的街道数据经环带(rings)平均计算得到的结果,数据由冯健博士处理]。下面的变换实质是一种空间自相关的分析过程。 第一步,录入数据 在Excel 中录入数据不赘述(见表1)。 表1 原始数据序列 表2 补充后的数据序列 第二步,补充数据 由于Fourier 变换(FT )一般是借助快速Fourier 变换(Fast Fourier Transformation, FFT )算法,而这种算法的技术过程涉及到对称处理,故数据序列的长度必须是2N (N =1,2,3,…,)。如果数据序列长度不是2N ,就必须对数据进行补充或者裁减。现在数据长度是26,介于24=16到25=32之间,而26到32更近一些,如果裁减数据,就会损失许多信息。因此,采用补充数据的方式。 补充的方法非常简单,在数据序列后面加0,直到序列长度为32=25为止(表2)。当然,延续到64=26也可以,总之必须是2的整数倍。不过,补充的“虚拟数据”越多,变换结果的误差也就越大。 第三步,Fourier 变换的选项设置 沿着工具(Tools )→数据分析(Data Analysis )的路径打开数据分析复选框(图1)。 图1 数据分析(Data Analysis )的路径 在数据分析选项框中选择傅立叶分析(Fourier Analysis )(图2)。 图2 数据分析(Data Analysis ) 在Fourier 分析对话框中进行如下设置:在输入区域中输入数据序列的单元格范围“$B$1:$B$33”;选中“标志位于第一行(L )”;将输出区域设为“$C$2”或者“$C$2:$C$33”(图3a )。 a b 图3 傅立叶分析(Fourier Analysis ) 注意:如果“输入区域”设为“$B$2:$B$33”,则不选“标志位于第一行(L )”(图3b )。 表3 FFT 的结果 第四步,输出FFT 结果 选项设置完毕以后,确定(OK ),立即得到FFT 结果(表3)。 显然,表3给出的都是复数(complex numbers )。假定一个数据序列表为f (t ),则理论上Fourier 变换的结果为 ?∞ ∞--=dt e t f F t j ωω)()(=F [f (t )], (∞<<-∞ω) 表3中给出的正是相应于F (ω)的复数,这里ω为角频率。 第五步,计算功率谱 Excel 好像不能自动计算功率谱,这需要我们利用有关函数进行计算。计算公式为 式中A 为复数的实部(real number ),B 为虚部(imaginary number ),T 为假设的周期长度,实则补充后的数据序列长度。对于本例,T =32。注意复数的平方乃是一个复数与其共轭(conjugate )复数的乘积,若F (ω)=a +b j ,则|F (ω)|2=(a +b j)*(a -b j)=a 2+b 2。这样,根据表3中的FFT 结果,我们有 其余依次类推。

相关主题
文本预览
相关文档 最新文档