一般周期的傅里叶级数
- 格式:ppt
- 大小:1.16 MB
- 文档页数:19
傅里叶级数和函数公式
傅里叶级数的研究为我们提供了很多关于现代数学的宝贵资源。
它使数学家们可以利用加法、乘法和函数来表达复杂的数学模型。
这篇文章将介绍傅里叶级数和函数公式,包括傅里叶级数的定义,它的特征,以及函数公式。
**傅里叶级数的定义**
傅里叶级数(Fourier series)是一种代表周期性函数的函数和级数。
它可以描述周期性函数的形状和行为,并用简单的正弦和余弦级数来表示它,它的级数形式为:
a_0 + (a_1*sin(x) + b_1*cos(x)) + (a_2*sin(2x) +
b_2*cos(2x)) + ... + (a_n*sin(nx) + b_n*cos(nx))。
其中a_0表示直流分量,a_n和b_n表示振幅和相位移动,n表示频率。
**傅里叶级数的特征**
傅里叶级数具有三个重要的特点:
1.以用来表示任意周期性函数,并且只需要使用一组正弦和余弦函数。
2.度会随着频率的增加而减小,因此低频信号的振幅比高频信号的振幅大得多。
3.个频率成分都有其独特的相位移动。
**函数公式**
函数公式是傅里叶级数的一种更为一般的表示法。
它用函数公式
来表示傅里叶级数,公式为:
A(t) =(a_n*cos(n*ω*t +_n))
其中A(t)表示时域函数,a_n表示振幅,ω表示角频率,t表示时间,θ_n表示相位移动。
**结论**
傅里叶级数和函数公式是一种用来表示周期性函数的数学工具,它们可以有效地表示周期性函数的形状和行为。
傅里叶级数的研究为我们提供了大量的宝贵知识,使得数学家们能够更好地分析和理解复杂的数学模型。
傅里叶变换的基本性质(一)傅里叶变换建立了时间函数和频谱函数之间转换关系。
在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。
因此有必要讨论傅里叶变换的基本性质,并说明其应用。
一、线性傅里叶变换是一种线性运算。
若则其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。
例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。
解因由式(3-55)得二、对称性若则证明因为有将上式中变量换为x,积分结果不变,即再将t用代之,上述关系依然成立,即最后再将x用t代替,则得所以证毕若是一个偶函数,即,相应有,则式(3-56)成为可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。
式中的表示频谱函数坐标轴必须正负对调。
例如:例3-7若信号的傅里叶变换为试求。
解将中的换成t,并考虑为的实函数,有该信号的傅里叶变换由式(3-54)可知为根据对称性故再将中的换成t,则得为抽样函数,其波形和频谱如图3-20所示。
三、折叠性若则四、尺度变换性若则证明因a>0,由令,则,代入前式,可得函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示沿频率轴扩展(或频率尺度压缩) a倍。
该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。
例3-8已知,求频谱函数。
解前面已讨论了的频谱函数,且根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数两种信号的波形及频谱函数如图3-21所示。
五、时移性若则此性质可根据傅里叶变换定义不难得到证明。
它表明若在时域平移时间,则其频谱函数的振幅并不改变,但其相位却将改变。
例3-9求的频谱函数。
解: 根据前面所讨论的矩形脉冲信号和傅里叶变换的时移性,有六、频移性若则证明证毕频移性说明若信号乘以,相当于信号所分解的每一指数分量都乘以,这就使频谱中的每条谱线都必须平移,亦即整个频谱相应地搬移了位置。
实验三周期信号的傅里叶级数分析一、实验目的熟悉连续时间周期信号的傅里叶级数分解原理及方法,掌握周期信号的傅里叶频谱的概念及计算方法,熟悉相应MATLAB 函数的调用格式和作用,掌握利用MATLAB 计算傅里叶级数系数及绘制频谱图的方法。
二、实验原理(一)周期信号的傅里叶级数分析原理按傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos(),{sin(t n t n ΩΩ的组合表示。
1、三角函数形式的傅里叶级数∑∞=Ω+Ω+=+Ω+Ω+Ω+Ω+=1022110)]sin()cos([2...)2sin()2cos()sin()cos(2)(n n n t n b t n a a t b t a t b t a a t f (1) 式中,n n b a a ,,0称为傅里叶系数。
()dt t f T a TT ⎰-=22012()...3,2,1)cos(222=Ω=⎰-n dt t n t f T a TT n ,(),...3,2,1,)sin(222=Ω=⎰-n dt t n t f T b TT n即可以用一组正弦波和余弦波合成任意的周期信号。
式(1)的三角函数形式傅里叶级数可以写成余弦函数的形式:∑∞=+Ω+=10)cos(2)(n n n t n A A t f ϕ其中:00a A =,22n n n b a A +=,nn n a b arctan -=ϕ 2、指数函数形式的傅里叶分析其中系数3、周期信号的频谱(1)三角函数形式频谱w A n ~关系曲线称为幅度频谱图关系曲线称为相位频谱图(2)指数函数形式频谱 w F n ~关系曲线称为幅度频谱图关系曲线称为相位频谱图(二)周期信号的傅里叶级数的MATLAB 实现例1:试用MATLAB 求如图1所示的周期方波信号的傅里叶级数分解。
解:周期方波信号是一个偶函数,又是一个奇谐函数,因此其傅里叶级数只含有奇次谐波的余弦项,即周期方波信号可以分解为: ()...5,3,1)cos(5.04)cos(244-22=Ω=Ω=⎰⎰-n dt t n T dt t n t f T a TT T T n , 求傅里叶系数的程序如下:syms t n T;∑∞-∞==n t jn n F t f Ωe )(⎰-=22-Ωd e )(1T T t jn n t t f T F w n ~ϕw n ~ϕy=0.5*cos(n*2*pi/T*t);an=(4/T)*int(y,-T/4,T/4);运行结果为:an=2*sin(1/2*pi*n)/pi/n则此周期方波信号可以分解为:)(,...5,3,1)2sin(2,0===n n n a b n n ππ 将其展开为三角函数形式的傅里叶级数:,...)3,2,1()cos(2sin 2)(...])5cos(51)3cos(31)[cos(2(12==-+-=∑∞-=j nwt n n t f wt wt wt t f j n πππ) 例2:根据例1的结果,试用正弦信号的叠加近似合成一频率为50Hz ,幅值为3的方波。