整式的乘法(三)——多项式乘多项式教案
- 格式:doc
- 大小:102.50 KB
- 文档页数:4
2.4 多项式乘以多项式第1课【学习目标】理解多项式乘多项式法则并能熟练运算【学习重点】多项式的乘法运算【学习难点】多项式的乘法的灵活运用和综合运用【学习过程】一、学习准备多项式乘多项式的法则:多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
由多项式乘多项式法则可以得到(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd例1、计算 (x+3y+4)(2x-y);例2、解方程3x(x+2)+(x+1)(x-1)=4(x2+8)解:原式=2x2-xy+6xy-3y2+8x-4y 去括号得,3x2+6x+x2-1=4x2+32=2x2+5xy+8x-3y2-4y 移项得,3x2+6x+x2-4x2=32+1,合并同类项得,6x=33,系数化为1,得x=5.5例3、若(x2+mx-8) (x2-3x+n)的展开式中不含x2和x3项,求m和n的值解:原式=x4+(m-3)x3+(n-3m+8)x2+(mn-24)x+8n,根据展开式中不含x2和x3项得:m−3=0n−3m+8=0解得:m=3n=12.5 平方差公式第1课时【教学目标】1.让学生经历探索平方差公式的过程,发展其符号感.2.能够运用公式进行简单计算【学习重点】应用公式进行简单、快速的计算【学习难点】对公式中a,b的认识,分清公式结构【学习过程】一、学习准备:1、快速计算①(x+2)(x-2)= x2_-4__________ ②(1+3a)(1-3a)=_1-_9a2______③(x+5y)(x-5y)=_ x2_-25y2_________ ④(y+3z)(y-3z)=_y2_-9z2______2、平方差公式的推导(代数法)( a+b)(a-b)=a2-ab+ab+b2语言表述:两数和与这两数差的积,等于它们平方的差。
= a2-b2公式特点:⑴左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反数的平方差,⑵公式中的a、b 可以是数、单项式、多项式,⑶公式可顺用,也可逆用。
1.4多项式乘以多项式导学案了解感知⒈复习巩固⑴口述单项式乘以多项式的法则 ⑵计算:()()m a b n a b +++⒉为了扩大绿地面积,要把街心花园的一块长a 米,宽m 米的长方形绿地增长b 米,加宽n 米,你能用几种方法表示扩大后的绿地面积吗?不同表示方法之间有什么关系?解: 方法1:这块花园现在长为 米,宽为 米, 因而这块绿地的面积为: 。
方法2:这块花园现在由四小块组成,他们的面积分别是 因而这块绿地的面积为: 。
结论:由方法1和方法2可得出等式 ⒊多项式乘以多项式的法则 多项式与多项式相乘, 单项式乘单项式法则 幂的乘方法则 . ⒈计算⑴(2)(3)x x +- ⑵(31)(21)x x -+⑶(3)(7)x y x y -+ ⑷2)2(y x -⒉计算⑴)3)(2(++x x ⑵)1)(4(+-x x⑶)2)(4(-+y y ⑷)3)(5(--y y由上面计算的结果找规律,观察右图, ()()()++=++x q x p x 2))((⒊计算qpxx⑴)2)(1(++n n n ⑵)168()4(2--+x x⑶)5)(1(2)13)(2(82-+-+--x x x x x ⑷2)23()3)(12(---+x x x⒋探究升华 ⑴若))((362b x a x mx x ++=++,且m b a ,,为整数,则m的值可能取多少个?⑵若)32)((22--++x x q px x的展开项中不含2x 和3x 的项,求p和q 的值.计算下列各题 (1)(-2a)•(2a2-3a +1) (2) (23ab2-2ab)•12ab(2) 2x(x2-12x+3 )(3)(-2ab2)2(3a2b -2ab -4b3)3x2•(-3xy)2-x2(x2y2-2x)(4) 2a • (a2+3a -2)-3(a3+2a2-a+1)。
整式的乘法——多项式与多项式相乘一、教材分析:1、教材的地位和作用整式的乘法是整数运算的主要内容,是进一步学习因式分解、分式、方程以及其它数学内容的基础,学习多项式与多项式的乘法既是多项式的加法、单项式与单项式乘法的综合应用,也是学习15.2节乘法公式的基础。
通过本节课的学习,让学生体验数学与现实生活的联系,经历知识的形成过程,使学生思维的灵活性、广泛性、深刻性上得到进一步发展。
2、重难点及成因分析:重点:多项式与多项式的乘法法则。
难点:多项式与多项式的乘法的法则的推导及综合运用。
成因:多项式与多项式的乘法作为基本运算,在今后有着广泛的应用,要熟练地进行多项式与多项式的乘法,就得深刻理解运算法则。
多项式与多项式的乘法是多项式的加法、单项式与单项式乘法的综合应用,由于学生容易将各种运算混淆,容易忽视符号,造成运算结果的失误。
二、教学目标:1、知识与技能:⑴理解多项式与多项式的乘法法则。
⑵能够熟练地进行多项式与多项式的乘法运算。
2、过程与方法:⑴经历探索多项式与多项式的乘法法则的过程,进一步发展观察、归纳、概括的能力,发展学生有条理的思考及语言表达能力。
⑵经历探索多项式与多项式的乘法法则的过程,体会乘法分配律的作用和“化归”的思想。
3、情感态度价值观:⑴通过探究面积的不同表示方法活动,使学生体验探究的过程,培养学生的创新能力。
⑵通过把一个多项式看成一个整体,发展学生的转化能力。
⑶通过对多项式与多项式的乘法法则的探索,让学生获得成功的体验,锻炼克服困难的意志。
三、教学对象、方法及手段分析:本节的对象是八年级学生,他们前面已经学习了有理数、单项式与单项式乘法、单项式与多项式乘法等运算法则,已经具备了一定的运算能力。
本节学习,我采用“引导发现法”、“类比分析法”、“讲练结合法”,学生观察、探索、类比、归纳出多项式与多项式的乘法法则,用法则进行多项式与多项式乘法的运算,使学生理解认识事物的过程是由特殊(具体)到一般(抽象),又由一般(抽象)到特殊(具体),在不断反复中得到提高,培养学生初步的辩证唯物主义观点。
课题:《14.1.4 整式的乘法(多项式乘以多项式)》 知识与技能多项式乘以多项式的运算法则及其应用过程与方法理解多项式乘以多项式的算理,发展有条理的思考及表达能力情感态度与价值观提倡多样化的算法,培养学生的创新精神与能力教学重点:多项式与多项式相乘的运算法则的探索教学难点:灵活运用法则进行计算和化简教学方法与手段:自主探索法教学过程:一.复习旧知讲评作业二.创设情景,引入新课(课本)如图,为了扩大街心花园的绿地面积,把一块原长a 米、宽m 米的长方形绿地,增长了b 米,加宽了n 米.你能用几种方法求出扩大后的绿地面积?一种计算方法是先分别求出四个长方形的面积,再求它们的和,即(am+an+bm+bn )米2.另一种计算方法是先计算大长方形的长和宽,然后利用长乘以宽得出大长方形的面积,即(a +b )(m +n )米2.由于上述两种计算结果表示的是同一个量,因此(a +b )(m +n )= am+an+bm+bn .教师根据学生讨论情况适当提醒和启发,然后对讨论结果(a +b )(m +n )=am+an+bm+bn 进行分析,可以把m +n 看做一个整体,运用单项式与多项式相乘的法则,得(a +b )(m +n )=a (m +n )+b (m +n ),再利用单项式与多项式相乘的法则,得m n a ba(m+n)+b(m+n)= am+an+bm+bn.学生归纳:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加.三、应用提高、拓展创新例6(课本):计算(1)(3x+1)(x+2) ; (2) (x-8y)(x-y) ;(3) (x+y)(x2-xy+y2)进行运算时应注意:不漏不重,符号问题,合并同类项练习:(课本)102页 1 2补充例题:1.(a+b)(a-b)-(a+2b)(a-b)2.(3x4-3x2+1)(x4+x2-2)3.(x-1)(x+1)(x2+1)4.当a=-1/2时,求代数式(2a-b)(2a+b)+(2a-b)(b-4a)+2b(b-3a)的值教师小结:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加把多项式相乘的问题转化为单项式与多项式相乘的问题布置作业:P105习题第5题。
多项式乘以多项式教案设计一、教材分析《整式的乘法》是华师大版七下第14章《整式的乘法》中的一个单元.它是学生学习完单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式、因式分解等知识作准备。
而本节课所研究的《多项式与多项式相乘》本质上只是单项式与多项式相乘的应用与推广,因此在本课教学中注重的应是学生对法则的应用与理解,由此培养学生对知识转化的能力和学生对问题中所蕴藏的数学规律进行探索的兴趣;同时,本课中由图形面积引入多项式乘以多项式的法则也渗透着数形结合的数学思想,它为本章结束时的课题学习《面积与代数恒等式》的研究奠定了坚实的基础同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力;其得出过程涉及数形结合,整体代换等重要的数学思想。
因此,它在整个初中阶段“数与式”的学习中占有重要地位。
由此可以看出,多项式乘以多项式的学习既是前面学习的综合应用,又是后续学习的基础,本节课教学质量的好坏将直接影响着学生的后续学习.二、学情分析中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展。
从年龄特点来看,初二学生好动、好奇、好表现;从生理特点上看,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这些特点,一方面从学生身边的事和物着手,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
有效地培养学生能力,促进学生个性发展.三、教学方法和策略本节课是在前面学习了“单项式与多项式相乘"的基础上进行的,学生已经掌握了“单项式与多项式相乘”的运算法则,因此要让学生亲身参加探索发现,从而获取新知。
为了充分调动学生的参与意识,更好的落实各项目标,本课以学生的数学活动为主线,以让学生参与为本课的核心,以自主,合作、探究、实践为学生的主要学习方式,在此基础上,我采用了如下的教学方法:那就是依托实验法,讨论法,发现法,让学生全员参与,全员活动,让学生和老师、学生和学生之间互动,调动学生的积极性,发挥学生的潜能。
整式的乘法--多项式乘多项式教学目标:1.知识与技能:在具体情境中了解多项式乘法的意义,会利用法则进行简单的多项式乘法运算.2.过程与方法:经历探索多项式与多项式乘法法则的过程,理解多项式与多项式相乘的运算算理,体会乘法分配律的作用及转化思想在解决问题过程中的应用,发展学生有条理的思考和语言表达能力.3.情感与态度:在解决问题的过程中了解数学的价值,发展“用数学”的信心.教学重点:多项式乘多项式法则的导出及其运用;教学难点:(1)在计算中确定积中各项的符号;(2)防止漏项。
教学过程:一、出示学习目标: 能进行多项式与多项式的乘法运算。
二、自学指导:仔细看第18-19页随堂练习以上的内容,想一想: 多项式与多项式乘法的方法?想一想图1-1是一个长和宽分别为m ,n 的长方形纸片,如果它的长和宽分别增加a ,b ,所得长方形(图1-2)的面积可以怎样表示?学生独立思考后,全班交流,主要产生了四种解法:方法一:长方形的长为(m+a ),宽为(n+b ),所以面积可以表示为n n 图1-1 图1-2(;)m++n)(ba方法二:长方形可以看做是由四个小长方形拼成的,四个小长方形的面积分别为mn,mb,an,ab,所以长方形的面积可以表示为ab++;mbmn+an 方法三:长方形可以看做是由上下两个长方形组成的,上面的长方形面积为b(m+a),下面的长方形面积为n(m+a),这样长方形的面积就可以表示为n(m+a)+ b(m+a),根据上节课单项式乘多项式的法则,结果等于ba++nm+nabm 方法四:长方形可以看做是由左右两个长方形组成的,左边的长方形面积为m(b+n),右边的长方形面积为a(b+n),这样长方形的面积就可以表示为m(b+n)+ a(b+n),根据上节课单项式乘多项式的法则,结果等于an++mnabmb+将四种方法的过程板书到黑板上,由于求的是同一个长方形的面积,于是我们得到:))(n(+=)+b+=ab+n+m+bnam+)(b+anm(=)(abm)(a++anmn+mb教师引导学生观察这个等式,并启发性的将等式板书为以下形式:b(aa)n+++mmn)(b(a)( =)+m+或)nba+(n+m+bn)(b)m+a(=)+(或)+(=abm+)(ban++mbanmn+式子的最左边是两个多项式相乘,最右边是相乘的结果,由此引出新课,多项式与多项式的乘法.活动目的:引导学生通过观察、实验、类比、归纳获得数学猜想. 在上一课时中,学生已经有了利用图形面积探究法则的经验,因此用不同方法计算同一图形面积猜想出多项式乘法法则并不困难,顺利引出新课.实际教学效果:由于学生有不同的知识基础和思维习惯,运用不同的方法得出长方形的面积,为进一步合作交流提供了实质性的内容. 实际教学表明,学生能够很快解决这个问题,四种方法在班级都能出现。
§14.1.4 整式的乘法——多项式乘多项式
【教学内容分析】
本节课通过“自主——合作”探究得到多项式乘以多项式的乘法法则,该法则是整式乘法的基础。
【教学目标】
1.知识与技能目标
⑴ 理解多项式与多项式的乘法法则。
⑵ 能够熟练地进行多项式与多项式的乘法。
2. 过程与方法目标
⑴ 经历探索多项式与多项式的乘法法则的过程,进一步发展观察、归纳、概括的能力,发展学生有条理的思考及语言表达能力。
⑵ 经历探索多项式与多项式的乘法法则的过程,体会乘法分配律的作用和“化归”的思想。
3.态度价值观目标
⑴ 通过探究面积的不同表示方法活动,使学生体验探究的过程,培养学生的创新能力。
⑵ 通过把一个多项式看成一个整体,发展学生的转化能力。
⑶ 通过对多项式与多项式的乘法法则的探索,让学生获得成功的体验,锻炼克服困难的意志。
【教学重点、难点】重点:多项式与多项式的乘法法则。
难点:多项式与多项式的乘法的法则的推导及综合运用。
【教学准备】 教学课件。
【教学过程】
教学过程
活动一 “自主——合作”探究
一.创设情境 1. 已知m ·(p +q )=mp +mq ,如果将m 换成(a +b ),你能计算 吗?
2. 问题:若将原长方形绿地的长增加b m 、宽增加q m ,你能用几种方法求出扩大后的长方形绿地的面积呢?
方法一: 方法二: 方法三: 方法四: 教师鼓励学生思考,用不同的方法求出矩形的
面积,得出多项式乘多项式运算法则 这些代数式之间有什么关系?请说明理由.
归纳总结:
多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加.
()()q p b a ++ a p q
b a b p q ++()();
a p q
b p q +++(
)();p a b q a b +++(
)();.ap aq bp bq +++
活动二、提示:让学生明白多项式乘多项式运算时,需注意以下几点: ⑴ 不要漏乘; ⑵ 注意符号; ⑶ 结果最简
活动三、例题讲解 运用法则
活动四、变式训练,再攀高峰
活动五、应用新知,推广应用
活动六、能力提升
注意:充分调动学生的积极性,培养学生"探究-发现-归纳"的数学思维 活动六、归纳小结,充实结构
(1)本节课学习了哪些主要内容?(2)在运用多项式与多项式相乘的法则时,你认为应该注意哪些问题?(3)举例说明在探索多项式与多项式相乘的法则的过程中体现了哪些思想方法?
活动七、知识留恋,课后韵味
布置作业:必做题:教材习题14.1第5、8题;选做题:教材习题14.1第14、15题.
板书设计
§14.1.4 整式的乘法(三)——多项式乘多项式
活动一 自主—合作探究 活动二 大胆猜想 探索规律
多项式乘多项式的运算法则
活动三 应用新知 推广应用 活动四 变式训练 巩固提升 活动五 归纳小结 充实结构 活动六 知识留恋,课后韵味
312x x ++()();
8x y x y --()();
22.x y x xy y +-+()() 213x x ++()();23m n n m +-()();22325.x x x ++-()() 21a -();
【设计思想】
1、在整个设计教学中,目的是想体现学生的参与意识,让学生在运算的过程中发现运算法则。
学生不是被动接受现成的书本知识,而是在经验过程中主动探索,发现经验中事物之间的联系过程。
2、设计体现了整体和化归的数学思想,这有利于学生养成良好的思维习惯。
3、设计了这些环节,,激发学生的学习兴趣,突破重难点。
4、本节课通过多项式乘多项式乘法法则的应用,也以此为载体进行爱国主义情感教育。
§14.1.4 整式的乘法(三)
——多项式乘多项式
嘉峪关市第六中学
鲁兴汉
2014.11.18。