12.3.1 等腰三角形的性质(1)
- 格式:ppt
- 大小:793.50 KB
- 文档页数:17
年级八年级课题12.3.1等腰三角形(1)课型新授教学媒体多媒体教学目标知识技能1. 掌握等腰三角形“等边对等角”的性质.2. 掌握等腰三角形“三线合一”的性质.3. 归纳证明两个角相等的常用方法.过程方法1. 通过实践、观察、证明等腰三角形的性质,培养学生推理能力。
2. 通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。
情感态度引导学生对图形的观察、发现、激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的信心。
教学重点等腰三角形的性质及应用。
教学难点等腰三角形的性质证明。
教学过程设计教学程序及教学内容师生行为设计意图一、情境引入把一张长方形纸对折,任意剪出一个直角边在折线上的直角三角形,把它展开,得到三角形是什么特殊三角形?具有哪些性质呢?这是本节课要研究的内容。
二、探究新知探究:把得到三角形,记为ABC∆,并将折线的另一端点记为D,如图所示.将等腰ABC∆沿AD对折再展开,重复几次,观察图形1.图中有哪些相等的角?有哪些相等的线段?2.等腰ABC∆是不是轴对称图形?对称轴是什么?3.等腰ABC∆除两腰相等外,它的角有什么性质?用语言描述等腰三角形的这条性质并给与证明。
4.等腰ABC∆中,AD有几种角色?各是什么?用语言描述等腰三角形的这条性质并给与证明。
归纳等腰三角形的性质:性质1等腰三角形的两个底角相等。
即等边对等角.性质2等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
即等腰三角形三线合一.【例1】如图,已知ABC∆中,D为BC上一点,且AC=AD,∠2=2∠1. 教师演示折纸、叠纸的过程,学生观察所得三角形的形状,教师板书课题。
教师重复演示等腰三角形对折的过程,并在黑板上画相应等腰三角形。
学生观察图形,用语言描述性质,并给予证明。
教师给出性质的准确描述,并板书性质。
接着讲解如何运用等腰三角形“三线合一”的性质。
通过情境引入本节课课题。
等腰三角形的性质等腰三角形是指具有两条边长度相等的三角形。
在几何学中,等腰三角形具有一些特殊的性质,这些性质不仅有助于我们理解和解决几何问题,还在各种实际应用中起着重要的作用。
本文将探讨等腰三角形的性质及其相关定理。
一、等腰三角形的定义等腰三角形是指具有两条边长度相等的三角形。
在一个三角形中,如果两条边的边长相等,我们就可以称之为等腰三角形。
通常,我们用字母a来表示等腰三角形的两条相等的边的长度,而用字母b表示与这两条边相对应的底边的长度。
二、等腰三角形的性质1. 等腰三角形的两个底角相等等腰三角形的两条等边,也是两个底角之间的夹角。
因此,等腰三角形具有两个底角相等的性质。
例如在一个等腰三角形ABC中,∠A 和∠B是相等的。
2. 等腰三角形的顶角等腰三角形的顶角是等腰三角形中与两个等边相对应的角。
这个角称为等腰三角形的顶角。
在等腰三角形ABC中,∠C就是顶角。
3. 等腰三角形的高线等腰三角形的高线是从顶角所在顶点到底边上的垂线,也就是等腰三角形顶角所在顶点到底边所在直线的垂直的线段。
等腰三角形的高线将底边平分,并且和两边构成相似三角形。
具体来说,等腰三角形ABC的高线CD将底边AB平分,同时构成了与等腰三角形ABC相似的等腰三角形ACD。
4. 等腰三角形中位线的性质等腰三角形中位线是从底边中点到对顶点的线段,在等腰三角形中,三条中位线相交于同一点,且对顶点到交点的距离是底边的一半。
5. 等腰三角形的外接圆和内切圆等腰三角形的外接圆是过等腰三角形三个顶点的圆,它的圆心与顶角所在顶点重合。
等腰三角形的内切圆是切于等腰三角形三边的圆,它的圆心位于等腰三角形的高线和中位线的交点上。
6. 等腰三角形的面积等腰三角形的面积可以通过底边和高线的长度来计算。
等腰三角形的面积等于底边长度乘以高线长度再除以2。
三、等腰三角形的相关定理1. 等腰三角形的高线定理在一个等腰三角形中,高线、底边和等腰腰长构成的直角三角形相似。
等腰三角形的性质等腰三角形是指具有两条边长度相等的三角形。
它具有特殊的性质和应用,对几何学有重要的意义。
本文将介绍等腰三角形的定义、性质和相关定理,以及一些实际应用。
一、等腰三角形的定义等腰三角形是指具有两边相等(即两边长度相等)的三角形。
根据这个定义,一个等腰三角形必须满足两边相等,而第三边则可以不相等。
等腰三角形可以是直角三角形、锐角三角形或钝角三角形。
二、等腰三角形的性质1. 等腰三角形的底角(底边对应的角)和顶角(顶点对应的角)相等。
证明:设等腰三角形ABC中,AB=AC,我们需要证明∠B = ∠C。
由三角形内角和定理可知∠A + ∠B + ∠C = 180°,且由AB = AC可知∠A = ∠C。
因此,∠A + ∠B + ∠A = 180°,即2∠A + ∠B = 180°,推出∠B = ∠C。
2. 等腰三角形的高(从顶点到底边垂直的线段)是底边的中线和中线延长线的垂直平分线。
证明:设等腰三角形ABC中,AB=AC,M为底边BC的中点,D 为顶点A到底边BC的垂直线的交点。
由线段等分的定义可知BM = MC。
因为D为垂线的交点,所以ADM和ACM为直角三角形,且∠ADM = ∠ACM。
另一方面,AM为直线BC的中线,所以MB=MC。
因此,在三角形ADM和ACM中,AD = AC,∠ADM = ∠ACM,MB = MC,根据ASA(对应边相等)准则可知三角形ADM和ACM全等。
根据全等三角形的性质可知∠DAM = ∠CAM,即高AD是底边的中线和中线延长线的垂直平分线。
三、等腰三角形的定理1. 等腰三角形的高与底边的关系定理等腰三角形的高与底边的关系定理表明,等腰三角形的高是底边的平分线和垂直平分线。
即等腰三角形的高可以同时平分底边,使得两个等长的线段垂直于底边。
证明:设等腰三角形ABC中,AB=AC,M为底边BC的中点,D为顶点A到底边BC的垂直线的交点。
精选全文完整版可编辑修改1.等腰三角形性质1(1)性质1:等腰三角形的两个底角相等(简写成“等边对等角”).(2)理解:这是等腰三角形的重要性质,它是证明角相等常用的方法,它的应用可省去三角形全等的证明,因而更简便.(3)适用条件:必须在同一个三角形中.(4)应用模式:在△ABC 中,因为AB =AC ,所以∠B =∠C .例1.如图,AD 、BC 相交于O ,AB ∥CD ,OA =OB ,求证:∠C =∠D.2.等腰三角形性质2(1)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.习惯上称作等腰三角形“三线合一”性质.(2)含义:这是等腰三角形所特有的性质,它实际上是一组定理,应用过程中,只要是在等腰三角形前提下,知道是其中“一线”,就可以说明是其他的“两线”,性质中包含有线段相等、角相等、垂直等关系,所以应用非常广泛.(3)应用模式:如图,在△ABC 中,①∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC(或BD=CD)②∵AB =AC ,BD =DC ,∴AD ⊥BC (或AD 平分∠BAC );③∵AB =AC ,AD 平分∠BAC ,∴BD =DC (或AD ⊥B C ).例2 .如图,在等腰△ABC 中,AB=AC ,D 、E 在底边BC 上且AD=AE ,你能说明BD 与CE 相等吗?为什么?3.等腰三角形的判定(1)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).(2)与性质的关系:判定定理与性质定理是互逆的,性质:线段相等→角相等;判定:角相等→线段相等.(3)理解:性质和判定应用的前提都是在同一三角形中,并且不经过三角形全等的证明,直接由等边得等角或由等角得等边,所以应用起来更简单、便捷.例3 如图,BE 平分∠ABC ,交AC 于E ,过E 作DE ∥BC ,交AB 于D .试证明△BDE 是等腰三角形.例4.如图,在△ABC 中,∠B 和∠C 的平分线相交于点O ,且OB=OC ,请说明AB=AC 的理由.练习:1.在△ABC 中,∠A 的相邻外角是110°,要使△ABC 是等腰三角形,则∠B = .2.如图,AB=AC ,BD 平分∠ABC ,且∠C=2∠A ,则图中等腰三角形共有 个.E D C B AAB C O3.如图,已知D、E是BC边上的点,且BD=CE,下列条件不能判定△AB E≌△A CD的是()A.AB=AC B.AD=AE C.BE=CD D.∠BDA=∠CEA4.如图,已知在△AB C中,在AB上取一点D,又在AC延长线上取点E,使CE=BD,连结DE 交BC于点G,有DG=GE,试说明:AB=AC.4.等边三角形的概念和性质(1)等边三角形①概念:三边都相等的三角形是等边三角形.②认识:它是特殊的等腰三角形,具备等腰三角形的所有性质.(2)性质:等边三角形的三个内角都相等,并且每一个角都等于60°.例5 如图,点M、N分别在等边△ABC的边BC、AC上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.5.等边三角形的判定(1)判定定理:①三个角都相等的三角形是等边三角形;②有一个角是60°的等腰三角形是等边三角形.(2)判定方法:等边三角形的判定方法有三种:一是定义,另运用两个定理.(3)拓展理解:对于判定定理①,有时候在一个三角形中只要有两个角是60°也可判定是等边三角形.解技巧巧用条件证明等边三角形在证明三角形是等边三角形时,根据所给已知条件确定选择用哪个方法证明.若已知三边关系,一般选定义法;若已知三角关系,一般选判定定理①;若已知该三角形是等腰三角形,则选判定定理②.例6 如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.例7.如下图所示,在等边三角形ABC中,∠B、∠C的角平分线交于点O,OB和OC的垂直平分线分别交BC于E、F,试用你所学的知识说明BE=EF=FC的道理.6.含30°角的直角三角形的性质(1)性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.(2)应用模式:在Rt△ABC中,∵∠C =90°,∠B =30°,∴AC =12AB . 例8. 等腰三角形的底角为15°,腰长为2a ,则腰上的高为 。
等腰三角形的性质(一)等腰三角形是一种具有特殊性质的三角形。
在等腰三角形中,两个边的长度相等,两个底角(与两个边相对的角)也相等。
1. 等腰三角形的定义等腰三角形是指具有两条边长相等的三角形。
在等腰三角形中,两条边相等的那两边通常称为“腰”,而较短的那条边则称为“底”。
等腰三角形的底角通常也是相等的。
2. 等腰三角形的性质2.1 两边性质在等腰三角形中,两条腰的长度相等。
这意味着如果我们将等腰三角形的两条腰进行任意交换位置,得到的仍然是一个等腰三角形。
2.2 底角性质在等腰三角形中,两个底角的大小相等。
这也可以理解为等腰三角形的对称性,两个底角相互对应。
2.3 高的性质等腰三角形中的高是腰中线、腰高和底边的三边中最短的边。
高的长度可以通过应用勾股定理或使用三角函数来计算。
2.4 对称性质等腰三角形具有对称性。
如果我们绕等腰三角形的对称轴(通常为高线)旋转180度,等腰三角形将与原来的位置完全重叠。
2.5 直角三角形在等腰三角形中,如果两个底角之一为直角(90度),则这个等腰三角形也是一个直角三角形。
2.6 等边三角形等腰三角形中的特殊情况是等边三角形。
等边三角形即三边长度相等的三角形,也是一种等腰三角形。
3. 等腰三角形的应用等腰三角形在几何学中有广泛的应用。
下面列举一些等腰三角形的应用场景:•建筑设计:在建筑设计中,等腰三角形常用于设计房屋的屋顶或者侧面的装饰图案。
•地理测量:在地理测量中,等腰三角形可用于计算高度、距离和角度等参数。
•航海导航:在航海导航中,等腰三角形可用于计算经纬度、航向和航速等信息。
•数学证明:在数学证明中,等腰三角形的性质常用于推导其他几何定理或性质。
4. 总结等腰三角形是一种具有特殊性质的三角形。
在等腰三角形中,两条边的长度相等,两个底角也相等。
等腰三角形的性质包括两边性质、底角性质、高的性质、对称性质、直角三角形和等边三角形等。
等腰三角形在几何学、建筑设计、地理测量、航海导航和数学证明等领域都有广泛的应用。