迭代格式二迭代法的收敛性一
- 格式:ppt
- 大小:540.50 KB
- 文档页数:18
迭代法的收敛性与误差估计一…的童滚.11/{安务刊迭代法的收敛性.与误差估计’\虞福星..Z冬}7.在许多工程技术问题中,常常会遇到求解一元非线性方程的问题.例如,代数方程一x—l一0或超越方程x+{x—l看上去形式很简单,但不易求出其准确根,只能求出方程达到一定精度的近似根.求解这类方程的方法很多,迭代法就是其中的一种.迭代法有许多优点:1.其算法的逻辑结构简单f2.收敛速度快I3.中间结果有扰动不会影响计算结论;4.计算误差容易控制.正因为如此,迭代法得到非常广泛的应用.一,迭代法的基本思想设有方程f(11=0首先,我们设法将式(1)代成下列等价形式x—g∽然后按式(2)构造迭代公式(1)(2)+l—g{-,k=o,1,2, (3)从给定的初始近似根x.出发,按迭代公式(3)可以得到一个敦列x.,x1,x2,...,x, (4)如果这个数列{}有极限,则称迭代公式(3)是收敛的,此时数列螅极限x=limx就是原方程(1)的根.二,迭代法的收敛性及误差估计具备怎样的条件,迭代公式(3)是收敛的,这就是我们要讨论的中心问题.对此,我们有定理:设方程x—g在(a,b)内有根x,若gt满足李普希茨条件,即对(a,b)内任意的x】和都有lg(x1)g(x2)l≤qlxl—x2l(5)q为某个正数,当q<1时,则方程在(a’b)内有唯一的根I且迭代公式(3)对任意初始近似值xo均收敛于根x;还有误差估计式一≤lXk--Xkil≤lXI--Xol(6)证明:先证唯一性由已知条件知,x’是方程x—g的根,即x一g66设i也是方程x=g(x)的根,则x=g于是1x一i1=1g)--g1由李普希茨条件,得1x一;1一Ig(-~g’;I≤q1x一il因为0<q<1,故必有x.=;,根的唯一性得证. 再证收敛性由李普希茨条件,得IXk+I--X.l=Ig’--g)l≤qI一x.I同样l一x’l≤qIXk一1一x.1,…,1x1--X.1≤qI~x’1于是有1+I—x’I≤?Ix.一x’1因为0<q<1,当k—o.时,一0,即有Ix…--X’j—O(k—oo)所以,limxx.k一收敛性得证.利用李普希茨条件,得l+1~f=fg’)--g(,一.I≤Ix,一一1I于是对任意正整数P,有l+p一1≤1Xk—p一+rII+1Xk+p一1--Xk+p一±1+…+1一1一I≤(q+qP 一+…+q)?j一l一lxr令P—oo,得一I≤一一l≤IX1--X0I三,选择迭代公式的原则如果方程(2)中的g’满足Ig’I]l≤M<IxE(a,b)则可取这里的M作为李普希茨(5)中的q,由式(6)可知,正数q越小,收敛速度越快.所以,选遗代公式要遵循使IgI在(a山)的最大值M为最小这个原则.由于把方程f㈨一0化成等价形式x;g的方法很多.例如,方程x一x一1—0可以化成以下四种形式(1)x一一167(2)x一+1㈣x=X--每=㈤x一一由此可得四个迭代公式x+?=x:一1(7);(8):(9)’(9)l一—)(,)式(1I)也可用牛顿切线法导出,可见牛顿切线法可视为谴代法的特殊情形.由于=苎【)所以.f(?f().因此,只要ll≤q<l,L”)J公式(II)就收敛68。
类矩阵两种迭代法的收敛性比较引言:在科学计算中,线性方程组的求解是很普遍的问题。
尤其是在大型科学计算中,线性方程组的求解是最重要的任务之一。
线性方程组的求解有很多种方法,例如高斯消元法、LU分解法、迭代法等等,其中迭代法是一种高效的方法。
迭代法的思想是从一个初值解开始,逐步改进解的准确度,直到满足误差要求。
在本文中,我们将讨论两种类矩阵迭代法的收敛性比较,即雅可比迭代法和高斯-赛德尔迭代法。
1.雅可比迭代法(Jacobi Iterative Method):雅可比迭代法是最简单的迭代法之一。
它是基于线性方程组的矩阵形式 Ax=b,将 A 分解成 A=D-L-U(D为A的对角线元素,L为A的下三角矩阵,U为A的上三角矩阵),其中 D 为对角线元素,L为严格下三角矩阵,U 为严格上三角矩阵。
则有如下迭代关系式: x^{(k+1)}=D^{-1}(L+U)x^{(k)}+D^{-1}b (1)其中,x^{(k)} 为 k 次迭代后的解,x^{(0)} 为初始解。
雅可比迭代法的迭代矩阵为M = D^{-1}(L+U)。
以下是雅可比迭代法的收敛性分析:定理1:若矩阵 A 为对称正定矩阵,则雅可比迭代法收敛。
证明:由于 A 为对称正定矩阵,所以存在唯一的解。
假设迭代后得到的解为 x^{(k)},则我们可以用误差向量 e^{(k)} = x-x^{(k)} 表示剩余项,则有 Ax^{(k)}-b = e^{(k)}。
对 (1) 式两边同时乘以 A^-1,得:x^{(k+1)}=x^{(k)}-A^{-1}e^{(k)}。
(2)将 (2) 式代入 Ax^{(k)}-b = e^{(k)} 中,得:Ax^{(k+1)}-b = Ae^{(k)}.(3)由于 A 为对称正定矩阵,则存在 A=Q\\Lambda Q^{-1},其中Q 为正交矩阵,\\Lambda 为对角矩阵。
因此,我们可以将 (3) 式转化为:\\| x^{(k+1)}-x \\|_{A} =\\| Q^{-1}A^{-1}Qe^{(k)}\\|_{\\Lambda} \\leq \\rho (Q^{-1}A^{-1}Q)\\|e^{(k)}\\|_{A}。