高二数学 平行关系的判定及其性质
- 格式:ppt
- 大小:431.50 KB
- 文档页数:18
1.5.1 平行关系的判定(一)直线与直线平行的判定方法1.利用定义:在同一个平面内,不相交的两条直线互相平行;2.判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行. 推理模式:3.判定方法:○1○1证明直线和这个平面内的一条直线相互平行;○2○2证明这条直线的方向量和这个平面内的一个向量相互平行;○3○3证明这条直线的方向量和这个平面的法向量相互垂直.4.利用平行公理:空间中平行于同一条直线的两条直线互相平行;5.利用直线与平面平行的性质定理:直线和平面平行,经过该直线的平面与已知平面相交,则该直线和交线平行;6.利用平面和平面平行的性质定理:两个平面互相平行,和第三个平面相交,它们的交线互相平行;7.利用直线和平面垂直的性质:垂直于同一个平面的两条直线互相平行;8.利用直线和平面平行的性质:一直线和两相交平面平行,则该直线和这两个平面的交线平行.a l a l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα,,////a b a b a ααα⊄⊂⇒α ab(二)直线与平面平行的判定方法1.利用定义:直线与平面无公共点,则该直线和该平面平行;2.利用直线与平面平行的判定定理:平面外一条直线和平面内一条直线平行,则该直线和该平面平行(线线平行,则线面平行).3.利用平面和平面平行的性质:两个平面互相平行,则一个平面内任意一条直线都平行于第二个平面.(三)平面和平面平行的判定方法1.利用定义:两个平面没有公共点,则这两个平面平行;2.利用平面与平面平行的判定定理:一个平面内有两条相交直线分别与另一个平面内两条相交直线平行,则这两个平面平行;符号表示:a βb βa ∩b = P β∥α a ∥α b ∥α3.证明两平面平行的方法:(1)利用定义证明.利用反证法,假设两平面不平行,则它们必相交,再导出矛盾. (2)判定定理:一个平面内有两条相交直线都平行于另一个平面,则这两个平面平行,这个定理可简记为线面平行则面面平行.用符号表示是:a ∩b ,a α,b α,a ∥β,b ∥β,则α∥β.(3)垂直于同一直线的两个平面平行.用符号表示是:a ⊥α,a ⊥β则α∥β. (4)平行于同一个平面的两个平面平行.//,////αβαγβγ⇒4.利用平面与平面平行的判定:一个平面内有两条相交直线分别平行于另一个平面,则这两个平面平行;5.利用平面与平面平行的传递性:平行于同一个平面的两个平面互相平行.6.利用直线与平面垂直的性质:垂直于同一条直线的两个平面互相平行;例1 如右图,平行四边形EFGH 的分别在空间四边形ABCD 各边上,求证:BD//平面EFGH.证明:∵EH // FG , EH Ë平面BCD ,FG Ì平面BCD ,∴EH // 平面BCD .又∵EH 在平面ABD内,∴EH // BD .又∵ EH 在平面 EFGH内 , BD 不在平面 EFGH内 ,∴ BD // 平面 EFGH .点评:转化思维链是“由已知线线平行→线面平行→线线平行→线面平行”. 此题属于教材(必修②人教A 版)中第64 页的3 题的演变, 同样还可证 AC // 平面EFGH . 例2.正方形ABCD和正方形ABEF所在平面互相垂直,点M,N分别在对角线AC和BF上,且AM=FN求证:MN∥平面BEC分析:证线面平行⇐线线平行,需找出面BEC 中与MN 证法(一):作NK ∥AB 交BE 于K ,作MH ∥AB 交BC 于H ∴MH ∥NK∵ABCD 与ABEF 是两个有公共边AB 的正方形 ∴它们是全等正方形 ∵AM=FN ∴CM=BN又∠HCM=∠KBN ,∠HMC=∠KNB ∴△HCM ≌△KBN ∴MH=NK ∴MHKN 是平行四边形 ∴MN ∥HK ∵HK ⊂平面BEC MN ⊄平面BEC ∴MN ∥平面BEC证法(二):分析:利用面面平行⇒线面平行 过N 作NP ∥BE ,连MP ,∵NP ∥AF ∴FN/FB=AP/AB ∴AM=FN ,AC=BF ∴FN/FB=AM/AC ∴AP/AB=AM/AC ∴MP ∥BC ∴平面MNP ∥平面BCE ∴MN ∥平面BCE例3(1)空间三条直线两两相交可确定几个平面?(2)空间四条平行直线可确定几个平面?(3)空间一条直线和直线外三点,可确定几个平面? 答案:(1)1个或3个(2)1个,4个或6个 (3)1个,3个或4个[例2]在正方体ABCD-A1B1C1D1中,E.F 分别为棱BC.C1D1 的中点. 求证:EF ∥平面BB1D1D.证明:连接AC 交BD 于O ,连接OE ,则OE ∥DC , OE=1/2DC. ∵ DC ∥D1C1, DC=D1C1 , F 为D1C1 的中点,∴ OE ∥D1F , OE=D1F , 四边形D1FEO 为平行四边形.F EN KA P BM HD C∴ EF∥D1O.又∵ EF不在平面BB1D1D, D1O不在平面BB1D1D,∴ EF∥平面BB1D1D.例4 已知直线l//平面α,m 为平面α内任一直线,则直线l 与直线m 的位置关系是().A.平行B. 异面C. 相交D. 平行或异面答案;D。
第 1页(共3页)讲解范例:例1 已知:空间四边形A B C D 中,,E F 分别是,A B A D 的中点,求证://E F B C D 平面.例2求证:如果过平面内一点的直线平行于与此平面平行的一条直线,那么这条直线在此平面内.已知://,,,//l P P m m l αα∈∈,求证:m α⊂.例3 已知直线a ∥直线b ,直线a ∥平面α,b ⊄α,求证:b ∥平面α例4.已知直线a ∥平面α,直线a ∥平面β,平面α 平面β=b ,求证//a b .课堂练习: 1.选择题(1)以下命题(其中a ,b 表示直线,α表示平面)①若a ∥b ,b ⊂α,则a ∥α ②若a ∥α,b ∥α,则a ∥b ③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ⊂α,则a ∥b 其中正确命题的个数是 ( )FED CBAβαPmm '第 2页(共3页)(A )0个 (B )1个 (C )2个 (D )3个 (2)已知a ∥α,b ∥α,则直线a ,b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交. 其中可能成立的有 ( ) (A )2个 (B )3个 (C )4个 (D )5个(3)如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系一定是( ) (A )平行 (B )相交 (C )平行或相交 (D )AB ⊂α(4)已知m ,n 为异面直线,m ∥平面α,n ∥平面β,α∩β=l ,则l ( ) (A )与m ,n 都相交 (B )与m ,n 中至少一条相交 (C )与m ,n 都不相交 (D )与m ,n 中一条相交 2.判断下列命题的真假(1)过直线外一点只能引一条直线与这条直线平行. ( ) (2)过平面外一点只能引一条直线与这个平面平行. ( ) (3)若两条直线都和第三条直线垂直,则这两条直线平行. ( ) (4)若两条直线都和第三条直线平行,则这两条直线平行. ( ) 3.选择题(1)直线与平面平行的充要条件是( ) (A )直线与平面内的一条直线平行 (B )直线与平面内的两条直线平行 (C )直线与平面内的任意一条直线平行 (D )直线与平面内的无数条直线平行(2)直线a ∥平面α,点A ∈α,则过点A 且平行于直线a 的直线 ( ) (A )只有一条,但不一定在平面α内 (B )只有一条,且在平面α内 (C )有无数条,但都不在平面α内 (D )有无数条,且都在平面α内(3)若a ⊄α,b ⊄α,a ∥α,条件甲是“a ∥b ”,条件乙是“b ∥α”,则条件甲是条件乙的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分又不必要条件 (4)A 、B 是直线l 外的两点,过A 、B 且和l 平行的平面的个数是 ( ) (A )0个 (B )1个 (C )无数个 (D )以上都有可能4.平面α与⊿ABC 的两边AB 、AC 分别交于D 、E ,且AD ∶DB =AE ∶EC , 求证:BC ∥平面α5.空间四边形ABCD ,E 、F 分别是AB 、BC 的中点, 求证:EF ∥平面ACD .第 3页(共3页)6.经过正方体ABCD -A 1B 1C 1D 1的棱BB 1作一平面交平面AA 1D 1D 于E 1E ,求证:E 1E ∥B 1B 7.选择题(1)直线a ,b 是异面直线,直线a 和平面α平行,则直线b 和平面α的位置关系是( ) (A )b ⊂α (B )b ∥α (C )b 与α相交 (D )以上都有可能(2)如果点M 是两条异面直线外的一点,则过点M 且与a ,b 都平行的平面 (A )只有一个 (B )恰有两个 (C )或没有,或只有一个 (D )有无数个 8.判断下列命题的真假.(1)若直线l ⊄α,则l 不可能与平面α内无数条直线都相交. ( ) (2)若直线l 与平面α不平行,则l 与α内任何一条直线都不平行 ( )9.如图,已知P 是平行四边形A B C D 所在平面外一点,M 、N 分别是A B 、P C 的中点 (1)求证://M N 平面P A D ;(2)若4M N B C ==,P A =求异面直线P A 与M N 所成的角的大小 10.如图,正方形A B C D 与A B E F 不在同一平面内,M 、N 分别在A C 、B F 上,且A M F N =求证://M N 平面C B E1AE。
专题4 线面平行与面面平行的判定及性质一、直线与平面平行下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面【解析】由面面平行的定义可知选D.【例2】若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直【解析】A错误,a与α内的直线平行或异面.【例3】已知不重合的直线a ,b 和平面α,①若a ∥α,b ⊂α,则a ∥b ;②若a ∥α,b ∥α,则a ∥b ;③若a ∥b ,b ⊂α,则a ∥α;④若a ∥b ,a ∥α,则b ∥α或b ⊂α,上面命题中正确的是________(填序号).【解析】 ①中a 与b 可能异面;②中a 与b 可能相交、平行或异面;③中a 可能在平面α内,④正确.【例4】已知α、β是平面,m 、n 是直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β.②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.③如果m ⊂α,α⊄n ,m 、n 是异面直线,那么n 与α相交.④若α∩β=m ,n ∥m ,且α⊄n ,β⊄n ,则n ∥α且n ∥β其中正确命题的个数是( )A .1B .2C .3D .4【解析】对于①,由定理“如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直”得知,①正确;对于②,注意到直线m ,n 可能是两条平行直线,此时平面α,β可能是相交平面,因此②不正确;对于③,满足条件的直线n 可能平行于平面α,因此③不正确;对于④,由定理“如果平面外一条直线平行于平面内一条直线,那么这条直线平行于这个平面”得知,④正确.综上所述,其中正确的命题是①④,故选B.【例5】已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题: ①n m n m //⇒⎩⎨⎧⊥⊥αα;①αα//n n m m ⇒⎩⎨⎧⊥⊥;①n m n m ⊥⇒⎩⎨⎧⊥αα//其中真命题的个数为( ) A .0 B .1 C .2 D .3【解析】若⎩⎨⎧⊥⊥ααn m ,则m ①n ,即命题①正确;若⎩⎨⎧⊥⊥n m m α,则n ①α或n ①α,即命题①不正确;若⎩⎨⎧⊥αα//n m ,则m ①n ,即命题①正确;综上可得,真命题共有2个.故选C .【例6】已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则以下条件中,能推出α∥β的是( ) A .m ∥β且l 1∥α B .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2【解析】由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.【例7】在下列条件中,可判断平面α与β平行的是( ) A .α、β都平行于直线l B .α内存在不共线的三点到β的距离相等C .l 、m 是α内两条直线,且l ①β,m ①βD .l 、m 是两条异面直线,且l ①α,m ①α,l ①β,m ①β【解析】排除法,A 中α、β可以是相交平面;B 中三点可面平面两侧;C 中两直线可以不相交.故选D ,也可直接证明.【例8】经过平面外的两点作该平面的平行平面可以作( )A .0个B .1个C .0个或1个D .1个或2个【解析】这两点可以是在平面同侧或两侧.故选C .达标训练11.(2019•延安一模)已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是( )A .若//m α,//n α,则//m nB .若m α⊥,n α⊥,则//m nC .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥ 2.(2019•湖北期中)平面α与平面β平行的条件可以是( )A .α内有无数多条直线都与β平行B .直线a α⊂,b β⊂,且//a β,//b αC .直线//a α,//a β,且直线a 不在α内,也不在β内D .一个平面α内两条不平行的直线都平行于另一个平面β3.(2019•深圳二模)己知正方体1111ABCD A B C D -,P 为棱1CC 的动点,Q 为棱1AA 的中点,设直线m 为平面BDP 与平面11B D P 的交线,以下关系中正确的是( ) A .1//m D Q B .//m 平面11B D QC .1m B Q ⊥D .m ⊥平面11ABB A4.(2019•聊城二模)在长方体1111ABCD A B C D -中,F ,F ,G ,H 分别为棱11A B ,1BB ,1CC ,11C D 的中点,则下列结论中正确的是( )A .1//AD 平面EFGHB .1//BD GHC .//BD EFD .平面//EFGH 平面11A BCD5.(2019•汕头月考)如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列判断错误的是( ) A .1MN CC ⊥B .MN ⊥平面11ACC AC .//MN 平面ABCDD .11//MN A B6.(2019•大连一模)已知m ,n 为两条不重合直线,α,β为两个不重合平面,下列条件中,可以作为//αβ的充分条件的是( ) A .//m n ,m α⊂,n β⊂ B .//m n ,m α⊥,n β⊥ C .m n ⊥,//m α,//n βD .m n ⊥,m α⊥,n β⊥7.(2019•汕头一模)在正方体1111ABCD A B C D -中,点O 是四边形ABCD 的中心,关于直线1A O ,下列说法正确的是( )A .11//AO D C B .1AO BC ⊥C .1//A O 平面11B CDD .1A O ⊥平面11AB D8.(2019•青云月考)如图,四棱锥P ABCD -中,M ,N 分别为AC ,PC 上的点,且//MN 平面PAD ,则( ) A .//MN PD B .//MN PAC .//MN ADD .以上均有可能9.(2019•上饶一模)设m ,n 表示不同的直线,α,β表示不同的平面,且m ,n α⊂.则“//αβ”是“//m β且//n β”的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分又不必要条件10.(2018•沧州一模)如图,在下列四个正方体中,P ,R ,Q ,M ,N ,G ,H 为所在棱的中点,则在这四个正方体中,阴影平面与PRQ 所在平面平行的是( )A .B .C .D .11.(2017•洛南期末)已知平面//α平面β,直线m α⊂,直线n β⊂,下列结论中不正确的是( ) A .//m βB .//n αC .//m nD .m 与n 不相交12.(2018•杭州期中)如图,四棱锥P ABCD -的底面ABCD 是平行四边形,M 、N 分别为线段PC 、PB 上一点,若:3:1PM MC =,且//AN 平面BDM ,则:PN NB =( )A .4:1B .3:1C .3:2D .2:113.(2018•厦门二模)如图,在正方体1111ABCD A B C D -中,M ,N ,P 分别是11C D ,BC ,11A D 的中点,则下列命题正确的是( )A .//MN APB .1//MN BDC .//MN 平面11BBD DD .//MN 平面BDP14.(2018•辛集期中)在四棱锥P ABCD -中,底面ABCD 为菱形,60BAD ∠=︒,Q 为AD 的中点,点M 在线段PC 上,PM tPC =,//PA 平面MQB ,则实数t 的值为( ) A .15B .14 C .13D .1215.(2018•四川模拟)如图是某几何体的平面展开图,其中四边形ABCD 为正方形,E ,F 分别为PA ,PD 的中点.在此几何体中,以下结论一定成立的是( ) A .直线//BE PFB .直线//EF 平面PBCC .平面BCE ⊥平面PAD D .直线PB 与DC 所成角为60︒16.(2017•万州期末)平面α与ABC ∆的两边AB ,AC 分别交于点D ,E ,且::AD DB AE EC =,如图,则BC 与α的位置关系是( )A .异面B .相交C .平行或相交D .平行17.(2018•桃城模拟)如图,各棱长均为1的正三棱柱111ABC A B C -,M ,N 分别为线段1A B ,1B C 上的动点,且//MN 平面11ACC A ,则这样的MN 有( )A .1条B .2条C .3条D .无数条18.(2018•雁江月考)已知P 为ABC ∆所在平面外一点,平面//α平面ABC ,且α交线段PA ,PB ,PC 于点A ',B ',C ',若:2:3PA AA ''=,则:A B C ABC S S '''=△△( )A .2:3B .2:5C .4:9D .4:2519.(2018•香坊四模)对于不重合的两个平面α和β,给定下列条件: ①存在直线l ,使得l α⊥,且l β⊥; ①存在平面γ,使得αγ⊥且βγ⊥; ①α内有不共线的三点到β的距离相等;①存在异面直线l ,m ,使得//l α,//l β,//m α,//m β. 其中,可以判定α与β平行的条件有( ) A .1个B .2个C .3个D .4个20.(2018•西城期末)在直三棱柱111ABC A B C -中,D 为1AA 中点,点P 在侧面11BCC B 上运动,当点P 满足条件 时,1//A P 平面BCD (答案不唯一,填一个满足题意的条件即可达标训练21.(2017•新课标①)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .2.(2011•浙江)若直线l 不平行于平面α,且l α⊂/,则( ) A .α内存在直线与l 异面 B .α内存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交 3.(2010•浙江)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,//l m ,则m α⊥C .若//l α,m α⊂,则//l mD .若//l α,//m α,则//l m 4.(2010•江西)如图,M 是正方体1111ABCD A B C D -的棱1DD 的中点,给出下列命题 ①过M 点有且只有一条直线与直线AB 、11B C 都相交; ①过M 点有且只有一条直线与直线AB 、11B C 都垂直; ①过M 点有且只有一个平面与直线AB 、11B C 都相交; ①过M 点有且只有一个平面与直线AB 、11B C 都平行. 其中真命题是( ) A .①①①B .①①①C .①①①D .①①①5.(2008•湖南)已知直线m 、n 和平面α、β满足m n ⊥,m α⊥,αβ⊥,则( ) A .n β⊥ B .//n β,或n β⊂ C .n α⊥D .//n α,或n α⊂6.(2007•北京)平面//α平面β的一个充分条件是( ) A .存在一条直线a ,//a α,//a β B .存在一条直线a ,a α⊂,//a βC .存在两条平行直线a ,b ,a α⊂,b β⊂,//a β,//b αD .存在两条异面直线a ,b ,a α⊂,b β⊂,//a β,//b α7.(2011•福建)如图,正方体1111ABCD A B C D -中,2AB =,点E 为AD 的中点,点F 在CD 上,若//EF 平面1AB C ,则线段EF 的长度等于 .。
2.2 直线、平面平行的判定及其性质
2.2.1 直线与平面平行的判定
1.判定定理的符号表示为:.
2.证明线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.
2.2.2 平面与平面平行的判定
1.面面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.用符号表示为:
.
2.垂直于同一条直线的两个平面平行.
3.平面α上有不在同一直线上的三点到平面β的距离相等,则α与β的位置关系是平行或相交.
2.2.3 直线与平面平行的性质
1.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.
即:.
2.直线和平面平行的判定定理及性质定理在解题时往往交替使用.证线面平行往往转化为证线线平行,而证线线平行又将转化为证线面平行.循环往复直至证得结论为止.
2.2.4 平面与平面平行的性质
1.面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.用符号语言表示为:.
2. 其它性质:
①;
②;
③夹在平行平面间的平行线段相等.。
平行关系的判断与性质直线与平面平行的判定教学目的:(1) 掌握直线与平面平行的定义和判定定理(2) 能运用判定定理解决一些简单的线面平行问题 重难点知识归纳:(1)直线与平面平行的定义:如果一条直线与一个平面没有公共点,我们就说这条直线与这个平面平行.(2)直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.符号表示为:⎪⎭⎪⎬⎫⊂⊄b a b a //αα 图形表示为:注意:欲证明一条直线与一个平面平行,一是说明这条直线不在这个平面内,二是要证明已知平面内有一条直线与已知直线平行. 例题剖析1,a//平面α,α⊂b ,则( )A: a//b B: a 与b 相交 C : a 与b 异面 D:a 与b 平行或异面 2,下列说法正确的有( )个(1)a//b,b 在平面α内,则a//α (2)a//b,b//α,则a//α (3)a//α,b//α,则a//b (4)a//α,b α⊂,则a//b3.如图,E 、H 分别是空间四边形ABCD 的边AB 、AD 的中点,求证:EH//平面BCDDAE Hab变式训练:若将上题中条件改为E ,H 分别是AB ,AD 上的三等份点呢? 考虑E ,H 满足什么条件时,EH//平面BCD4.正方体ABCD 1111D C B A -中E ,G 分别是BC ,11D C 的中点,求证:EG//面B D D B 115.正方形ABCD 与正方形ABEF 所在平面交于AB ,在AE ,BD 上各有一点P ,Q ,且AP=DQ ,求证:PQ//平面BCE课堂小结:(1) 直线与平面平行的判定质是用线线平行⇒线面平行(2) 用线面平行判定定理证明线面平行时,a b a b //,,αα⊂⊄三个条件缺一不可 (3) 证明线面平行的关键是在平面内找一条直线与已知直线平行 作业:同步达标:平行关系的判定(1)平面与平面平行的判定ABCD EG1A1B 1C 1DE重难点知识归纳(1)两个平面平行的定义:两个平面没有公共点,则两个平面平行.(2)平面与平面的平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.符号表示为:βαββαα////,//,⇒⎪⎭⎪⎬⎫=⋂⊂⊂b a A b a b a .注意:这个定理的另外一种表达方式为“如果一个平面内有两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行”.(3)平行于同一平面的两个平面互相平行.即βαγβγα//////⇒⎭⎬⎫例题剖析1.M 、N 、P 为三个不重合的平面,a 、b 、c 为三条不同直线,则下列命题中,不正确的是( )①b ac b c a //////⇒⎭⎬⎫ ②b a P b P a //////⇒⎭⎬⎫③N M N c M c //////⇒⎭⎬⎫ ④N M P N P M //////⇒⎭⎬⎫ ⑤M a c a M c //////⇒⎭⎬⎫ ⑥M a P a P M //////⇒⎭⎬⎫ A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③ 2.已知,,,//βαβα⊂⊂b a 则( )αβa bpA :a 与b 不共面B : a 与b 不相交C :a 与b 不平行D : a 与b 不异面3.已知正方体ABCD-1111D C B A 中,如图所示,求证:平面11D AB //平面1BDC .4.在底面为下三角形的斜三棱柱111C B A ABC 中,D 为AC 中点,E 在CB 的延线上,求证:面AEB 1//面DB 1C5.已知四棱锥P-ABCD 中,底面ABCD 为平行四边形。
第40讲 直线、平面平行的判定与性质[学生用书P130]1.直线与平面平行的判定定理和性质定理判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ) (2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ) (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( ) (5)若直线a 与平面α内无数条直线平行,则a ∥α.( ) (6)若α∥β,直线a ∥α,则a ∥β.( ) 答案:(1)× (2)× (3)× (4)√ (5)× (6)×对于直线m ,n 和平面α,若n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B.必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:D(教材习题改编)如果直线a ∥平面α,那么直线a 与平面α的位置关系可另等价表述,下列命题中正确的是( )A .直线a 上有无数个点不在平面α内B .直线a 与平面α内的所有直线平行C .直线a 与平面α内的无数条直线不相交D .直线a 与平面α内的任意一条直线都不相交解析:选D .因为a ∥平面α,直线a 与平面α无公共点,因此a 和平面α内的任意一条直线都不相交,故选D .(教材习题改编)下列命题为真的是( ) A .若直线l 与平面α有两个公共点,则l ⊄α B .若α∥β,a ⊂α,b ⊂β,则a 与b 是异面直线 C .若α∥β,a ⊂α,则a ∥βD .若α∩β=b ,a ⊂α,则a 与β一定相交解析:选C .A 错误.直线l 和平面α有两个公共点,则l ⊂α. B 错误.若α∥β,a ⊂α,b ⊂β,则a 与b 异面或平行. C 正确.因为a 与β无公共点,则a ∥β. D 错误.a 与β有可能平行.故选C .(教材习题改编)设m ,n 表示直线,α、β表示平面,则下列命题为真的是( ) A .⎭⎪⎬⎪⎫m ∥αn ∥α⇒m ∥n B.⎭⎪⎬⎪⎫m ∥αα∥β⇒m ∥β C .⎭⎪⎬⎪⎫α∩β=m n ∥α n ∥β⇒m ∥n D .⎭⎪⎬⎪⎫α∥βm ∥αn ∥β⇒m ∥n 解析:选C .A 错误,因为m 可能与n 相交或异面. B 错误,因为m 可能在β内.D 错误,m 、n 可能异面或相交,故选C .(教材习题改编)如图,正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与平面AEC 的位置关系为______.解析:连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,E为DD1的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.答案:平行线面、面面平行的相关命题的真假判断[学生用书P130][典例引领](1)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面(2)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊂α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若α∩β=n,m∥n,m∥α,则m∥β;④若m∥α,n∥β,m∥n,则α∥β.其中是真命题的是________(填上正确命题的序号).【解析】(1)A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D 项正确.(2)①m∥n或m,n异面,故①错误;易知②正确;③m∥β或m⊂β,故③错误;④α∥β或α与β相交,故④错误.【答案】(1)D(2)②(1)判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.(2)①结合题意构造或绘制图形,结合图形作出判断.②特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.[通关练习]已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.根据题意,分两步来判断:①当α∥β时,因为a⊥α,且α∥β,所以a⊥β,又因为b⊂β,所以a⊥b,则“a⊥b”是“α∥β”的必要条件,②若a⊥b,不一定α∥β,当α∩β=b时,又由a⊥α,则a⊥b,但此时α∥β不成立,即a⊥b不是α∥β的充分条件,则“a⊥b”是“α∥β”的必要不充分条件,故选B.线面平行的判定与性质(高频考点)[学生用书P131]平行关系是空间几何中的一种重要关系,包括线线平行、线面平行、面面平行,其中线面平行在高考试题中出现的频率很高,一般出现在解答题中.主要命题角度有:(1)判断线面的位置关系;(2)线面平行的证明;(3)线面平行性质的应用.[典例引领]角度一判断线面的位置关系(2017·高考全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()【解析】 对于选项B ,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ ,又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ .同理可证选项C ,D 中均有AB ∥平面MNQ .故选A .【答案】 A角度二 线面平行的证明如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD .【证明】 (1)连接EC ,因为AD ∥BC ,BC =12AD ,所以BC ═∥AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点. 又因为F 是PC 的中点,所以FO∥AP,因为FO⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)连接FH,OH,因为F,H分别是PC,CD的中点,所以FH∥PD,所以FH∥平面P AD.又因为O是BE的中点,H是CD的中点,所以OH∥AD,所以OH∥平面P AD.又FH∩OH=H,所以平面OHF∥平面P AD.又因为GH⊂平面OHF,所以GH∥平面P AD.角度三线面平行性质的应用如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.【解】(1)证明:因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)如图,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为P A=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面内,所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH , 所以PO ∥平面GEFH .因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点. 再由PO ∥GK 得GK =12PO ,即G 是PB 的中点, 且GH =12BC =4.由已知可得OB =42.PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK=4+82×3=18.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).[通关练习]如图所示,已知四边形ABCD 是正方形,四边形ACEF 是矩形,AB =2,AF =1,M 是线段EF的中点.(1)求证:MA∥平面BDE.(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.解:(1)证明:如图,记AC与BD的交点为O,连接OE.因为O,M分别是AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.面面平行的判定与性质[学生用书P132][典例引领]如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.【证明】(1)因为GH是△A1B1C1的中位线,所以GH∥B1C1.又因为B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)因为E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.因为A1G═∥EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.因为A1E∩EF=E,所以平面EF A1∥平面BCHG.1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1═∥BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1.BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D.所以平面A1BD1∥平面AC1D.证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理;如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”“线面平行”“面面平行”的相互转化.[通关练习]如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面B1D1C=直线l,证明B1D1∥l.证明:(1)由题设知BB1═∥DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1═∥B1C1═∥BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.线线、线面、面面平行间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.解决平行问题应注意三点(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)面面平行的判定中易忽视“面内两条相交线”这一条件.(3)如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.[学生用书P303(单独成册)]1.设α,β是两个不同的平面,m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分不必要条件是()A.m∥l1且n∥l2 B.m∥β且n∥l2C.m∥β且n∥βD.m∥β且l1∥α解析:选A.由m∥l1,m⊂α,得l1∥α,同理l2∥α,又l1,l2相交,l1,l2⊂β,所以α∥β,反之不成立,所以m∥l1且n∥l2是α∥β的一个充分不必要条件.2.已知m,n,l是不同的直线,α,β是不同的平面,以下命题正确的是()①若m∥n,m⊂α,n⊂β,则α∥β;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n;③若m⊥α,n⊥β,α∥β,则m∥n;④若α⊥β,m∥α,n∥β,则m⊥n.A.①③ B.③④C.②④D.③解析:选D.①若m∥n,m⊂α,n⊂β,则α∥β或α,β相交;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n或l∥n或l,n异面;③正确;④若α⊥β,m∥α,n∥β,则m⊥n或m∥n或m,n异面.3.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD =1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFGH,且四边形EFGH是矩形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形解析:选B.由AE∶EB=AF∶FD=1∶4知EF═∥15BD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HG═∥12BD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.4.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.其中推断正确的序号是()A.①③ B.①④C.②③D.②④解析:选A.因为在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为BC1∥AD1,所以FG∥AD1,因为FG⊄平面AA1D1D,AD1⊂平面AA1D1D,所以FG∥平面AA1D1D,故①正确;因为EF∥A1C1,A1C1与平面BC1D1相交,所以EF与平面BC1D1相交,故②错误;因为E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为FG⊄平面BC1D1,BC1⊂平面BC1D1,所以FG∥平面BC1D1,故③正确;因为EF与平面BC1D1相交,所以平面EFG与平面BC1D1相交,故④错误.故选A.5.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选B.由题易知①正确;②错误,l也可以在α内;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例说明,故选B.6.如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确的命题是________.解析:由题图,显然①是正确的,②是错误的; 对于③,因为A 1D 1∥BC ,BC ∥FG , 所以A 1D 1∥FG 且A 1D 1⊄平面EFGH , 所以A 1D 1∥平面EFGH (水面). 所以③是正确的;对于④,因为水是定量的(定体积V ), 所以S △BEF ·BC =V ,即12BE ·BF ·BC =V .所以BE ·BF =2VBC (定值),即④是正确的.答案:①③④7.棱长为2的正方体ABCD -A 1B 1C 1D 1中,M 是棱AA 1的中点,过C ,M ,D 1作正方体的截面,则截面的面积是________.解析:由面面平行的性质知截面与平面AB 1的交线MN 是△AA 1B 的中位线,所以截面是梯形CD 1MN ,易求其面积为92.答案:928.已知平面α∥β,P ∉α且P ∉ β,过点P 的直线m 与α,β分别交于A ,C ,过点P 的直线n 与α,β分别交于B ,D ,且P A =6,AC =9,PD =8,则BD 的长为________.解析:如图1,因为AC ∩BD =P ,图1所以经过直线AC 与BD 可确定平面PCD . 因为α∥β,α∩平面PCD =AB , β∩平面PCD =CD , 所以AB ∥CD .所以P A AC =PB BD, 即69=8-BD BD ,所以BD =245. 如图2,同理可证AB ∥CD .图2所以P A PC =PB PD ,即63=BD -88,所以BD =24.综上所述,BD =245或24.答案:245或249.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,E ,F 分别是线段A 1D ,BC 1的中点.延长D 1A 1到点G ,使得D 1A 1=A 1G .证明:GB ∥平面DEF .证明:连接A 1C ,B 1C ,则B 1C ,BC 1交于点F . 因为CB ═∥D 1A 1,D 1A 1=A 1G ,所以CB ═∥A 1G ,所以四边形BCA 1G 是平行四边形,所以GB ∥A 1C . 又GB ⊄平面A 1B 1CD ,A 1C ⊂平面A 1B 1CD ,所以GB ∥平面A 1B 1CD .又点D ,E ,F 均在平面A 1B 1CD 内,所以GB ∥平面DEF . 10.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,A 1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明:(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,所以HD1∥MC1.又因为MC1∥BF,所以BF∥HD1.(2)取BD的中点O,连接EO,D1O,则OE═∥12DC,又D1G═∥12DC,所以OE═∥D1G,所以四边形OEGD1是平行四边形,所以GE∥D1O.又GE⊄平面BB1D1D,D1O⊂平面BB1D1D,所以EG∥平面BB1D1D.(3)由(1)知BF∥HD1,又BD∥B1D1,B1D1,HD1⊂平面B1D1H,BF,BD⊂平面BDF,且B1D1∩HD1=D1,DB∩BF=B,所以平面BDF∥平面B1D1H.1.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列说法中,错误的为() A.AC⊥BDB.AC=BDC.AC∥截面PQMND.异面直线PM与BD所成的角为45°解析:选B.因为截面PQMN是正方形,所以PQ∥MN,QM∥PN,则PQ∥平面ACD、QM∥平面BDA,所以PQ∥AC,QM∥BD,由PQ⊥QM可得AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故C正确;由BD∥PN,所以∠MPN是异面直线PM与BD所成的角,且为45°,D正确;由上面可知:BD∥PN,MN∥AC.所以PNBD=ANAD,MNAC=DNAD,而AN≠DN,PN=MN,所以BD≠AC.B错误.故选B.2.设α,β,γ是三个不同的平面,a,b是两条不同的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确条件的序号都填上).解析:由面面平行的性质定理可知,①正确;当b∥β,a⊂γ时,a和b在同一平面内,且没有公共点,所以平行,③正确.故填入的条件为①或③.答案:①或③3.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN,则FH∥DD1,HN∥BD,所以平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,所以MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)4.如图,在直三棱柱ABC -A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC =4,M 为AA 1的中点,点P 为BM 的中点,Q 在线段CA 1上,且A 1Q =3QC ,则PQ 的长度为________.解析:由题意知,AB =8,过点P 作PD ∥AB 交AA 1于点D ,连接DQ ,则D 为AM 的中点,PD =12AB =4.又因为A 1Q QC =A 1D AD=3,所以DQ ∥AC ,∠PDQ =π3,DQ =34AC =3,在△PDQ 中, PQ =42+32-2×4×3×cos π3=13.答案:135.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论.解: (1)点F ,G ,H 的位置如图所示. (2)平面BEG ∥平面ACH ,证明如下: 因为ABCD -EFGH 为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.6.如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.证明:(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE 的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.。
直线平面平行、垂直的判定及其性质知识点在几何学中,我们经常会遇到直线和平面之间的关系。
其中,直线与平面可以有平行关系或垂直关系。
本文将介绍直线和平面平行、垂直的判定方法,并讨论它们的性质。
一、直线和平面的基本概念回顾在论述直线和平面的平行、垂直关系之前,我们需要先回顾一些基本概念。
1. 直线直线是由无限多个点按一定方向排列而成的,没有始点和终点。
直线可由一个点和一个方向确定。
在数学中,直线通常用两个点A和B表示,记作AB。
2. 平面平面是二维几何体,具有无限多个点,且任意两点之间可以连成一条直线。
平面由三个非共线的点决定。
在数学中,我们通常用大写字母P、Q、R等表示平面上的点。
二、直线和平面的平行判定1. 平行直线与平面的关系如果一条直线与一个平面内的直线平行,那么它也与这个平面平行。
同样地,如果一条直线与一个平面内的直线垂直,那么它也与这个平面垂直。
2. 平行直线的判定方法直线之间的平行关系有多种判定方法。
下面介绍两种常见的方法:(1) 借助平面间的平行关系进行判定两条直线平行的充要条件是,它们在同一个平面内,且与该平面的一条直线平行。
(2) 借助直线的倾斜角进行判定两条直线平行的充要条件是,它们的倾斜角相等或互补。
三、直线和平面的垂直判定1. 垂直直线与平面的关系如果一条直线与一个平面内的直线垂直,那么它与这个平面垂直。
2. 垂直直线的判定方法直线与平面垂直的判定方法有多种。
下面介绍两种常见的方法:(1) 借助直线和平面的夹角进行判定直线与平面垂直的充要条件是,直线与平面内的两条相交直线成对应的垂直角。
(2) 借助直线的方向向量进行判定直线与平面垂直的充要条件是,直线的方向向量与平面的法向量垂直。
四、直线平面平行、垂直关系的性质1. 性质1:平行或垂直关系具有传递性若直线a与直线b平行,直线b与直线c平行,那么直线a与直线c也平行。
同样的,若直线m与直线n垂直,直线n与直线p垂直,那么直线m与直线p也垂直。
教学目的:1. 掌握空间直线和平面的位置关系;2. 直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定掌握理实现“线线”“线面”平行的转化.教学重点:线面平行的判定定理和性质定理的证明及运用教学难点:线面平行的判定定理和性质定理的证明及运用授课类型:新授课.课时安排:1课时■教具:多媒体、实物投影仪 .内容分析:本节有两个知识点,直线与平面和平面与平面平行,直线与平面、平面与平面平行特征性质•这也可看作平行公理和平行线传递性质的推广•直线与平面、平面与平面平行判定的依据是线、线平行 +这些平行关系有着本质上的联系 +通过教学要求学生掌握线、面和面、面平行的判定与性质•这两个平行关系是下一大节学习共面向量的基础 -前面3节主要讨论空间的平行关系,其中平行线的传递性和平行平面的性质是这三小节的重点.教学过程:一、复习引入:1 一空间两直线的位置关系(1)相交;(2)平行;(3)异面2.公理4 :平行于同一条直线的两条直线互相平行•推理模式:a//b,b//c a//c.3. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等”4. 等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等•5. 空间两条异面直线的画法6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线”推理模式:A , B ,l , B l AB与I是异面直线.7.异面直线所成的角:已知两条异面直线a,b ,经过空间任一点 0 作直线a//a,b //b , a,b 所成的角的大小与点 0的选择无关,把 a ,b 所成的锐角(或直角)叫异面直线a,b 所成的角(或夹角).为了简便,点0通常取在异面直线的一条上 *异面直线所成的角的范围:(0—]*,2 &异面直线垂直:如果两条异面直线所成的角是直角, 则叫两条异面直线垂直.两条异面直线a,b 垂直,记作a b . 9•求异面直线所成的角的方法:(1 )通过平移,在一条直线上找一点,过该点做另一直线的平行线; (2 )找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角 即为所求•10.两条异面直线的公垂线、距离和两条异面直线都垂直相交的直线,我们称之为异面直线 的公垂线・在这两条异面直线间的线段(公垂线段)的长度, 叫做两条异面直线间的 距离.两条异面直线的公垂线有且只有一条 “二、讲解新课:1•直线和平面的位置关系(1)直线在平面内(无数个公共点);(2 )直线和平面相交(有且只有一个公共点) ;(3 )直线和平面平行(没有公共点)——用两分法进行两次分类. 它们的图形分别可表示为如下,符号分别可表示为a , al2 .线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行, 那么这条直线和这个平面平行. 推理模式:丨 ,m ,l//m l//证明:假设直线I 不平行与平面 ,•/ l,••• I I P ,A , a//AB若P m,则和I 〃m矛盾,若P m,则I和m成异面直线,也和I // m矛盾,••• I //3.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这平面相交,那么这条直线和交线平行.I和没有公共点,又••• m ,•丨和m没有公共点;推理模式:丨〃,1I和m都在内,且没有公共点,••• I //m .三、讲解范例:A 例1 .已知:空间四边形ABCD中,E, F分别是AB, AD的中点,求证:EF //平面BCD .平面BCD , BD 平面BCD ,EF//BD , EF证明:连结BD,在ABD中,••• E,F分别是AB,AD的中点,• EF//平面BCD .例2.求证:如果过平面内一点的直线平行于与此平面平行的一条直线,那么这条直线在此平面内.已知:I// ,P , P m, m//I,求证:m证明:设I与P确定平面为,且I m ,•/ I // , • I//m ;又••T//m , m,m都经过点P ,• m,m 重合,• m .例3 已知直线a//直线b,直线a //平面a ,b a, 求证:b //平面a证明:过a作平面B交平面a于直线c■/ a //a「. a // c 又T a // b • b / c ,• b // cT b a , c a,「. b / a .例4.已知直线a //平面,直线a //平面,平面分析:利用公理4,寻求一条直线分别与a, b均平行,从而达到a // b的目的•可借用已知条件中的a//a及a//B来实现.其中正确命题的个数是 ()(A ) 0 个(B ) 1 个(C ) 2 个(D ) 3 个(2) 已知a // , b // ,则直线a , b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交 其中可能成立的有() (A ) 2 个(B ) 3 个(C ) 4 个(D ) 5 个(3) 如果平面外有两点A 、B ,它们到平面的距离都是a ,则直线AB 和平面的位置关系一定是( )(A )平行(B )相交(C )平行或相交(D ) AB(4) 已知m , n 为异面直线,m //平面,n //平面,n =l ,则I ()(A )与m , n 都相交 (B )与m , n 中至少一条相交 (C )与m , n 都不相交(D )与m , n 中一条相交答案:⑴A ⑵D (3) C (4)C 2 •判断下列命题的真假 (1)过直线外一点只能引一条直线与这条直线平行 ()(2)过平面外一点只能引一条直线与这个平面平行 ()(3)若两条直线都和第三条直线垂直,则这两条直线平行 ()(4)若两条直证明:经过a 作两个平面 和,与平面 和分别相交于直线c 和d ,••• a // c, a //d , • c // d ,又••• d 平面,c平面 ,• c //平面 ,又c 平面 ,平面n 平面 =b ,• c // b ,又 Ta //c ,所以,a // b •(1 )以下命题(其中 a , b 表示直线, 表示平面)① 若a / b , b ,贝U a / ② 若 a // , b / ,贝U a / b ③ 若 a / b , b / ,贝U a // ④ 若 a // , b ,贝U a / b ■/ a //平面 ,a //平面四、课堂练习 1 •选择题线都和第三条直线平行,则这两条直线平行() 答案:(1)真⑵假(3)假⑷真3 •选择题(1)直线与平面平行的充要条件是( )(A )直线与平面内的一条直线平行 (B )直线与平面内的两条直线平行 (C) 直线与平面内的任意一条直线平行 (D) 直线与平面内的无数条直线平行(2) 直线a //平面,点A € ,则过点A 且平行于直线a 的直线 () (A )只有一条,但不一定在平面 内(B )只有一条,且在平面 内 (C )有无数条,但都不在平面 内(D )有无数条,且都在平面内(3) 若a , b , a // ,条件甲是“ a // b ”,条件乙是“ b // ”,则条件甲是条 件乙的 () (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分又不必要条件 (4) A 、B 是直线I 外的两点,过 A 、B 且和I 平行的平面的个数是 ( ) (A ) 0个 (B ) 1个 (C )无数个 (D )以上都有可能• 答案:(1) D (2) B ( 3) A (4) D 4.平面 求证: 略证: 与"ABC 的两边 AB 、AC 分别交于BC //平面. AD : DB=AE : EC BC // DE BC DE BC// .:EC , 5 .空间四边形 ABCD , E 、F 分别是AB 、BC 的中点, 求证:EF //平面ACD. 略证:E 、F 分别是AB 、BC 的中点 EF // AC EF ACD EF // + AC ABC 6.经过正方体 ABCD-A i B i C i D i 的棱BB i 作一平面交平面 AA i D i D 于 E i E ,求证:E i E // B i B- 略证: AA i // BB i AA i BEE i B-i BB i BEE i B-i AA i // BEE i B i C iCAA 1 //BEE 1B 1 AA 1 ADD j A ,ADD 1A 1 BEE , B , EE ,AA // BB , AA // EE ,7 •选择题(〔)直线a , b 是异面直线,直线 a 和平面 平行,则直线b 和平面 的位置关系 是( )(A ) b( B ) b // (C ) b 与相交(D )以上都有可能(2)如果点M 是两条异面直线外的一点,则过点 M 且与a , b 都平行的平面(A )只有一个(B )恰有两个 (C )或没有,或只有一个(D )有无数个答案:(D D (2)A &判断下列命题的真假•(〔)若直线I ,则I 不可能与平面 内无数条直线都相交• ()(2)若直线I 与平面 不平行,则I 与 内任何一条直线都不平行-() 答案:(D 假 (2)假9.如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC 的中点,(〔)求证:MN //平面PAD ; (2)若 MN BC 4 , PA 4、、3,求异面直线PA 与MN 所成的角的大小+ 略证(D取PD 的中点H ,连接AH ,NH // DC, NH -DC2解(2):连接AC 并取其中点为 O ,连接OM 、ON ,则OM 平行且等于BC 的一半, ON 平行且等于PA 的一半,所以ONM 就是异面直线PA 与MN 所成的角,由MN BC 4, PA 4 -3得,0M=2 , 0N=2 3,所以 ONM 300,即异面直线 PA 与MN 成30°的角+AA ,〃 EE ,NH // AM , NH AMAMNH 为平行四边形MN // AH , MN PAD,AHPADMN // PADP10.如图,正方形ABCD与ABEF不在同一平面内,M、N 分别在AC、BF上,且AM FN ”求证:MN //平面CBE” 略证:作MT//AB, NH //AB分别交BC、BE于T、H点AM FN CMT 也BNH MT NH从而有MNHT为平行四边形MN//TH MN //CBE五、小结:“线线”与“线面”平行关系:一条直线和已知平面平行,当且仅当这条直线平行于经过这条直线的平面和已知平面的交线. *六、课后作业:.七、板书设计(略).八、课后记:E。
平行线判定和性质以及四大模型汇总第一部分平行线的判定判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第二部分平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补第三部分平行线的四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.第四部分平行线的四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.第五部分平行线的四大模型的应用案例1如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .2如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.3如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .4如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .5如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为 .6 如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C = .7如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.8如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).9如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .10如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.11如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.12如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°133如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .14如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .15 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.16已知AB∥EF,求∠l-∠2+∠3+∠4的度数.17如图(l ),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n ,∠B 1、∠B 2…∠B n -1之间的 关系.(2)如图(2),己知MA 1∥NA 4,探索∠A 1、∠A 2、∠A 3、∠A 4,∠B 1、∠B 2之间的关系. (3)如图(3),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n 之间的关系.如图所示,两直线AB ∥CD 平行,求∠1+∠2+∠3+∠4+∠5+∠6.18如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.第六部分 平行线的四大模型实战演练1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2 若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .5. 6. 7.8.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .9.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .10.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .11.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.第七部分平行线的性质和判定综合应用1.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD =95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°2.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°3.如图,AE∥BF,∠1=110°,∠2=130°,求∠3的度数为()4.如图,∠B+∠C=180°,∠A=50°,∠D=40°,则∠AED=.5.如图,如果∠C=70°,∠B=135°,∠D=110°,那么∠1+∠2=6.如图,AB∥CD,求∠1+∠2+∠3+∠4=7.如图,AB∥CD,试找出∠B、∠C、∠BEC三者之间的数量关系.8.如图,三角形ABC中,点E为BC上一点(1)作图:过点E作EM∥AC交AB于M,过点E作EN∥AB交AC于N;(2)求∠A+∠B+∠C的度数,写出推理过程.9.如图,AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED.10.如图,AC∥BD.(1)作图,过点B作BM∥AP交AC于M;(2)求证:∠PBD﹣∠P AC=∠P.11.如图,AB∥CD,∠B=∠C,求证:BE∥CF.12.如图①,木杆EB与FC平行,木杆的两端B,C用一橡皮筋连接,现将图①中的橡皮筋拉成下列各图②③的形状,请问∠A、∠B、∠C之间的数量关系?。
直线、平面平行的判定及其性质(小结)
一、新课导学
面面平行
※ 典型例题
例1 如图,在正方体中,,,,E F G H 分别为BC ,,,CC C D A A ''''的中点,求证: ⑴BF ∥HD ';
⑵EG ∥BB D D ''平面;
⑶BDF 平面∥B D H ''平面.
例2 如图,在四棱锥O ABCD -中,底面ABCD 是菱形,M 为OA 的中点,N 为BC 的中点,证明:直线MN OCD 平面‖
例 3. 如图9-5,α∥β∥γ,直线a 与b 分别交α,β,γ于点,,A B C 和点,,D E F ,求证:AB DE BC EF
=.
例 4. 如图,右面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在中间和左边画出(单位:cm )在所给直观图中连结BC ',⑴证明:BC '∥面EFG ;⑵求多面体体积.
二、总结提升
1、判断某一平行的过程就是从一平行关系出发不断转化的过程.通常经历线线平行到线面平行,线面平行到面面平行,最后又回到线线平行这一过程,归根结底还是线线平行.
2、在立体几何中,证明图形的存在性或唯一性时,常常运用反证法和同一法.
反证法:先提出和原命题中的结论相反的假定,然后从这个假定中得出和已知条件相矛盾的结果,这样就否定了原来的假定而肯定原命题.
同一法:欲证图形有某种特性时,可另作一个具有同样特征的图形,再证明所作图形和已知
E
D A B
C F
G B ' C ' D '
条件中的图形是同一个.如果不是同一个,则与某公理或定理相矛盾.。
第24讲 空间中平行关系的判定与性质一.基础知识整合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ∥b a αb αa ∥α⎭⎪⎬⎪⎫a β,b βaα,bαa ∩b =Aa ∥β,b ∥β⇒α∥β⎭⎪⎬⎪⎫a ∥αa βα∩β=b ⇒a ∥b题型一:线面平行的判定例1:如图,四边形ABCD ,ADEF 都是正方形,M ∈BD ,N ∈AE ,且BM =AN.求证:MN ∥平面CED .证明:如图,连接AM 并延长交CD 于点G ,连接GE ,因为AB ∥CD ,所以AM MG =BM MD .所以AM MG +AM =BM MD +BM,即AM AG =BM BD .又因为BD =AE且AN =BM ,所以AM AG =ANAE .所以MN ∥GE .又GE 平面CED ,MN平面CED ,所以MN ∥平面CED .变式迁移1:在四棱锥P —ABCD 中,四边形ABCD 是平行四边形,M 、N 分别是AB 、PC 的中点,求证:MN ∥平面PAD.证明:取PD 中点F ,连接AF 、NF 、NM .∵M 、N 分别为AB 、PC 的中点,∴NF 綊12CD ,AM綊12CD ,∴AM 綊NF .∴四边形AMNF 为平行四边形,∴MN ∥AF .又AF ⊂平面P AD ,MN ⊄平面P AD ,∴MN ∥平面P AD . 题型二:面面平行的判定例2::已知四棱锥P —ABCD 中,底面ABCD 为平行四边形.点M 、N 、Q 分别在P A 、BD 、PD 上,且PM ∶MA =BN ∶ND =PQ ∶QD . 求证:平面MNQ ∥平面PBC .证明:∵PM ∶MA =BN ∶ND =PQ ∶QD ,∴MQ ∥AD ,NQ ∥BP .∵BP 平面PBC ,NQ 平面PBC ,∴NQ ∥平面PBC .又底面ABCD 为平行四边形,∴BC ∥AD ,∴MQ ∥BC .∵BC 平面PBC ,MQ 平面PBC ,∴MQ ∥平面PBC .又MQ ∩NQ =Q ,根据平面与平面平行的判定定理,得平面MNQ ∥平面PBC .变式训练2:如图在正方体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点. 求证:平面MNP ∥平面A 1BD .证明:如图所示,连接B 1D 1,∵P 、N 分别是D 1C 1、B 1C 1的中点,∴PN ∥B 1D 1.又B 1D 1∥BD ,∴PN ∥BD ,又PN 平面A 1BD ,BD 平面A 1BD ,∴PN ∥平面A 1BD ,同理可得MN ∥平面A 1BD ,又∵MN ∩PN =N ,∴平面PMN ∥平面A 1BD .题型三:平行关系判定的综合应用例3:如图,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面P AO?解:Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .证明如下:设Q 为CC 1中点,则PD 綊QC ,连接PQ ,则由PQ 綊DC 綊AB ,可知四边形ABQP 是平行四边形,∴AP ∥BQ .∵AP 平面D 1BQ ,BQ 平面D 1BQ ,∴AP ∥平面D 1BQ .∵O 、P 分别为BD 、DD 1的中点,∴OP ∥BD 1.又OP 平面D 1BQ ,BD 1平面D 1BQ ,∴OP ∥平面D 1BQ .又AP ∩PO =P ,∴平面D 1BQ ∥平面P AO ,∴当点Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .变式训练3:如图,正三棱柱ABC —A 1B 1C 1的底面边长为2,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的点,EC =2FB =2.则当点M 在什么位置时,MB ∥平面AEF ?试给出证明. 解:当M 为AC 中点时,MB ∥平面AEF .证明:如图,当M 为AC 中点时,过M 作MG ∥CE ,交AE 于G ,连接GF .∵M 为AC 中点,∴MG 綊12CE .又FB ∥CE ,EC =2FB ,∴MG 綊FB .∴四边形BFGM为平行四边形,∴GF ∥MB .又GF 平面AEF ,MB 平面AEF ,所以MB ∥平面AEF .题型四:线面平行性质的应用例4:如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH . 证明:如图所示,连接AC ,交BD 于O ,连接MO . ∵四边形ABCD 是平行四边形,∴O 为AC 中点,又∵M 为PC 中点,∴AP ∥OM .又∵AP平面BDM ,OM 平面BDM ,∴AP ∥平面BDM ,又∵AP 平面APGH ,且平面APGH ∩平面BDM =GH ,∴AP ∥GH . 变式训练4:如图所示,已知异面直线AB ,CD 都平行于平面α,且AB ,CD 在α的两侧,若AC ,BD 与α分别交于M ,N 两点,求证:AM MC =BN ND.证明:如图所示,连接AD 交平面α于Q ,连接MQ 、NQ .MQ 、NQ 分别是平面ACD 、平面ABD 与α的交线.∵CD ∥α,AB ∥α,∴CD ∥MQ ,AB ∥NQ .于是AM MC =AQDQ ,DQ AQ =DN NB ,∴AM MC =BN ND . 题型五:面面平行性质的应用例5:已知:平面α∥平面β∥平面γ,两条异面直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 和点D 、E 、F .求证:AB BC =DEEF.证明:如图,连接DC ,设DC 与平面β相交于点G ,则平面ACD 与平面α、β分别相交于直线AD 、BG .平面DCF 与平面β、γ分别相交于直线GE 、CF . 因为α∥β,β∥γ,所以BG ∥AD ,GE ∥CF .于是在△ADC 内有AB BC =DG GC ,在△DCF 内有DG GC =DEEF.∴AB BC =DE EF.变式训练5:如图所示,设AB ,CD 为夹在两个平行平面α,β之间的线段,且直线AB ,CD 为异面直线,M ,P 分别为AB ,CD 的中点.求证:直线MP ∥平面β.证明:过点A 作AE ∥CD 交平面β于E ,连接DE ,BE ,∵AE ∥CD ,∴AE 、CD 确定一个平面,设为γ,则α∩γ=AC ,β∩γ=DE .由于α∥β,∴AC ∥DE (面面平行的性质定理)取AE 中点N ,连接NP ,MN ,∵M 、P 分别为AB 、CD 的中点,∴NP ∥DE ,MN ∥BE .又NPβ,DE β,MNβ,BE β,∴NP ∥β,MN ∥β.又NP ∩MN =N ,∴平面MNP ∥β.∵MP 平面MNP ,∴MP ∥β.题型六:平行关系性质的综合应用例6:如图,直线CD 、AB 分别平行于平面EFGH ,E 、F 、G 、H 分别在AC 、AD 、BD 、BC 上,且CD =a ,AB =b ,CD ⊥AB . (1)求证:四边形EFGH 是矩形;(2)点E 在AC 上的什么位置时,四边形EFGH 的面积最大? 解:(1)因为CD ∥平面EFGH ,所以CD ∥EF ,CD ∥GH ,所以GH ∥EF . 同理EH ∥GF ,所以四边形EFGH 为平行四边形.又因为AB ⊥CD ,所以HE ⊥EF .所以四边形EFGH 是矩形.(2)设CE =x ,AC =1,因为HE ∥AB ,所以HE AB =CECA ,所以HE =xAB =xb .同理,EF =(1-x )DC =(1-x )a .所以S 矩形EFGH =HE ·EF =x (1-x )ab =[-(x -12)2+14]ab ,当且仅当x =12时,S 矩形EFGH 最大,即当E 为AC中点时,四边形EFGH 的面积最大.变式训练6:如图所示,已知P 是▱ABCD 所在平面外一点,M ,N 分别是AB ,PC 的中点,平面P AD ∩平面PBC =l . (1)求证:l ∥BC ;(2)MN 与平面P AD 是否平行?试证明你的结论.证明:(1)∵AD∥BC,AD平面PBC,BC平面PBC,∴AD∥平面PBC. 又∵平面PBC∩平面P AD=l,∴l∥AD∥BC. (2)平行.证明如下:设Q是CD的中点,连接NQ,MQ,∵M,N分别是AB,PC的中点,∴MQ∥AD,NQ∥PD. 而MQ∩NQ=Q,AD∩PD=D,∴平面MNQ∥平面P AD. ∵MN平面MNQ,∴MN∥平面P AD.三.方法规律总结1.直线与平面平行的性质定理作为线线平行的依据,可以用来证明线线平行.1.直线与平面平行的关键是在已知平面内找一条直线和已知直线平行,即要证直线与平面平行,先证直线与直线平行.即由立体向平面转化,由高维向低维转化.2.证明面面平行时,要按“线线平行”、“线面平行”、“面面平行”的证明顺序进行.当题目中有多个平面平行时,要注意平行平面的传递性.两平面平行的判定定理的条件中直线相交很重要,而且在解题中常常被忽视.4.线线平行、线面平行、面面平行的转化关系四.课后练习作业一、选择题1.下列说法正确的是(B)A.平行于同一个平面的两条直线平行B.同时与两异面直线平行的平面有无数多个C.如果一条直线上有两点在一个平面外,则这条直线与这个平面平行D.直线l不在平面α内,则l∥α【解析】:A选项,若两直线相交且同时与此平面平行也是可以的;B选项,我们将异面直线都平移到空间中的某一点相交,则它们确定一个平面,与此平面平行的平面平行于这两条异面直线,显然这样的平面有无穷多个;C、D选项,若直线与平面相交,则直线有两点在平面外,直线也不在平面内,但l与α不平行.2.若M,N分别是△ABC边AB,AC的中点,MN与过直线BC的平面β的位置关系是(C) A.MN∥βB.MN与β相交或MNβC.MN∥β或MNβD.MN∥β或MN与β相交或MNβ【解析】:当平面β与平面ABC重合时,有MNβ;当平面β与平面ABC不重合时,则β∩平面ABC=BC.∵M,N分别为AB,AC的中点,∴MN∥BC.又MNβ,BCβ,∴MN∥β.综上有MN∥β或MNβ.1.若α∥β,aα,下列三个说法中正确的是(D)①a与β内所有直线平行;②a与β内的无数条直线平行;③a与β无公共点.A.①②B.①③C.①D.②③【解析】a与平面β内的直线可能平行,也可能异面,但与β无公共点,故选B.2.下列说法正确的个数为(B)①两平面平行,夹在两平面间的平行线段相等;②两平面平行,夹在两平面间的相等的线段平行;③如果一条直线和两个平行平面中的一个平行,那么它和另一个平面也平行;④两平行直线被两平行平面截得的线段相等.A.1B.2C.3D.4【解析】易知①④正确,②不正确,③直线可能在平面内,故③不正确.3.如果AB、BC、CD是不在同一平面内的三条线段,则经过它们中点的平面和直线AC的位置关系是(A)A.平行B.相交C.AC在此平面内D.平行或相交【解析】如图:E、F、G分别为AB、BC、CD的中点.∵E、F分别是AB,BC的中点,∴EF∥AC.又EF平面EFG,且AC平面EFG.∴AC∥平面EFG.4.在正方体ABCD-A1B1C1D1中,下列四对截面中彼此平行的一对截面是(A)A.平面A1BC1和平面ACD1 B.平面BDC1和平面B1D1CC.平面B1D1D和平面BDA1D.平面ADC1和平面AD1C【解析】:如图,在截面A 1BC 1和截面AD 1C 中,⎭⎪⎬⎪⎫AC ∥A 1C 1AD 1∥BC1AC ∩AD 1=AA 1C 1∩BC 1=C 1⇒平面A 1BC 1∥平面ACD 1. 3.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 是棱A 1D 1上的动点,则直线MD 与平面BCC 1B 1的位置关系是( A )A .平行B .相交C .在平面内D .相交或平行 【解析】⎭⎪⎬⎪⎫平面ADD 1A 1∥平面BCC 1B 1DM 平面ADD 1A 1⇒MD ∥平面BCC 1B 1.4.已知平面α∥β,P 是α、β外一点,过点P 的直线m 与α、β分别交于点A 、C ,过点P 的直线n 与α、β分别交于点B 、D ,且P A =6,AC =9,PD =8,则BD 的长为( B ) A .16 B .24或245C .14D .20【解析】第①种情况,当P 点在α、β的同侧时,设BD =x ,则PB =8-x , ∴P A AC =PB BD .∴BD =245.第②种情况,当P 点在α,β中间时,设PB =x .∴PD PC =PB P A . ∴x =6×83=16,∴BD =24.5.若不在同一直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,则( B ) A .α∥平面ABC B .△ABC 中至少有一边平行于α C .△ABC 中至多有两边平行于α D .△ABC 中只可能有一边与α相交 【解析】若三点在平面α的同侧,则α∥平面ABC ,有三边平行于α.若一点在平面α的一侧,另两点在平面α的另一侧,则有两边与平面α相交,有一边平行于α,故△ABC 中至少有一边平行于α.5.如图,在空间四边形ABCD 中,E 、F 分别为边AB 、AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H 、G 分别为BC 、CD 的中点,则( B ) A .BD ∥平面EFGH ,且四边形EFGH 是矩形 B .EF ∥平面BCD ,且四边形EFGH 是梯形 C .HG ∥平面ABD ,且四边形EFGH 是菱形 D .EH ∥平面ADC ,且四边形EFGH 是梯形【解析】:∵AE ∶EB =AF ∶FD =1∶4,∴EF ∥BD 且EF =15BD .又H 、G 分别为BC 、CD 的中点,∴HG 綊12BD .∴EF ∥HG 且EF ≠HG .∴四边形EFGH 为梯形.∵BD 平面BCD 且EF 平面BCD .∴EF ∥平面BCD . 二、填空题6.如图所示,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =ANND ,则MN 与平面BDC的位置关系是________.【解析】:∵AM MB =ANND ,∴MN ∥BD .又∵MN 平面BDC ,BD 平面BDC ,∴MN ∥平面BDC .【答案】 平行7.已知a 、b 、c 为三条不重合的直线,α,β,γ为三个不重合平面,下面三个命题:①a ∥c ,b ∥c ⇒a ∥b ;②γ∥α,β∥α⇒γ∥β;③a ∥γ,α∥γ⇒a ∥α.其中正确命题的序号是________.【解析】由平行公理,知①正确;由平面平行的传递性知②正确;③不正确,因为a 可能在α内.【答案】 ①②8.在空间四边形P ABC 中,A 1、B 1、C 1分别是△PBC 、△PCA 、△P AB 的重心,则平面ABC 与平面A 1B 1C 1的位置关系是________.【解析】如图,连接PC 1,P A 1,并延长分别交AB ,BC 于E 、F 两点,由于C 1、A 1分别为重心.∴E 、F 分别为AB 、BC 的中点,连接EF .又∵PC 1C 1E =P A 1A 1F =2.∴A 1C 1∥EF .又∵EF 为△ABC边AC 上的中位线,∴EF ∥AC ,∴AC ∥A1C 1,又A 1C 1平面ABC ,AC 平面ABC ,∴A 1C 1∥平面ABC ,同理A 1B 1∥平面ABC ,A 1B 1∩A 1C 1=A 1,∴平面A 1B 1C 1∥平面ABC .【答案】 平行7.空间四边形ABCD 中,对角线AC =BD =4,E 是AB 中点,过E 与AC 、BD 都平行的截面EFGH 分别与BC 、CD 、DA 交于F 、G 、H ,则四边形EFGH 的周长为________.【解析】∵AC ∥面EFGH ,AC 面ABC ,面ABC ∩面EFGH =EF ,∴AC ∥EF .∵E 为AB 中点,∴F 为BC 中点,∴EF =12AC =2.同理HG =12AC =2,EH =FG =12BD =2.∴四边形EFGH 的周长为8.【答案】 88.如图,平面α∥平面β,△ABC 与△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′都交于点O ,点O 在α、β之间,若S △ABC =32,OA ∶OA ′=3∶2,则△A ′B ′C ′的面积为________.【解析】根据题意有S △ABC =32.∵AA ′、BB ′相交,∴直线AA ′、BB ′确定一个平面ABA ′B ′,∵平面α∥平面β,∴AB ∥A ′B ′,易得△ABO ∽△A ′B ′O ,①△ABC ∽△A ′B ′C ′,②由①得AB A ′B ′=OA OA ′=32,由②得S △ABCS △A ′B ′C ′=(32)2,∴S △A ′B ′C ′=239.【答案】 239三、解答题9.在三棱柱ABC —A ′B ′C ′中,点E ,D 分别是B ′C ′与BC 的中点.求证:平面A ′EB ∥平面ADC ′.证明:连接DE ,∵E ,D 分别是B ′C ′与BC 的中点,∴DE 綊AA ′,∴AA ′ED 是平行四边形,∴A ′E ∥AD .∵A ′E 平面ADC ′,AD 平面ADC ′.∴A ′E ∥平面ADC ′.又BE ∥DC ′,BE 平面ADC ′,DC ′平面ADC ′,∴BE ∥平面ADC ′,∵A ′E 平面A ′EB ,BE 平面A ′EB ,A ′E ∩BE =E ,∴平面A ′EB ∥平面ADC ′.10.如图,在直四棱柱ABCD -A1B 1C 1D 1中,底面是梯形,AB ∥CD ,CD =2AB ,P 、Q 分别是CC 1、C 1D 1的中点,求证:面AD 1C ∥面BPQ .证明:∵D 1Q =12DC ,AB 綊12CD ,∴D 1Q 綊AB .∴四边形D 1QBA 为平行四边形,∴D 1A 綊QB .∵Q 、P 分别为D 1C 1、C 1C 的中点,∴QP ∥D 1C . ∵D 1C ∩D 1A =D 1,PQ ∩QB =Q .∴面AD 1C ∥面BPQ .11.如图,E ,F ,G ,H 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)GE ∥平面BB 1D 1D ;(2)平面BDF ∥平面B 1D 1H .证明:(1)取B 1D 1中点O ,连接GO ,OB ,易证OG ∥B 1C 1,且OG =12B 1C 1,BE∥B 1C 1,且BE =12B 1C 1,∴OG ∥BE 且OG =BE ,四边形BEGO 为平行四边形,∴OB ∥GE .∵OB平面BDD 1B 1,GE 平面BDD 1B 1,∴GE ∥平面BDD 1B 1.(2)由正方体性质得B 1D 1∥BD ,∵B 1D 1平面BDF ,BD 平面BDF ,∴B 1D 1∥平面BDF ,连接HB ,D 1F ,易证HBFD 1是平行四边形,得HD 1∥BF .∵HD 1平面BDF ,BF 平面BDF ,∴HD1∥平面BDF ,∵B 1D 1∩HD 1=D 1,∴平面BDF ∥平面B 1D 1H .9.如图,棱柱ABC —A 1B 1C 1的侧面BCC 1B 1是菱形,设D 是A 1C 1上的点且A 1B ∥平面B 1CD ,求A 1D ∶DC 1的值.解:设BC 1交B 1C 于点E ,连接DE ,则DE 是平面A 1BC 1与平面B 1CD 的交线.∵A 1B ∥平面B 1CD ,且A 1B 平面A 1BC 1,∴A 1B ∥DE .又E 是BC 1的中点,所以D 为A 1C 1的中点,即A 1D ∶DC 1=1.10.如图,直四棱柱ABCD —A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AD ⊥DC ,CD =2,DD 1=AB =1,P ,Q 分别是CC 1,C 1D 1的中点. 求证:AC ∥平面BPQ .证明:连接CD 1,AD 1∵P ,Q 分别是CC 1,C 1D 1的中点,∴PQ ∥CD 1,且CD 1平面BPQ ,∴CD 1∥平面BPQ .又D 1Q =AB =1,D 1Q ∥AB ,∴四边形ABQD 1是平行四边形,∴AD 1∥BQ ,又∵AD 1平面BPQ , ∴AD 1∥平面BPQ 又AD 1∩CD 1=D 1.∴平面ACD 1∥平面BPQ . ∵AC 平面ACD 1,∴AC ∥平面BPQ .11.如图,四棱锥S -ABCD 中,底面ABCD 为平行四边形,E 是SA 上一点,试探求点E 的位置,使SC ∥平面EBD ,并证明.解:点E 的位置是棱SA 的中点.证明如下:如题图,取SA 的中点E ,连接EB ,ED ,AC ,设AC 与BD 的交点为O ,连接EO .∵四边形ABCD 是平行四边形,∴点O 是AC 的中点.又E 是SA 的中点,∴OE 是△SAC 的中位线.∴OE ∥SC .∵SC 平面EBD ,OE 平面EBD ,∴SC ∥平面EBD . 则平面MNE ∥平面P AD .又∵MN 平面P AD ,且MN 平面MNE ,∴MN ∥平面P AD .。
立体几何中的平行关系知识集结知识元直线与平面平行的定义、平面与平面平行的定义知识讲解空间中直线与平面、平面与平面之间的位置关系直线与平面的位置关系位置关系直线a在平面α内直线a与平面α相交直线a与平面α平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示平面与平面的位置关系位置关系图示表示法公共点个数两平面平行α∥β0个两平面相交α∩β=l 无数个点(共线) 例题精讲直线与平面平行的定义、平面与平面平行的定义例1.已知m,n是两条直线,α,β是两个平面.有以下说法:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确的个数是()A.0B.1C.2D.3例2.已知α,β为平面,a,b,c为直线,下列命题正确的是()A.a⊂α,若b∥a,则b∥αB.α⊥β,α∩β=c,b⊥c,则b⊥βC.a⊥b,b⊥c,则a∥cD.a∩b=A,a⊂α,b⊂α,a∥β,b∥β,则α∥β例3.已知两个不重合的平面α、β,给定以下条件:①α内不共线的三点到β的距离相等;②l,m是α内的两条直线,且l∥β,m∥β;③l,m是两条异面直线,且l∥α,l∥β,m∥α,m∥β.其中可以判定α∥β的是()A.①B.②C.①③D.③例4.已知直线b,平面α,有以下条件:①b与α内一条直线平行;②b与α内所有直线都没有公共点;③b与α无公共点;④b不在α内,且与α内的一条直线平行.其中能推出b∥α的条件有.(把你认为正确的序号都填上)直线与平面平行的判定知识讲解1.直线与平面平行的判定定理自然语言平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行符号语言a⊄α,b⊂α,且a∥b⇒a∥α图形语言2.直线与平面平行的判定定理的证明已知:a∥b,a∉α,b⊂α,求证:a∥α反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α∵a∥b,∴A不在b上在α内过A作c∥b,则a∩c=A又∵a∥b,b∥c,∴a∥c,与a∩c=A矛盾。