地下洞室围岩稳定性分析与评价
- 格式:ppt
- 大小:7.94 MB
- 文档页数:34
洞室围岩稳定性研究及支护方案建议一、引言洞室围岩稳定性一直是地下工程中极为重要的问题,它关系到工程的安全与可靠性。
在本文中,我们将针对洞室围岩的稳定性问题进行研究,并提出相应的支护方案建议。
二、背景地下洞室工程是人类利用地下空间资源的重要手段,广泛应用于地铁、隧道以及水利、矿山等领域。
然而,由于地质条件的复杂性,洞室围岩稳定性问题一直困扰着工程师们。
处理好围岩的稳定性问题,将为地下工程的安全运行提供保障。
三、研究现状目前,对于洞室围岩稳定性的研究已取得一定成果。
研究者们通过实地观测、数值模拟以及室内试验等手段,深入探究了围岩的力学性质、变形特征以及破坏机理。
这些研究成果为我们提供了宝贵的基础数据。
四、围岩力学性质分析围岩的力学性质是洞室稳定性研究的基础,通过对岩石的抗压强度、弹性模量、滑移特性等进行测试和分析,可以对围岩的稳定性进行评估。
此外,还需考虑岩石的节理、岩石的裂缝和破碎程度等因素。
五、围岩变形特征研究围岩在受到应力作用下会发生变形,这种变形特征对于洞室稳定性的影响至关重要。
当前的研究主要集中在围岩的压缩变形、剪切变形以及破裂变形等方面。
了解围岩的变形特征可以为后续的支护方案制定提供重要参考。
六、围岩破坏机理探究围岩破坏是围岩稳定性问题中的核心内容,它关系到洞室的整体稳定性。
目前的研究主要集中在岩体的破裂方式、破裂类型、破裂力学以及围岩的支护措施等方面。
通过对围岩破坏机理的深入探究,我们可以更好地预测围岩的破坏情况,并制定相应的支护方案。
七、支护方案建议针对洞室围岩的稳定性问题,我们可以采取多种支护方案来增强围岩的稳定性。
具体的支护措施包括加固围岩、注浆加固、锚杆加固等。
在选择支护方案时,需要综合考虑洞室的大小、围岩的性质、地质条件以及经济成本等因素,并进行合理的设计和施工。
八、总结通过对洞室围岩稳定性的研究,我们可以更好地了解围岩的力学性质、变形特征以及破坏机理,为地下工程的安全运行提供保障。
大型地下洞室群围岩稳定性地质研究随着社会经济与科学技术的不断发展,我国加强了对西部地区能源的开发,但是在开发的过程中不得不考虑西部地区复杂的地形特点,这就需要建设大规模的地下厂房群,而地下空间却十分有限,因此,地下洞室群的开发与工程的建设以及运营的成本息息相关,加强对大型地下洞室群的开发和完善势在必行。
本文将对工程的基础情况与基础地质条件、洞室群开发效应以及围岩稳定性概述进行研究。
标签:洞室群围岩稳定性工程0前言大型地下洞室群主要针对的是水利工程的建设,我国西部地区蕴含足够的水利资源,而水利资源一般处于西部地区的高山峡谷地带。
这就对资源的开发和利用带来了一定的困难,于是,大型地下洞室群应运而生,我国青海省拉西瓦水电站是目前国内比较典型的工程,充分的体现了大型地下洞室群的各个方面特点。
1拉西瓦工程的基础情况与基础地质条件拉西瓦水电站是我国青海省一个重要的水利枢纽,也是黄河上规模最大的一个水电站,其地位十分重要,与当地人民的生产和生活息息相关,通过深入调查了解,我们不难发现,拉西瓦水电站的地下厂房、闸门操作室等均分布在地下洞室内,而且结构繁杂而庞大,但其适应力较强,工作人员在地下室也能如在地上一样正常工作。
所以,到目前为止,拉西瓦工程是我国所有工程中比较罕见的一个工程项目,极其具有代表性,是将工程建筑中的典范,对我国人民的生活带来了便利。
拉西瓦水电站经过一系列峡谷断裂层,地势十分险峻,特别是其坝区主要位于高原峡谷支出,高原峡谷支出河谷狭窄、山体浑厚、水流迅急,具有极强的开发价值。
因此,将坝区选择在此处是利用自然的优势;地下岩层主要由印支期花岗岩组合而成,这种花岗岩结构十分紧密,且不易腐蚀,均分布在断裂面处;拉西瓦水电站地下水具有三种类型:花岗岩裂缝和砂板岩潜水以及脉状承压水,花岗岩中的缝隙潜水主要来源于大气和地下水补给,属于自然补给,汇集起来流向黄河,但受到当地气候等原因的影响,潜水的用水量并不可观。
第八章地下洞室围岩稳定性分析第一节概述1.地下洞室(underground cavity):指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
2.我国古代的采矿巷道,埋深60m,距今约3000年左右(西周)。
目前,地下洞室的最大埋深已达2500m,跨度已过50m,同时还出现有群洞。
3.分类:按作用分类:交通隧洞(道)、水工隧洞、矿山巷道、地下厂房仓库、地铁等等;按内壁有无水压力:有压洞室和无压洞室;按断面形状为:圆形、矩形或门洞形和马蹄形洞室等;按洞轴线与水平面间的关系分为:水平洞室、竖井和倾斜洞室三类;按介质,土洞和岩洞。
4.地下洞室→引发的岩体力学问题过程:地下开挖→天然应力失衡,应力重分布→洞室围岩变形和破坏→洞室的稳定性问题→初砌支护:围岩压力、围岩抗力(有内压时)(洞室的稳定性问题主要研究围岩重分布应力与围岩强度间的相对关系)第二节围岩重分布应力计算1.围岩:指由于人工开挖使岩体的应力状态发生了变化,而这部分被改变了应力状态的岩体。
2.地下洞室围岩应力计算问题可归纳的三个方面:①开挖前岩体天然应力状态(一次应力、初始应力和地应力)的确定;②开挖后围岩重分布应力(二次应力)的计算;③支护衬砌后围岩应力状态的改善。
3.围岩的重分布应力状态(二次应力状态):指经开挖后岩体在无支护条件下,岩体经应力调整后的应力状态。
一、无压洞室围岩重分布应力计算1.弹性围岩重分布应力坚硬致密的块状岩体,当天然应力()c v h σσσ21≤、,地下洞室开挖后围岩将呈弹性变形状态。
这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩重分布应力可用弹性力学方法计算。
重点讨论圆形洞室。
(1)圆形洞室深埋于弹性岩体中的水平圆形洞室,可以用柯西求解,看作平面应变问题处理。
无限大弹性薄板,沿X 方向的外力为P ,半径为R 0的小圆孔,如图8.1所示。
任取一点M (r ,θ)按平面问题处理,不计体力。
则:……………………①式中Φ为应力函数,它是x 和y 的函数,也是r 和θ的函数。
造价工程师《土建工程》精讲:地下洞室围岩稳定性导语:造价工程师是通过全国造价工程师执业资格统一考试或者资格认定、资格互认,取得中华人民共和国造价工程师执业资格,并按照《注册造价工程师管理办法》注册,取得中华人民共和国造价工程师注册执业证书和执业印章,从事工程造价活动的专业人员。
下面和小编来看看2017造价工程师《土建工程》精讲:地下洞室围岩稳定性。
希望对大家有所帮助。
地下洞室围岩稳定性要高度重视地下洞室围岩的稳定性问题,防止围岩掉块、片帮乃至塌方等事件。
围岩稳定受区域、山体稳定性和地形、岩性、地质构造、地下水及地应力等多方面的影响。
例如,山体完整性差、洞顶及傍山侧山体厚度不足、洞口地段的边坡上陡下缓甚至有滑坡、崩塌等现象存在、岩层倾向山外,围岩是黏土岩、页岩、胶结不好的砂砾岩、千枚岩及某些片岩、破碎松散及风化岩体、吸水易膨胀的岩体,围岩处于向斜褶曲核部、断层破碎带及断层交汇区,洞室轴线沿充填胶结差的大断层或断层带布置,洞室走向与缓倾岩层走向平行,围岩处于地下水量大、有高压含水层的岩体内,围岩内压应力集中或出现拉应力,这些都对围岩的稳定性不利。
地下工业工程布置1.遵循厂房工艺流程的基本要求合理的工艺流程要求做到短、顺、不交叉、不逆行。
因此,从保证生产的合理和提高生产效率出发,要求安排好各主体厂房、各主要通道在相互位置和高程上的关系,使这一关系适应工艺流程的要求,并经过洞口把地下部分的生产与地面上联系起来。
这种布置方式与现场的地形、地质等具体结合起来,就基本上确定了地下厂房的总体布置方案。
(1)工艺流程比较简单,对厂房布置没有严格的要求。
例如,没有固定产品的生产,为科研服务的生产,或新产品的研制等,常常没有固定的工艺流程,可以的从地质、结构和施工等方面考虑厂房的合理布置。
(2)工艺流程有严格的顺序,但厂房布置的灵活性仍较大。
这种情况在机械制造类的生产中比较明显。
从原料运入,到机械加工和装配,由各种运输方式互相连接,形成一条比较严格的生产流水线。
洞室围岩稳定性因素分析
影响围岩稳定性的因素有天然的,也有人为的,其中天然因素起控制作用,如下:1、岩石特性:坚硬完整的岩石一般对围岩稳定性影响较小,而软弱岩石由于强度低、抗水性差、受力容易变形和破坏,对围岩稳定性影响较大。
2、地质构造:洞室通过坚硬和软弱相间的层状岩体时,易在接触面形成坍落。
洞室应尽量设置在坚硬岩层中,或尽量把坚硬岩层作为顶围。
褶皱的形式、疏密程度及轴向与洞室轴线的交角不同,围岩稳定性也不同。
洞身横穿褶皱轴,比平行褶皱轴有利。
洞室沿背斜轴部通过,顶围向两侧倾斜,由于拱的作用,有利于围岩稳定。
洞室通过断层,若断层宽度愈大,走向与洞轴交角愈小,它在洞内出露的距离便越长,对围岩稳定性影响便越大。
3、岩体结构:层状或块状岩体中围岩破坏常由几组结构面组合构成,一定几何形体的结构体,即围岩分离体的坍落、滑塌。
4、地下水与岩溶:洞室通过含水层便成为排水通道,改变了原来地下水动力条件。
裂隙水常以管状或脉状方式溃入洞内。
5、构造应力:构造应力具有明显的方向性,它控制着地下洞室围岩的变性和破坏。
构造应力最大主应力方向水平或近乎水平并垂直洞轴的情况下,可使顶围和底围不出现拉应力,所以它对顶围、底围的稳定有利。
这种应力较大时,加大洞室跨度能增大顶围的稳定。
地下工程中的洞室稳定性分析与支护设计地下工程在现代城市建设中起着至关重要的作用。
然而,由于地下环境的复杂性和地质条件的多样性,地下洞室的稳定性成为了地下工程设计中最为关键的问题之一。
本文将从洞室稳定性的分析和支护设计两个方面,探讨地下工程中的洞室稳定性问题。
一、洞室稳定性分析洞室稳定性分析是地下工程设计的基础,可以通过数值模拟和实际监测两种方式进行。
数值模拟是一种常用的手段,可以利用计算机软件模拟地下洞室在不同地质条件下的变形和破坏过程。
在进行数值模拟之前,需要进行地质勘探和岩石力学参数测试,以获取准确的地质信息和材料参数。
然后,选取适当的数值模拟方法,如有限元法或有限差分法,建立洞室稳定性模型,进行力学分析。
通过模拟地下水的流动、岩石断裂和变形等现象,可以预测洞室的稳定性,并确定是否需要进行支护措施。
实际监测是对洞室进行现场观测和测试,以获取洞室变形和应力变化的实际数据。
常用的监测手段包括张拉应变计、位移计、压力计和裂缝计等。
通过实际监测数据的分析和比对,可以对洞室的稳定性进行评估,并进一步指导支护设计的实施。
二、支护设计支护设计是保证地下洞室稳定性的有效手段。
根据洞室的尺寸、岩性和地质条件,可以选择不同的支护结构和材料。
常用的支护结构包括钢筋混凝土衬砌、钢架和预应力锚杆等。
钢筋混凝土衬砌是一种常见的支护形式,其主要作用是承受洞室的围压和水平力,并分散到周围的岩体中。
选择合适的衬砌厚度和钢筋布置方式,可以提高洞室的稳定性,并减小洞室的变形。
钢架是一种灵活的支护形式,其由钢材制成,结构轻巧而坚固。
钢架的主要作用是承受洞室的重力和围压,并将其传递到周围的岩体中。
在支护设计中,需要考虑钢架的尺寸、型号和连接方式,以保证洞室的稳定性和安全性。
预应力锚杆是一种较为复杂的支护形式,其通过加固岩体,增强洞室的稳定性。
预应力锚杆通过应力传递,将岩体的应力分散到周围的岩体中,从而减小洞室围压对岩体的影响。
预应力锚杆的设计需要考虑岩体的力学性质和支护结构的受力特点,以确保洞室的稳定性和承载能力。