第七章地下洞室围岩稳定性分析
- 格式:ppt
- 大小:998.00 KB
- 文档页数:32
地下厂房洞室群围岩稳定性方法研究地下厂房洞室群围岩稳定性是指地下厂房洞室周围岩体的稳定性问题。
地下厂房洞室通常是为了满足人们的生产、生活和储存需求,因此洞室群围岩的稳定性对于地下厂房的长期运行、人员安全和资产保障至关重要。
在研究地下厂房洞室群围岩稳定性时,需要考虑以下几个方面的问题:首先,需要分析洞室群围岩的物理力学特性,包括岩石的强度、变形特性和破坏模式。
通过适当的岩石力学试验和野外观测,可以获取岩石的力学参数,如抗压强度、抗拉强度、抗剪强度等。
这些参数对于稳定性分析和设计起着重要的作用。
其次,需要考虑工程参数的影响,如洞室尺寸、埋深和周边岩性的条件。
洞室尺寸对岩体稳定性有直接影响,尤其是高宽比较大的洞室,容易导致岩体的变形和破坏。
洞室的埋深也会影响岩体的应力状态,从而影响岩体的稳定性。
周边岩性的条件决定了岩体的强度和变形特性,需要对周边岩性进行综合分析。
此外,岩体的结构面、节理和隐伏断层等地质构造的影响也需要考虑。
岩体中存在的结构面和节理体,会导致岩体的开裂和滑动,对岩体的稳定性产生不利影响。
隐伏断层的活动可能导致岩体的滑动和破坏,需要对其进行综合分析和评估。
最后,需要进行数值模拟和力学分析,包括有限元分析、离散元分析和解析方法等。
通过数值模拟可以模拟地下厂房洞室群围岩的应力-应变状态,预测岩体的破坏形态和稳定性。
数值模拟还可以进行灵敏度分析,评估不同参数对岩体稳定性的影响,为优化设计和工程措施提供依据。
综上所述,地下厂房洞室群围岩稳定性的研究是一项复杂的工作,需要考虑岩石力学特性、洞室尺寸与周边岩性、地质构造和数值模拟等多个方面的问题。
通过综合分析和评估,可以为地下厂房洞室的设计和建设提供科学依据,保障其长期稳定和安全运行。
地下洞室围岩稳定性分析在进行地下洞室围岩稳定性分析时,一般需要考虑以下几个主要因素:1.岩层的力学性质:岩层的力学性质是岩石稳定性的基础。
要进行稳定性分析,首先需要获取岩层的力学参数,如岩石的强度、弹性模量和剪胀性等。
通常可以通过室内试验、现场调查和实测等方法获得这些参数,或者借助已有的类似工程的资料进行评估。
2.地下水:地下水是地下洞室稳定性分析中重要的一项因素。
地下水对围岩的稳定性产生的主要影响是增加孔隙水压,降低岩层的有效应力,促使岩体产生破坏。
因此,需要充分考虑地下水对岩层的影响,包括水位高度、水质状况、渗流特性等。
3.岩体结构:岩体的结构对于岩层稳定性具有重要影响。
岩体的结构主要表现为节理、裂隙、岩体层理等。
这些结构特征对洞室的稳定性有直接影响,形成控制洞室稳定的主要因素之一、因此,在进行稳定性分析时,需要对岩体的结构特征进行详细调查和分析,选择合适的建模方法进行模拟。
4.洞室开挖方式和支护措施:洞室的开挖过程和支护措施对围岩稳定性有着直接的影响。
开挖过程中,洞室周围会受到剪切应力和变形等影响,进而对围岩稳定性产生影响。
因此,在稳定性分析中需要考虑洞室开挖方式和支护措施的影响,选择合适的岩体应力场和支护材料。
在进行地下洞室围岩稳定性分析时,常用的方法包括力学分析法、数值模拟法和现场监测法等。
力学分析法通过分析力学参数和地质参数,计算岩体的稳定系数,从而评估围岩的稳定性。
数值模拟法通过建立数学模型,采用有限元或边界元方法,模拟洞室周围围岩的变形和破坏过程,预测洞室的稳定性。
现场监测法是指通过安装监测点,对洞室周围的围岩变形和破坏进行实时监测,从而评估围岩的稳定性。
综上所述,地下洞室围岩稳定性分析是一个复杂的工程问题,需要考虑多个因素的综合影响。
只有充分了解地下洞室周围的地质和力学条件,选择合适的分析方法和模型,才能有效评估围岩的稳定性,并制定出合理的支护措施,确保地下洞室的安全和持续稳定。
地下洞室工程围岩特征及其支护措施地下洞室工程是指在地下进行的洞穴开挖和地下结构施工的一种工程。
在地下洞室工程中,围岩是指洞室周围的地质岩体,包括岩层、岩性、岩体强度、岩体稳定性等一系列特征。
围岩的性质和特征对地下洞室的安全和稳定性起到至关重要的作用。
在地下洞室工程中,围岩的特征包括以下几个方面:1.地质结构特征:围岩的地质结构特征包括岩层倾角、岩层的发育程度、岩层的厚度等。
不同的地质结构会对围岩的稳定性和施工难度产生影响。
2.岩性特征:围岩的岩性特征包括岩石的种类、岩石的密度、岩石的坚硬程度等。
不同的岩性会对围岩的稳定性和施工难度产生影响。
3.岩体强度:围岩的强度是指岩体抵抗破坏的能力。
围岩的强度越高,洞室的稳定性越好。
因此,在地下洞室工程中,需要对围岩的强度进行测试和评估,以确定相应的施工方案和支护措施。
4.岩体稳定性:围岩的稳定性是指岩体在开挖和施工过程中是否容易发生破裂、塌陷等现象。
围岩的稳定性与地下水位、地应力、岩体结构等因素有关。
在地下洞室工程中,需要通过岩体稳定性分析,确定相应的支护措施,以确保洞室的安全施工和使用。
针对以上围岩特征,地下洞室工程中常用的支护措施有:1.开挖方式:在地下洞室开挖过程中,可以采用不同的开挖方式,如爆破开挖、钻机开挖、机械掘进等,根据围岩的特征选择合适的开挖方式。
同时,还需要合理设置开挖工作面和施工顺序,以降低围岩变形和破坏的发生。
2.支护结构:地下洞室工程中常用的支护结构有钢支撑、混凝土衬砌、锚杆支护等。
根据围岩的特征和洞室的设计要求,选择合适的支护结构,并进行稳定性分析和力学计算,以确保支护结构的稳定性和耐久性。
3.地下水控制:地下水是影响地下洞室稳定性的重要因素之一、在地下洞室工程中,需要采取相应的地下水控制措施,如井孔排水、封水墙施工等,以降低地下水对围岩的影响。
4.监测与预警:地下洞室工程中,需要设置相应的监测系统,对围岩的变形、位移、应力等进行实时监测,及时发现问题并采取相应措施。
第七章 各类建筑岩⼟⼯程勘察房屋建筑与构筑物岩⼟⼯程勘察地下洞室的岩⼟⼯程勘察与评价道路(路基)岩⼟⼯程勘察桥梁岩⼟⼯程勘察其他建筑场地岩⼟⼯程勘察岩⼟⼯程勘察要求岩⼟⼯程勘察要点评价与计算岸边⼯程管道与架空线路⼯程废弃物处理⼯程核电⼯程基坑⼯程既有建筑物的增载与保护泥⽯流场地概述主要⼯程地质问题岩⼟⼯程勘察要求勘察要点概述勘察要点场地评价地基⼟的均匀性评价地基承载⼒地基变形计算常⻅岩⼟⼯程问题路线选择⼯程地质论证路基的主要⼯程问题路基边坡稳定性路基基底变形与稳定性道路冻害建筑材料⼭岭区平原区沿河线越岭线展线⼭坡路线路基道路灾害筑材选择概述岩⼟⼯程勘察的基本要求着重查明勘察要点场地评价可⾏性研究阶段的勘察初步设计阶段的勘察施⼯图设计阶段的勘察地貌单元地貌单元交界区段的复杂地层以及⾼灵敏度软⼟、混合⼟、层状构造⼟和⻛化岩岩坡坍塌、滑坡、冲淤、潜蚀、管涌等不良地质现象停靠船舶、波浪冲击、潮汐变化、⽔压⼒等的荷载组合概述勘察要求主要⼯作分析评价与设计计算建议概述勘察要求勘察⼯作内容理论计算法原位测试规范法当地经验法概述⼯业废渣堆场垃圾填埋场概述岩⼟⼯程勘察要求勘察⼯作内容勘察评价垃圾(废弃物)的分类垃圾填埋场堪察其搜集资料垃圾填埋场勘察测试垃圾填埋场勘察的岩⼟⼯程评价管道⼯程架空线路⼯程穿越及跨越⼯程可⾏性研究勘察初步设计勘察施⼯图纸设计勘察评价初步设计勘察施⼯图设计勘察⼯业废渣堆场勘察要点⼯业废渣堆场勘察评价可⾏性研究勘察初步勘察详细勘察初步勘察的勘探⼯作取样与原位测试概述⼯程地质问题桥梁岩⼟⼯程勘察要点桥址选择⼯程地质论证一般规定勘探点的布置勘探深度采样与原位测试开挖后与资料不符协同处理初步勘察阶段详细勘察阶段原位测试与室内试验资料要求桥墩台地基稳定性问题桥台的偏⼼受压问题桥墩台地基的冲刷问题概述岩⼟⼯程勘察主要⼯作岩⼟⼯程条件分析评价地下洞室围岩应⼒地下洞室围岩变形与破坏地下洞室围岩压⼒围岩的变形破坏形式及其产⽣机制定性分析定量分析稳定性破坏的主要形式脆性围岩塑性围岩塑性挤出或膨胀流动塌落岩爆和⽚状剥落层状结构散体结构塑性挤出塑流涌出重⼒坍塌塑性挤出膨胀内⿎重⼒作⽤下的坍塌⽔压重分布造成的吸⽔膨胀压应⼒集中作⽤下的塑性流动松散饱⽔岩体的悬浮塑流压应⼒作⽤下的塑流围岩的⾃稳时间围岩的整体稳定性计算围岩的局部稳定性计算块体状结构及厚层状结构中薄层结构碎裂结构碎裂松动弯折内⿎压应⼒集中造成的剪切松动卸荷回弹或压应⼒集中造成的弯曲拉裂张裂崩落劈裂剥落剪切滑移及剪切破裂岩爆压应⼒⾼度集中造成的突然⽽猛烈的脆性破坏压应⼒集中造成的剪切破裂及滑移拉裂压应⼒集中造成的压致拉裂拉应⼒集中造成的张裂破坏可⾏性研究勘察初步勘察详细勘察施⼯勘察。
文章编号:1004 5716(2003)05 59 02中图分类号:U451+ 2 文献标识码:B 分析影响隧道围岩稳定性因素习小华(西安科技学院,陕西西安710054)摘 要:主要对影响隧道围岩稳定性的自然因素如岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水进行了详细的分析。
关键词:围岩稳定性;天然应力状态;地质构造毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。
从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。
但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。
因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。
1 岩石性质及岩体的结构围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。
从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。
从围岩的完整性(围岩完整性可以用岩石质量指标RQ D、节理组数Jn、节理面粗糙程度Jy、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SR F八类因素进行定量分析)角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。
如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩)即围岩为完整或较完整,那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏,即使发生破坏,变形的量值也是较少的。
保障洞室围岩稳定的措施
为了保障洞室围岩的稳定,我们可以采取以下措施:
1. 岩石分类及强度测试:首先,对洞室围岩进行岩性分类,确定其物理力学性质和强度,在这个基础上进行岩石强度测试,以确定其质量和稳定性。
2. 围岩加固技术:根据围岩的物理力学性质和强度测试结果,选择合适的围岩加固技术,如锚杆加固、喷射混凝土加固、灌浆加固等。
利用这些技术,可以增加围岩的强度和稳定性。
3. 地下水管理:地下水渗漏是导致洞室围岩变松散和破坏的主要原因之一,因此,必须进行地下水的有效管理。
通过合理构建排水系统,减少地下水渗漏,可以有效降低围岩的湿度,防止水和岩石发生相互作用,从而保持围岩的稳定。
4. 岩体监测系统:安装岩体监测系统,可以及时监测围岩的位移、应力和变形等变化情况。
通过对监测数据的收集和分析,可以有效预测和评估围岩稳定状况,提前采取相应的措施。
5. 安全支护措施:在洞室围岩中采取安全支护措施是非常重要的。
例如,可以根据围岩的特点选择合适的支护方式,如钢架支护、预应力锚杆支护、喷锚支护等。
这些措施可以增强洞室围岩的抗压能力和稳定性。
综上所述,保障洞室围岩稳定的措施包括岩石分类及强度测试、围岩加固技术、地下水管理、岩体监测系统、安全支护措施等。
通过这些措施的综合应用,可以有效保证洞室围岩的稳定性和安全性。
第一节概述1.地下洞室(underground cavity):指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
2.我国古代的采矿巷道,埋深60m,距今约3000年左右(西周)。
目前,地下洞室的最大埋深已达2500m,跨度已过50m,同时还出现有群洞。
3.分类:按作用分类:交通隧洞(道)、水工隧洞、矿山巷道、地下厂房仓库、地铁等等;按内壁有无水压力:有压洞室和无压洞室;按断面形状为:圆形、矩形或门洞形和马蹄形洞室等;按洞轴线与水平面间的关系分为:水平洞室、竖井和倾斜洞室三类;按介质,土洞和岩洞。
4.地下洞室→引发的岩体力学问题过程:地下开挖→天然应力失衡,应力重分布→洞室围岩变形和破坏→洞室的稳定性问题→初砌支护:围岩压力、围岩抗力(有内压时)(洞室的稳定性问题主要研究围岩重分布应力与围岩强度间的相对关系)第二节围岩重分布应力计算1.围岩:指由于人工开挖使岩体的应力状态发生了变化,而这部分被改变了应力状态的岩体。
2.地下洞室围岩应力计算问题可归纳的三个方面:①开挖前岩体天然应力状态(一次应力、初始应力和地应力)的确定;②开挖后围岩重分布应力(二次应力)的计算;③支护衬砌后围岩应力状态的改善。
3.围岩的重分布应力状态(二次应力状态):指经开挖后岩体在无支护条件下,岩体经应力调整后的应力状态。
一、无压洞室围岩重分布应力计算1.弹性围岩重分布应力坚硬致密的块状岩体,当天然应力,地下洞室开挖后围岩将呈弹性变形状态。
这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩重分布应力可用弹性力学方法计算。
重点讨论圆形洞室。
(1)圆形洞室深埋于弹性岩体中的水平圆形洞室,可以用柯西求解,看作平面应变问题处理。
无限大弹性薄板,沿X方向的外力为P,半径为R0的小圆孔,如图8.1所示。
任取一点M(r,θ)按平面问题处理,不计体力。
则:图8.1柯西课题分析示意图……………………①式中为应力函数,它是和的函数,也是和的函数。
洞室围岩稳定性因素分析
影响围岩稳定性的因素有天然的,也有人为的,其中天然因素起控制作用,如下:1、岩石特性:坚硬完整的岩石一般对围岩稳定性影响较小,而软弱岩石由于强度低、抗水性差、受力容易变形和破坏,对围岩稳定性影响较大。
2、地质构造:洞室通过坚硬和软弱相间的层状岩体时,易在接触面形成坍落。
洞室应尽量设置在坚硬岩层中,或尽量把坚硬岩层作为顶围。
褶皱的形式、疏密程度及轴向与洞室轴线的交角不同,围岩稳定性也不同。
洞身横穿褶皱轴,比平行褶皱轴有利。
洞室沿背斜轴部通过,顶围向两侧倾斜,由于拱的作用,有利于围岩稳定。
洞室通过断层,若断层宽度愈大,走向与洞轴交角愈小,它在洞内出露的距离便越长,对围岩稳定性影响便越大。
3、岩体结构:层状或块状岩体中围岩破坏常由几组结构面组合构成,一定几何形体的结构体,即围岩分离体的坍落、滑塌。
4、地下水与岩溶:洞室通过含水层便成为排水通道,改变了原来地下水动力条件。
裂隙水常以管状或脉状方式溃入洞内。
5、构造应力:构造应力具有明显的方向性,它控制着地下洞室围岩的变性和破坏。
构造应力最大主应力方向水平或近乎水平并垂直洞轴的情况下,可使顶围和底围不出现拉应力,所以它对顶围、底围的稳定有利。
这种应力较大时,加大洞室跨度能增大顶围的稳定。
浅谈围岩稳定性分析方法摘要:对于围岩稳定性分析方法进行了总结,简单地对这一领域的开展趋势作出了评述。
关键词:地下洞室;隧道;围岩稳定岩体力学是一门相对较年轻的学科,同时受制于岩体本身材料性质和几何形状的特殊性,其受力特点复杂,总结方法和结果非常复杂。
地下工程的失稳主要是由于施工中的开挖造成了围岩内部应力的变化而超过围岩自身强度的过程。
所以选择适宜的围岩稳定分析方法对于实际的工程应用来说,显得十分重要,关系到整个工程的平安和最终成败。
目前根据数学模型建立的围岩稳定分析方法主要分为以下四种。
我们在此进行分别讨论介绍。
在进行地下洞室的围岩稳定性分析时,会经常利用复变函数来计算围岩的内力,以此得到近似的弹性解析解。
【1】但是这种方法必须是以圆形隧道为根底进行计算。
众所周知,大局部隧道开挖尤其是公路隧道和地下洞室的开挖面都是不规那么的,这时候就要利用数学中的保角变换进行连续场函数的变换,而如何得到映射函数是其中的关键。
【2】当洞室形状并不复杂的时候,利用映射函数得到级数形式的近似解的级数项并不多。
而当地下洞室的开挖面极其不规那么时,利用映射函数所得到的解太过于复杂无法应用得出表达式。
为了解决这一问题,有人将求解过程方程化,编写成软件,得到围岩内力变化的近似解。
在计算机技术快速發展的今天,这种将求解方法和过程代数化,并结合程序编码加以利用的方法值得我们借鉴,能够大大地提高我们的工作效率,把我们从繁重的数学求解过程中解放出来。
方法在地下洞室的围岩稳定性分析中,解析法只适用于那些开挖面较简单的情况。
然而在实际的地下工程当中,我们往往面对的都是不规那么的开挖形状和围岩性质特性复杂的情况。
因此多数的具体工程应用中我们只能用具体的数值方法来求出我们想要的解。
数值方法众多,而这其中,有限元法应用最为广泛,我们在这里做主要介绍。
有限元法在土木工程的计算分析应用中已经非常成熟了。
它的根本原理是把连续体离散化为一系列的单元,用一个个独立的单元体分块近似表示需要求解的未知场函数。
地下洞室围岩稳定性分析与评价地下洞室围岩稳定性是地下工程中非常重要的问题之一,对地下工程的安全和经济运行具有重要意义。
地下洞室围岩稳定性的分析与评价可以帮助我们判断洞室围岩的稳定程度和寿命,为洞室工程的设计和施工提供可靠的依据。
首先,对地下洞室围岩的力学性质进行测试和分析。
这包括围岩的弹性模量、抗压强度、抗剪强度等力学参数的测定。
通过测试和分析得到的力学参数可以为后续的围岩稳定性分析提供基础数据。
其次,对围岩的岩性和结构进行详细的地质调查和研究。
通过对围岩的地质构造、结构洞的位置、破碎度和节理特征等进行详细的调查和研究,可以了解围岩的变形和破坏机理,为后续的稳定性分析提供依据。
然后,进行数值模拟和分析。
根据实际工程情况,可以使用有限元方法或者其他数值模拟方法对围岩的稳定性进行模拟和分析。
通过模拟和分析,可以得到围岩的应变、应力分布以及稳定性指标,进一步评价围岩的稳定性。
最后,根据分析和评价结果,对围岩稳定性进行评价。
根据实际工程要求和标准,可以将围岩的稳定性进行分级评价,确定围岩的稳定等级,并提出相应的建议和措施,以提高围岩的稳定性。
在地下洞室围岩稳定性分析与评价过程中,需考虑不同因素对围岩稳定性的影响。
例如,水文地质条件、地应力状态、围岩的强度参数、地震和地下水位变化等因素都会对围岩的稳定性产生重要影响,需要对这些因素进行综合分析和评价。
总之,地下洞室围岩稳定性的分析与评价是地下工程设计和施工的重要环节。
通过科学的测试、调查、分析和数值模拟,可以全面、准确地评价围岩的稳定性,为地下洞室工程的建设提供可靠的基础。