地下洞室围岩稳定性问题
- 格式:ppt
- 大小:10.73 MB
- 文档页数:38
地下厂房洞室群围岩稳定性方法研究地下厂房洞室群围岩稳定性是指地下厂房洞室周围岩体的稳定性问题。
地下厂房洞室通常是为了满足人们的生产、生活和储存需求,因此洞室群围岩的稳定性对于地下厂房的长期运行、人员安全和资产保障至关重要。
在研究地下厂房洞室群围岩稳定性时,需要考虑以下几个方面的问题:首先,需要分析洞室群围岩的物理力学特性,包括岩石的强度、变形特性和破坏模式。
通过适当的岩石力学试验和野外观测,可以获取岩石的力学参数,如抗压强度、抗拉强度、抗剪强度等。
这些参数对于稳定性分析和设计起着重要的作用。
其次,需要考虑工程参数的影响,如洞室尺寸、埋深和周边岩性的条件。
洞室尺寸对岩体稳定性有直接影响,尤其是高宽比较大的洞室,容易导致岩体的变形和破坏。
洞室的埋深也会影响岩体的应力状态,从而影响岩体的稳定性。
周边岩性的条件决定了岩体的强度和变形特性,需要对周边岩性进行综合分析。
此外,岩体的结构面、节理和隐伏断层等地质构造的影响也需要考虑。
岩体中存在的结构面和节理体,会导致岩体的开裂和滑动,对岩体的稳定性产生不利影响。
隐伏断层的活动可能导致岩体的滑动和破坏,需要对其进行综合分析和评估。
最后,需要进行数值模拟和力学分析,包括有限元分析、离散元分析和解析方法等。
通过数值模拟可以模拟地下厂房洞室群围岩的应力-应变状态,预测岩体的破坏形态和稳定性。
数值模拟还可以进行灵敏度分析,评估不同参数对岩体稳定性的影响,为优化设计和工程措施提供依据。
综上所述,地下厂房洞室群围岩稳定性的研究是一项复杂的工作,需要考虑岩石力学特性、洞室尺寸与周边岩性、地质构造和数值模拟等多个方面的问题。
通过综合分析和评估,可以为地下厂房洞室的设计和建设提供科学依据,保障其长期稳定和安全运行。
洞顶位移底鼓在岩石地下工程中,受开应力状态发生改二、地下洞室开挖所产生的岩体力学问题向新的平衡应力状态调整,应力状态的调整过程,称(redistribution of stress)。
洞顶位移底鼓由于洞径方向的变形远大于洞轴方向的变形,当洞室半径远小于洞长时,洞轴方向的变形可以忽略不计,因此地下洞室问题可视为平面应变问题深埋于弹性岩体中的水平圆形洞室,其围岩重分布应力按柯西课题求解(1)柯西课题概化模型无限大弹性薄板,其边界上受到沿方向的外力作用,薄板中有一半径为的小圆孔。
x p R 弹性薄板柯西课题分析示意图pp 1.深埋圆形水平洞室围岩重分布应力以圆的圆心为原点取极坐标,由弹性理论,若不考虑体积力,可求得薄板中任一点的应力及其方向。
(,)M r θ弹性薄板柯西课题分析示意图p p若应力函数为φ22211r r r r φφσθ∂∂=+∂∂径向应力:22rθφσ∂=∂环向应力:2211r r r r θφφτθθ∂∂=−∂∂∂剪切应力:(2)柯西课题解弹性薄板柯西课题分析示意图p p边界条件:()cos 222r r b p pσθ==+()sin 22r r b pθτθ==−0b R >>()()0r r r b r b θτσ====0b R =0b R >>vσxθMvσ0R r弹性薄板pp柯西课题力学模型中极坐标轴与力的作用方向相同。
因此,需进行极角变换。
2420002423411cos22v r R R R r r r σσθ⎡⎤⎛⎞⎛⎞=−−+−⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦240024311cos22v R R r r θσσθ⎡⎤⎛⎞⎛⎞=+++⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦420042321sin22v r R R rr θστθ⎛⎞=−+⎜⎟⎝⎠2)由柯西课题解得到作用下圆形洞室围岩重分布应力v σ22θθπ→−2θσσ=④随着距离增大,增大,减小,并且都逐渐趋近于天然应力。
地下洞室围岩稳定性分析在进行地下洞室围岩稳定性分析时,一般需要考虑以下几个主要因素:1.岩层的力学性质:岩层的力学性质是岩石稳定性的基础。
要进行稳定性分析,首先需要获取岩层的力学参数,如岩石的强度、弹性模量和剪胀性等。
通常可以通过室内试验、现场调查和实测等方法获得这些参数,或者借助已有的类似工程的资料进行评估。
2.地下水:地下水是地下洞室稳定性分析中重要的一项因素。
地下水对围岩的稳定性产生的主要影响是增加孔隙水压,降低岩层的有效应力,促使岩体产生破坏。
因此,需要充分考虑地下水对岩层的影响,包括水位高度、水质状况、渗流特性等。
3.岩体结构:岩体的结构对于岩层稳定性具有重要影响。
岩体的结构主要表现为节理、裂隙、岩体层理等。
这些结构特征对洞室的稳定性有直接影响,形成控制洞室稳定的主要因素之一、因此,在进行稳定性分析时,需要对岩体的结构特征进行详细调查和分析,选择合适的建模方法进行模拟。
4.洞室开挖方式和支护措施:洞室的开挖过程和支护措施对围岩稳定性有着直接的影响。
开挖过程中,洞室周围会受到剪切应力和变形等影响,进而对围岩稳定性产生影响。
因此,在稳定性分析中需要考虑洞室开挖方式和支护措施的影响,选择合适的岩体应力场和支护材料。
在进行地下洞室围岩稳定性分析时,常用的方法包括力学分析法、数值模拟法和现场监测法等。
力学分析法通过分析力学参数和地质参数,计算岩体的稳定系数,从而评估围岩的稳定性。
数值模拟法通过建立数学模型,采用有限元或边界元方法,模拟洞室周围围岩的变形和破坏过程,预测洞室的稳定性。
现场监测法是指通过安装监测点,对洞室周围的围岩变形和破坏进行实时监测,从而评估围岩的稳定性。
综上所述,地下洞室围岩稳定性分析是一个复杂的工程问题,需要考虑多个因素的综合影响。
只有充分了解地下洞室周围的地质和力学条件,选择合适的分析方法和模型,才能有效评估围岩的稳定性,并制定出合理的支护措施,确保地下洞室的安全和持续稳定。
保障洞室围岩稳定的措施
为了保障洞室围岩的稳定,我们可以采取以下措施:
1. 岩石分类及强度测试:首先,对洞室围岩进行岩性分类,确定其物理力学性质和强度,在这个基础上进行岩石强度测试,以确定其质量和稳定性。
2. 围岩加固技术:根据围岩的物理力学性质和强度测试结果,选择合适的围岩加固技术,如锚杆加固、喷射混凝土加固、灌浆加固等。
利用这些技术,可以增加围岩的强度和稳定性。
3. 地下水管理:地下水渗漏是导致洞室围岩变松散和破坏的主要原因之一,因此,必须进行地下水的有效管理。
通过合理构建排水系统,减少地下水渗漏,可以有效降低围岩的湿度,防止水和岩石发生相互作用,从而保持围岩的稳定。
4. 岩体监测系统:安装岩体监测系统,可以及时监测围岩的位移、应力和变形等变化情况。
通过对监测数据的收集和分析,可以有效预测和评估围岩稳定状况,提前采取相应的措施。
5. 安全支护措施:在洞室围岩中采取安全支护措施是非常重要的。
例如,可以根据围岩的特点选择合适的支护方式,如钢架支护、预应力锚杆支护、喷锚支护等。
这些措施可以增强洞室围岩的抗压能力和稳定性。
综上所述,保障洞室围岩稳定的措施包括岩石分类及强度测试、围岩加固技术、地下水管理、岩体监测系统、安全支护措施等。
通过这些措施的综合应用,可以有效保证洞室围岩的稳定性和安全性。
第一节概述1.地下洞室(underground cavity):指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
2.我国古代的采矿巷道,埋深60m,距今约3000年左右(西周)。
目前,地下洞室的最大埋深已达2500m,跨度已过50m,同时还出现有群洞。
3.分类:按作用分类:交通隧洞(道)、水工隧洞、矿山巷道、地下厂房仓库、地铁等等;按内壁有无水压力:有压洞室和无压洞室;按断面形状为:圆形、矩形或门洞形和马蹄形洞室等;按洞轴线与水平面间的关系分为:水平洞室、竖井和倾斜洞室三类;按介质,土洞和岩洞。
4.地下洞室→引发的岩体力学问题过程:地下开挖→天然应力失衡,应力重分布→洞室围岩变形和破坏→洞室的稳定性问题→初砌支护:围岩压力、围岩抗力(有内压时)(洞室的稳定性问题主要研究围岩重分布应力与围岩强度间的相对关系)第二节围岩重分布应力计算1.围岩:指由于人工开挖使岩体的应力状态发生了变化,而这部分被改变了应力状态的岩体。
2.地下洞室围岩应力计算问题可归纳的三个方面:①开挖前岩体天然应力状态(一次应力、初始应力和地应力)的确定;②开挖后围岩重分布应力(二次应力)的计算;③支护衬砌后围岩应力状态的改善。
3.围岩的重分布应力状态(二次应力状态):指经开挖后岩体在无支护条件下,岩体经应力调整后的应力状态。
一、无压洞室围岩重分布应力计算1.弹性围岩重分布应力坚硬致密的块状岩体,当天然应力,地下洞室开挖后围岩将呈弹性变形状态。
这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩重分布应力可用弹性力学方法计算。
重点讨论圆形洞室。
(1)圆形洞室深埋于弹性岩体中的水平圆形洞室,可以用柯西求解,看作平面应变问题处理。
无限大弹性薄板,沿X方向的外力为P,半径为R0的小圆孔,如图8.1所示。
任取一点M(r,θ)按平面问题处理,不计体力。
则:图8.1柯西课题分析示意图……………………①式中为应力函数,它是和的函数,也是和的函数。
第八章地下洞室围岩稳定性分析第一节概述地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
从围岩稳定性研究角度来看,这些地下构筑物是一些不同断面形态和尺寸的地下空间。
较早出现的地下洞室是人类为了居住而开挖的窑洞和采掘地下资源而挖掘的矿山巷道。
如我国铜绿山古铜矿遗址留下的地下采矿巷道,最大埋深60余米,其开采年代至迟始于西周(距今约3000年)。
但从总体来看,早期的地下洞室埋深和规模都很小。
随着生产的不断发展,地下洞室的规模和埋深都在不断增大。
目前,地下洞室的最大埋深已达2 500m,跨度已超过30m;同时还出了多条洞室并列的群洞和巨型地下采空系统,如小浪底水库的泄洪、发电和排砂洞就集中分布在左坝肩,形成由16条隧洞(最大洞径14.5m)并列组成的洞群。
地下洞室的用途也越来越广。
地下洞室按其用途可分为交通隧道、水工隧洞、矿山巷道、地下厂房和仓库、地下铁道及地下军事工程等类型。
按其内壁是否有内水压力作用可分为有压洞室和无压洞室两类。
按其断面形状可分为圆形、矩形、城门洞形和马蹄形洞室等类型。
按洞室轴线与水平面的关系可分为水平洞室、竖井和倾斜洞室三类。
按围岩介质类型可分为土洞和岩洞两类。
另外,还有人工洞室、天然洞室、单式洞室和群洞等类型。
各种类型的洞室所产生的岩体力学问题及对岩体条件的要求各不相同,因而所采用的研究方法和内容也不尽相同。
由于开挖形成了地下空间,破坏了岩体原有的相对平衡状态,因而将产生一系列复杂的岩体力学作用,这些作用可归纳为:(1)地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。
(2)在重分布应力作用下,洞室围岩将向洞内变形位移。
如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。
(3)围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。
简述工程地质问题的概念及其包括的具体内容工程地质问题是指已有的工程地质条件在工程建筑和运行期间会产生一些新的变化和发展,构成威胁影响工程建筑安全的地质问题称为工程地质问题。
主要的工程地质问题包括:
(1)地基稳定性问题:是工业与民用建筑工程常遇到的主要工程地质问题,它包括强度和变形两个方面。
此外岩溶、土洞等不良地质作用和现象都会影响地基稳定。
铁路、公路等工程建筑则会遇到路基稳定性问题。
(2)斜坡稳定性问题:自然界的天然斜坡是经受长期地表地质作用达到相对协调平衡的产物,人类工程活动尤其是道路工程需开挖和填筑人工边坡(路堑、路堤、堤坝、基坑等),斜坡稳定对防止地质灾害发生及保证地基稳定十分重要。
斜坡地层岩性、地质构造特征是影响其稳定性的物质基础,风化作用、地应力、地震、地表水、和地下水等对斜坡软弱结构面作用往往破环斜坡稳定,而地形地貌和气候条件是影响其稳定的重要因素。
(3)洞室围岩稳定性问题:地下洞室被包围于岩土体介质(围岩)中,在洞室开挖和建设过程中破坏了地下岩体原始平衡条件,便会出现一系列不稳定现象,常遇到围岩塌方、地下水涌水等。
一般在工程建设规划和选址时要进行区域稳定性评价,研究地质体在地质历史中受力状况和变形过程,做好山体稳定性评价,研究岩体结构特性,预测岩体变形破坏规律,进行岩体稳定性评价以及考虑建筑物和岩体
结构的相互作用。
这些都是防止工程失误和事故,保证洞室围岩稳定所必需的工作。
(4)区域稳定性问题:地震、震陷和液化以及活断层对工程稳定性的影响,自1976年唐山地震后越来越引起土木工程界的注意。
对于大型水电工程、地下工程以及建筑群密布的城市地区,区域稳定性问题应该是需要首先论证的问题。
第六节地下洞室围岩应力分布和稳定性判别
一、岩石受破坏规律和强度特性
初始围岩应力:自重引起或者地质构造运动引起
二、岩石的初始应力场—海姆假定
在岩体深处的初始垂直应力(由自重引起的)与其上覆盖的岩体重量成正比,而水平应力与垂直应力几乎相等。
自重产生的初始地应力:视岩体为表面水平的半无限体,无地质构造作用,则深度Z处由自重产生的垂直应力为:
式中,为岩石的容重。
都是主应力,且无侧向(水平向)变形:
式中, M —静止侧压力系数或泊松系数.
初始地应力的现场量测方法:应力解除法,应力恢复法.
三、地下洞室围岩应力的弹性理论
圆形洞室围岩应力的分布:开挖洞室的影响在3倍洞高之内。
判断围岩的稳定性:
(1)弹性理论: r<0, 出现拉应力, 洞顶不稳定, 需进行衬砌;
(2) 自然平衡拱理论
(3) 经验方法:围岩分类法(将岩石分为五类)。
水电站施工中地下洞室围岩稳定性分析作者:严凯来源:《装饰装修天地》2018年第21期摘要:在水电站工程施工过程中,地下洞室过程中,为了保证施工质量,应当展开水电站地下洞室围岩稳定性的分析。
文章以实际工程为例,对水电站施工中地下洞室围岩稳定性进行了分析,以期优化施工效果。
关键词:水电站施工;地下洞室;围岩稳定性1 前言随着水电开发技术的日益成熟,大型水电枢纽工程的开发与建设受地区地形条件限制,多采用地下厂房式布置,进而形成了规模巨大的地下厂房洞室群,其洞室高边墙及洞室之间围岩的稳定性成为工程建设中成败的关键因素。
2 地下洞室围岩稳定性分析概述地下洞室的稳定性课题属于一项非线性力学问题,较为复杂,一般而言具有非均匀性、非连续性变形以及大位移等特征。
围岩稳定性的主要影响因素主要包括两个方面:天然地质条件以及工程因素。
天然地质条件方面涉及到初始地应力场、地质构造、地下水情况、围岩结构等;工程因素涵盖了洞室实际情况、洞室开挖施工、支护形式等。
近年来,岩石力学理论以及测试技术不断发展,电子计算机技术以及有限元方法得到了推广和应用,再加上科研工作者坚持不懈的努力,涌现出了许多新的研究方法,在岩体构造以及力学特征、地下围岩不稳定机理以及支护受力机制方面的研究,新设计理论以及方法等方面的研讨都取得了可喜的成果,为地下围岩的稳定性分析与评价提供了支持和途径。
然而作为地下工程的根源问题之一的围岩失稳分析,现阶段尚没有构成统一理论,针对地下围岩稳定性进行分析,主要是通过分析与考虑具体的地质条件和工程的情况要求,结合多种方法进行综合评价,因此有必要总结目前的地下洞室稳定性分析,以助力工程实践中可以进行科学判断。
3 地下洞室围岩稳定性分析思路洞室围岩稳定性分析是多学科理论方法、专家经验、监测量与计算机技术综合集成的科学。
洞室失稳是一个极其复杂的力学过程,在实际工程中更是受到了许多因素的影响。
通常伴随着非均匀性、非连续性变形和大位移,是一个高度非线性的问题。
地下洞室围岩稳定性分析与评价地下洞室围岩稳定性是地下工程中非常重要的问题之一,对地下工程的安全和经济运行具有重要意义。
地下洞室围岩稳定性的分析与评价可以帮助我们判断洞室围岩的稳定程度和寿命,为洞室工程的设计和施工提供可靠的依据。
首先,对地下洞室围岩的力学性质进行测试和分析。
这包括围岩的弹性模量、抗压强度、抗剪强度等力学参数的测定。
通过测试和分析得到的力学参数可以为后续的围岩稳定性分析提供基础数据。
其次,对围岩的岩性和结构进行详细的地质调查和研究。
通过对围岩的地质构造、结构洞的位置、破碎度和节理特征等进行详细的调查和研究,可以了解围岩的变形和破坏机理,为后续的稳定性分析提供依据。
然后,进行数值模拟和分析。
根据实际工程情况,可以使用有限元方法或者其他数值模拟方法对围岩的稳定性进行模拟和分析。
通过模拟和分析,可以得到围岩的应变、应力分布以及稳定性指标,进一步评价围岩的稳定性。
最后,根据分析和评价结果,对围岩稳定性进行评价。
根据实际工程要求和标准,可以将围岩的稳定性进行分级评价,确定围岩的稳定等级,并提出相应的建议和措施,以提高围岩的稳定性。
在地下洞室围岩稳定性分析与评价过程中,需考虑不同因素对围岩稳定性的影响。
例如,水文地质条件、地应力状态、围岩的强度参数、地震和地下水位变化等因素都会对围岩的稳定性产生重要影响,需要对这些因素进行综合分析和评价。
总之,地下洞室围岩稳定性的分析与评价是地下工程设计和施工的重要环节。
通过科学的测试、调查、分析和数值模拟,可以全面、准确地评价围岩的稳定性,为地下洞室工程的建设提供可靠的基础。
第八章地下洞室围岩稳定性分析第一节概述地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
从围岩稳定性研究角度来看,这些地下构筑物是一些不同断面形态和尺寸的地下空间。
较早出现的地下洞室是人类为了居住而开挖的窑洞和采掘地下资源而挖掘的矿山巷道。
如我国铜绿山古铜矿遗址留下的地下采矿巷道,最大埋深60余米,其开采年代至迟始于西周(距今约3000年)。
但从总体来看,早期的地下洞室埋深和规模都很小。
随着生产的不断发展,地下洞室的规模和埋深都在不断增大。
目前,地下洞室的最大埋深已达2 500m,跨度已超过30m;同时还出了多条洞室并列的群洞和巨型地下采空系统,如小浪底水库的泄洪、发电和排砂洞就集中分布在左坝肩,形成由16条隧洞(最大洞径14.5m)并列组成的洞群。
地下洞室的用途也越来越广。
地下洞室按其用途可分为交通隧道、水工隧洞、矿山巷道、地下厂房和仓库、地下铁道及地下军事工程等类型。
按其内壁是否有内水压力作用可分为有压洞室和无压洞室两类。
按其断面形状可分为圆形、矩形、城门洞形和马蹄形洞室等类型。
按洞室轴线与水平面的关系可分为水平洞室、竖井和倾斜洞室三类。
按围岩介质类型可分为土洞和岩洞两类。
另外,还有人工洞室、天然洞室、单式洞室和群洞等类型。
各种类型的洞室所产生的岩体力学问题及对岩体条件的要求各不相同,因而所采用的研究方法和内容也不尽相同。
由于开挖形成了地下空间,破坏了岩体原有的相对平衡状态,因而将产生一系列复杂的岩体力学作用,这些作用可归纳为:(1)地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。
(2)在重分布应力作用下,洞室围岩将向洞内变形位移。
如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。
(3)围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。
第6、7章 地下工程围岩稳定性分析学习指导:本章主要介绍了两部分内容:(一)山岩压力与围岩稳定性分析,(二)有压隧洞稳定性分析。
前部分介绍了围岩应力重分布,地下洞室脆性围岩和塑性围岩的变形破坏形式,影响地下工程岩体稳定的因素,着重介绍了山岩压力与围岩稳定性分析方法,其中包括山岩压力的概念、影响因素,太沙基理论;后部分重点介绍了围岩内附加应力的计算、有压隧洞围岩和衬砌的应力计算。
重 点:1 地下洞室开挖引起的围岩应力重分布2 地下洞室围岩的变形破坏3 地下工程岩体稳定性的影响因素4 洞室围岩稳定性分析6.1 地下洞室开挖引起的围岩应力重分布由于在岩体内开挖洞室,洞室围岩各质点的原有应力的平衡状态就受到破坏,各质点就要产生位移调整,以达到新的平衡位置。
岩体内某个方向原来处于紧张压缩状态,现在可能发生松胀,另一个方向可能反而挤压的程度更大了。
相应地,围岩内的应力大小和主应力方向也发生了改变,这种现象叫做围岩应力重分布。
围岩应力重分布只限于围岩一定范围内,在离洞壁较远的岩体内应力重分布甚微,可以略去不计。
地下开挖引起的围岩变形是有一定规律的。
变形终止时围岩内的应力就是重新分布的应力。
这个重新分布的应力对于评价围岩的稳定性具有重要意义。
为了便于说明起见,我们在这一节中对于最简单的条件(即在连续的均质的各向同性的岩体内开挖圆形隧洞,而且岩体的侧压力系数10=K ,即静水压力式的初始应力状态)下的围岩应力重分布问题,作定性分析,以便对于应力重分布的情况有一概念。
如图6-1所示,设岩体为连续的、均质的以及各向同性的,其侧压力系数为10=K ,亦即岩体的初始应力状态为静水压力式的。
此外,洞室的长度远较横截面的尺寸为大,所以可作为平面应变问题来研究。
在地下开挖以前,岩体内任一点A 的应力,即等于该点的自重应力v p ,而且由于10=K ,所以通过该点任何方向的应力都是v p 。
如果用极坐标来表示该点的应力状态,则该点的应力为:v r p =0σv p =0θσ式中 0r σ 岩体的径向应力;0θσ 岩体的切向应力。