单相交流通用电动机控制电路
- 格式:ppt
- 大小:230.00 KB
- 文档页数:21
1.主电路设计1.1.设计内容及初始条件:输入为单相交流电源,有效值220V ,要求完成的主要任务:(1)掌握单相交流调压电路的原理;(2)设计出系统结构图,并采用Matlab 7.0/Simulink 对单相交流调压电路进行仿真;(3)采用Protues 设计出单相交流调压主电路及采用KJ004控制电路1.2.总体电路设计方案本系统主要设计思想是:采用两个晶闸管反向并联加负载为主电路,外加触发电路;触发电路控制晶闸管的导通,从而控制输出。
其系统框图如下所示:图1-1 系统原理方框图1.3.工作原理1.3.1.主电路工作情况单相交流调压电路带阻感性负载时的电路以及工作波形如下图1-2、1-3、1-4、1-5所示。
产生的滞后是因为阻感性负载时电流滞后电压一定角度,再加上移相控制所产生的滞后,使得交流调压电路在阻感性负载时的情况比较复杂,其输出电压,电流与触发角α,负载阻抗角φ都有关系。
当两只反并联的晶闸管中的任何一个导通后,其通态压降就成为另一只的反向电压,因此只有当导通的晶闸管关断以后,另一只晶闸管才有可能承受正向电压被触发导通。
由于感性负载本身滞后于电压一定角度,再加上相位控制产生的滞后,使得交流调压电路在感性负载下大的工作情况更为复杂,其输出电压、电流波形与控制角α、负载阻抗角φ都有关系。
其中负载阻抗角)arctan(R wL =ϕ,相当于在电阻电感负载上加上纯正弦交流电压时,其电流滞后于电压的角度为φ。
为了更好的分析单相交流调压电路在感性负载下的工作情况,此处分φαφαφα<=>,,三种工况分别进行讨论。
图1-2电路图(1)φα>情况上图1-2所示为单相反并联交流调压电路带感性负载时的电路图,以及在控制角触发导通时的输出波形图,同电阻负载一样,在i u 的正半周时,在αω=t 时触发Vt1,Vt1导通,输出电压o u =i u ,电流o i 从0开始上升。
当电压到达过零点时,由于是感性负载,电流o i 滞后于电压o u ,当电压达到过零点时电流不为0电流不为零,之后o i 继续下降,Vt1仍然导通,输出电压出现负值。
目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。