第一节-电动机的基本控制电路
- 格式:ppt
- 大小:11.12 MB
- 文档页数:15
直流电动机控制电路一、直流电动机的启动1.并励直流电动机的启动并励直流电动机的启动控制电路如图1-15所示。
图中,KA1是过电流继电器,作直流电动机的短路和过载保护。
KA2欠电流继电器,作励磁绕组的失磁保护。
启动时先合上电源开关QS,励磁绕组获电励磁,欠电流继电器KA2线圈获电,KA2常开触点闭合,控制电路通电;此时时间继电器KT线圈获电,KT常闭触点瞬时断开。
然后按下启动按钮SB2,接触器KM1线圈获电,KM1主触点闭合,电动机串电阻器R启动;KM1的常闭触点断开,KT线圈断电,KT常闭触点延时闭合,接触器KM2线圈获电,KM2主触点闭合将电阻器R短接,电动机在全压下运行。
2. 他励直流电动机的启动(见图1-16)图1-15 并励直流电动机启动控制电路图1-16 他励直流电动机启动控制电路3. 串励直流电动机的启动(见图1-17)图1-17 串励直流电动机启动控制电路请注意,串励直流电动机不允许空载启动,否则,电动机的高速旋转,会使电枢受到极大的离心力作用而损坏,因此,串励直流电动机一般在带有20%~25%负载的情况下启动。
二、直流电动机的正、反转1.电枢反接法这种方法是改变电枢电流的方向,使电动机反转。
并励直流电动机的正、反转控制电路如图1-18所示。
启动时按下启动按钮SB2,接触器KM1线圈获电,KM1常开触点闭合,电动机正转。
若要反转,则需先按下SB1,使KM1断电,KM1连锁常闭触点闭合。
这时再按下反转按钮SB3,接触器KM2线圈获电,KM2常开触点闭合,使电枢电流反向,电动机反转。
2.磁场反接法这种方法是改变磁场方向(即励磁电流的方向)使电动机反转。
此法常用于串励电动机,因为串励电动机电枢绕组两端的电压很高,而励磁绕组两端的电压很低,反转较容易,其控制电路如图1-19所示。
其工作原理同上例相似,请自己分析。
图1-18并励直流电动机正,反转控制电路图1-19串励电动机正,反转控制电路三、直流电动机的制动在实际生产中有时要求机械能迅速停转,这就要求直流电动机可以制动。
电动机点动控制电路讲解控制线路原理图如下所示:启动:按下起动按钮SB→接触器KM线圈得电→KM主触头闭合→电动机M启动运行。
停止:松开按钮SB→接触器KM线圈失电→KM主触头断开→电动机M失电停转。
这种控制方法常用于电动葫芦的起重电机控制和车床拖板箱快速移动的电机控制。
点动、单向转动控制线路是用按钮接触器来控制电动机运转的最简单的控制线路接线示意图如下图所示。
从图中可以看出点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。
其中以转换开关QS作电源隔离开关,熔断器FU 作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止,线路工作原理如下:当电动机M需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。
按下启动按钮SB,接触器KM的线圈得电,使衔铁吸合,同时带动接触器KM 的三对主触头闭合,电动机M便接通电源启动运转。
当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,衔铁在复位弹簧作用下复位,带动接触器KM的三对主触头恢复断开,电动机M失电停转。
上图中点动正转控制接线示意图是用近似实物接线图的画法表示的,看起来比较直观,初学者易学易懂,但画起来却很麻烦,特别是对一些比较复杂的控制线路,由于所用电器较多,画成接线示意图的形式反而使人觉得繁杂难懂,很不实用。
因此,控制线路通常不画接线示意图,而是采用国家统一规定的电器图形符号和文字符号,画成控制线路原理图。
点动正转控制线路原理图,如下。
它是根据实物接线电路绘制的,图中以符号代表电器元件,以线条代表联接导线。
用它来表达控制线路的工作原理,故称为原理图。
原理图在设计部门和生产现场都得到了广泛的应用。
除了点动控制电路,在工作中,还会用到各种电路,比如:起保停电路、自锁控制电路、正反转控制电路、降压启动控制电路、启停控制电路等等...。
课题一电动机基本控制线路图的绘制及线路安装步骤一、绘制、识读电气控制线路图的原则生产机械电气控制线路常用电路图、接线图和布置图来表示。
1. 电路图电路图是根据生产机械运动形式对电气控制系统的要求,采用国家统一规定的电气图形符号和文字符号,按照电气设备和电器的工作顺序,详细表示电路、设备或成套装置的全部基本组成和连接关系,而不考虑其实际位置的一种简图。
电路图能充分表达电气设备和电器的用途、作用和工作原理,是电气线路安装、调试和维修的理论依据。
绘制、识读电路图时应遵循以下原则:(1)电路图一般分电源电路、主电路和辅助电路三部分绘制。
1)电源电路画成水平线,三相交流电源相序L1、L2、L3自上而下依次画出,中线N和保护地线PE依次画在相线之下。
直流电源的“+”端画在上边,“-”端在下边画出。
电源开关要水平画出。
2)主电路是指受电的动力装置及控制、保护电器的支路等,它是由主熔断器、接触器的主触头、热继电器的热元件以及电动机等组成。
主电路通过电流是电动机的工作电流,电流较大。
主电路图要画在电路图的左侧并垂直电源电路。
3)辅助电路一般包括控制主电路工作状态的控制电路;显示主电路工作状态的控制电路;显示主电路工作状态的指示电路;提供机床设备局部照明电路等。
它是由主令电器的触头、接触器线圈及辅助触头、继电器线圈及触头、指示灯和照明灯等组成。
辅助电路通过电流的较小,一般不超过5A。
画辅助电路图时,辅助电路要跨接在两相电源线之间,一般按照控制电路、指示电路和照明电路的顺序依次垂直画在主电路图的右侧,且电路中与下边电源线相连的耗能元件(如接触器和继电器的线圈、指示灯、照明灯等)要画在电路图的下方,而电器的触头要画在耗能元件与上边电源线之间。
为读图方便,一般应按照自左至右、自上而下的排列来表示操作顺序。
(2)电路图中,各电路的触头位置都按电路未通过或电器未受外力作用时的常态位置画出。
分析原理时,应从触头的常态位置出发。
电动机控制电路工作原理
电动机控制电路是一种用于控制电动机运行的电子电路,其主要工作原理是通过改变电流方向和大小,实现电动机的启动、停止、正转和反转等功能。
电动机控制电路通常由电源、开关、继电器和控制电路等部分组成。
其中,电源提供电流给电动机,开关用于控制电流的通断,继电器负责接通或断开电源电流,而控制电路则根据需要发出信号,通过操作开关和继电器来控制电动机的运行状态。
在启动过程中,控制电路通过操作继电器,使继电器的触点闭合,电源的电流进入电动机,从而使电动机运行。
当需要停止电动机时,控制电路断开继电器的触点,切断电流供应,以停止电动机的转动。
为了实现电动机的正转和反转,控制电路需要改变电流的方向。
这通常通过改变继电器的触点来实现。
当需要电动机正转时,控制电路闭合正转继电器的触点,使电流按照特定的方向流向电动机。
当需要电动机反转时,控制电路闭合反转继电器的触点,使电流按照相反的方向流向电动机。
另外,在一些特定的应用场景中,电动机控制电路还可以通过改变电流的大小来调节电动机的转速或实现其他特定功能。
这通常通过控制电路中的电阻、电容或其他元件来实现。
综上所述,电动机控制电路通过改变电流的方向和大小,实现电动机的启动、停止、正转和反转等功能。
其工作原理是通过
操作开关和继电器,根据控制电路发出的信号控制电源电流的通断,从而控制电动机的运行状态。