04 第四节 可降阶的二阶微分方程
- 格式:doc
- 大小:309.00 KB
- 文档页数:4
二阶常微分方程的降阶技巧及其推广【摘要】本文研究了几类可降阶的二阶微分方程,并将其求解理论推广为高阶微分方程.为更深入的探讨了典型的可降阶的高阶常微分方程打下基础,分析方程特点,对于不同类型的高阶方程进行科学合理的降阶,并对以讨论的方法进行归纳总结。
【关键词】高阶方程;线性微分方程;降阶在应用常微分方程解决问题时,常常遇到应用高阶常微分方程的形式,而二阶常微分方程又是典型的高阶常微分方程,许多高阶微分方程的解法和性质都是二阶微分方程的推广,二阶常微分方程的研究与解法就显得尤为重要了,下面介绍几种典型的二阶微分方程。
1.y”=f(x,y’)型的微分方程方程特点:方程的右端不含y的常微分方程方程解法:设y’=p,则y”=p’,代入原方程得=f(x,p)这是一个一阶微分方程,根据方程的特性进行分析,得出方程的解法,并因此求出以p为未知函数的微分方程的所有解,再次积分即可求出原方程的解.例1:求方程(1+x)y”=2xy’y=1,y’=3 的解.分析:方程(1+x2)y”=2xy’经变形整理得y”=,观察方程的右边发现方程的右端不含y,所以符合y”=f(x,y’)方程的特点解:令y’=p,则y”=,则方程变为,(1+x)=2xp,即:= dx所以y’=p=C1(1+x2)因为y’│=3所以y’=pC1=3 则y=x3+3x+C2因为y│=1,所以C2=1,所以所求特解为y=x3+3x+1.2.y”=f(y,y’)型的微分方程方程特点方程的右端不含x.方程解法:令y’==p则y”=,由复合函数求导法则得y”==·=p,代入原方程得p=f(y,p)这个方程是关于y,p的一阶方程,假如可以求得这个方程的通解是y’=p=φ(y,C1),分析方程的特点,此方程是一个变量可分离方程,将方程分离变量后积分得∫dy=x+C(C1,C2 为任意常数),即为原方程得通解.注:在此方程在求解的过程中采用了引进新的变量的方法进行降阶,方法简单实用.例2:解方程y”=y’+(y’)3.分析:方程中不含x,符合y”=f(y’,y’)型微分方程,按照方程的求解方法进行求解.解:令y’=p,则y”=p,即p=p(1+p2)若p≠0,则=1+p2,arctan p=y+C1,即p=tan(y+C1)?=dx,积分得lnsin(y+C)=x+C,即sin(y+C1)=Cex,或y=arcsin(Cex)-C1,(C1,C2 为任意常数).若p=0,则y=C包含在通解中.此类方程也可以将其进行推广为不显含自变量x的方程的一般形式为f(y,y’,…,y(n))=03.形如F(x,y,y’,y”)=0 的二阶恰当导数方程方程特点:方程的左侧恰好为某个函数Φ(x,y,y’)对x的导数,也就是F(x,y,y’,y”)=Φ(x,y,y’)=0方程解法:应用已有的微分公式,可以使原方程降低一阶Φ(x,y,y’)= C,再对降阶后的微分方程进行分析,即可探求适合较低阶的微分方程的求解方法.要准确的判断出某二阶微分方程F(x,y,y’,y”)=0为恰当导数方程,需要掌握一些常用的微分公式,现介绍如下:微分法常用公式ydx+xdy=d(xy),=d(),=d(),=dln(x+y).=dln,=darctan().例3:求方程yy”+y’2=0的通解.分析:对方程的左边采用观察法进行分析,发现左端恰好是符合微分式d (yy’)=yy”+y’ ,所以此二阶微分方程是恰当微分方程,才有此方法可以将二阶微分方程化为一阶微分方程,分析方程的特点,即可求出方程的解.解:将方程写成(yy’)=0 ,故有yy’=C1,即ydy=C1dx,积分后得通解y2=C1x+C2其中C1,C2 为任意常数).注意:这是一个高技巧的例题,解决问题的关键在于科学的降阶方法.同时此类型的方程也可以推广到一般的形式即为F(x,y,y’,y”,…y(n))=0,此方程的左侧恰好为某个函数Φ(x,y,y’,…y(n-1))对x的导数,也就是Φ(x,y,y’,…y(n-1))=0 的形式,其解法不做介绍。
毕业论文开题报告数学与应用数学二阶微分方程的解法及应用一、选题的背景、意义两千多年以前的古希腊时代,地中海沿岸的奴隶们在繁重的生产劳动中,早就认识到搬运重东西时利用滚动要比滑动省力因而在运输中广泛应用装有圆轮和圆轴的车子。
为了精密地制造这些工具,就需要对圆形有精确的认识,在深入地研究圆形的过程中,出现了“无限细分,无限求和”的微积分思想的萌芽。
到了16世纪前后,社会生产实践活动进入了一个新的时期。
在这段时间中,笛卡尔引进了变数的概念,有了变数,微分和积分也就立刻产生了!17世纪上半叶,随着函数观念的建立和对机械运动规律的探求,许多实际问题摆到了数学家的面前,几乎所有的科学大师都把自己的注意力集中到寻求解决这些难题的新的数学工具上来,他们在解决问题的过程中,逐步形成了微积分学的一些基本方法。
17世纪,当牛顿和莱布尼茨创立了微积分以后,数学家们便开始谋求用微积分这一有力的工具去解决越来越多的物理问题,但他们很快发现不得不去对付一类新的更复杂的问题,这类问题不能通过简单的积分解决,要解决这类问题需要专门的技术,这样,微分方程这门学科就应运而生了。
它和天文学、力学、物理学等许多学科有广泛的联系,在数学领域,它和其它一些分支学科相互渗透,关系密切,为理工科院校数学专业重要的基础课程,理工科其它专业的高等数学课程也将会有越来越多的常微分方程内容。
17世纪到18世纪是常微分方程发展的经典理论阶段,以求通解为主要研究内容;从18世纪下半叶到19世纪,此阶段为常微分方程发展的适定性理论阶段,人们从求通解的热潮转向研究常微分方程问题的适定性理论;19世纪为常微分方程发展的解析理论阶段,这一阶段的主要成果是微分方程的解析理论,运用幂级数和广义幂级数解法,求出一些重要的二阶线性方程的幂级数解,并得到极其重要的一些特殊函数;19世纪至20世纪是常微分方程的定性理论阶段,以定性与稳定性理论为研究内容。
二、研究的基本内容与拟解决的主要问题研究的基本内容:本文着重讨论求解各种二阶微分方程的方法。
第5章 常微分方程及其应用习题5.21.求下列各微分方程的通解:(1)02=+ydy dx x ; (2)0ln =-'y y y x ; (3)0)()(22=-++dy y x y dx x xy ; (4)03=-'xy y ; (5)xe y y =-'2; (6)x x y y cos tan +='.2.求下列各微分方程满足所给初始条件的特解: (1)yx ey -='2,0)0(=y ; (2)011=+-+dy xy dx y x ,1)0(=y ; (3)x y y cos =-',0)0(=y ; (4)x x y y sec tan =-',0)0(=y ; (5)xx x y y sin =+',1)(=πy ; (6)()0122=+-+dx x xy dy x ,0)1(=y . 5.3 可降阶微分方程及二阶常系数线性微分方程案例引入 求微分方程x y 6=''的通解. 解 两边积分,得1236C x xdx y +=='⎰两边再积分,得 ()213123C x C x dx C xy ++=+=⎰所以,原方程的通解为213C x C x y ++=,其中21C C 、为任意常数.5.3.1 可降阶微分方程 1. 形如)()(x f yn =的微分方程特点:方程右端为已知函数)(x f . 解法:对)()(x f yn =连续积分n 次,即可得含有n 个任意常数的通解.2. 形如),(y x f y '=''的微分方程 特点:方程右端不显含未知函数y .解法: 令)(x p y =',则)(x p y '=''.于是,原方程可化为),(p x f p ='.这是关于p p ',的一阶微分方程.设其通解为),()(1C x x p ϕ=,即),(1C x y ϕ='.两边积分,即可得原方程通解21),(C dx C x y +=⎰ϕ,其中21C C 、为任意常数.3. 形如),(y y f y '=''的微分方程 特点:方程右端不显含自变量x . 解法:令)(y p y =',则dydp p dy dp y dx dy dy dp y ='=⋅=''.于是,原方程可化为 ),(p y f p p ='.这是关于p p ',的一阶微分方程.设其通解为),()(1C y y p ψ=,即 ),(1C y dx dyψ=.分离变量,得dx C y dy =),(1ψ.然后两边积分,即可得原方程通解 21),(C x C y dy+=⎰ψ,其中21C C 、为任意常数.例5-7 求微分方程x x y cos sin -='''的通解.解 两边积分,得12sin cos )cos (sin C x x dx x x y +--=-=''⎰两边再积分,得()2112cos sin 2sin cos Cx C x x dx C x x y +++-=+--=⎰第三次积分,得()322121sin cos 2cos sin C x C x C x x dx C x C x x y ++++=+++-=⎰所以,原方程的通解为3221sin cos C x C x C x x y ++++=,其中321C C C 、、为常数.例5-8 求微分方程0='-''y y x 的通解.解 令)(x p y =',则)(x p y '=''.原方程可化为0=-'p p x ,即01=-'p xp .这是关于p p ',的一阶线性齐次微分方程.其通解为:x C e C eC x p x dxx 1ln 111222)(==⎰=,即x C y 12='.两边积分,即得原方程通解22112C x C dx x C y +==⎰,其中21C C 、为任意常数.例5-9 求微分方程x xe y xy -='-''1的通解. 解 令)(x p y =',则)(x p y '=''.于是,原方程可化为x xe p xp -=-'1.这是关于p p ',的一阶线性非齐次微分方程.其通解为⎥⎦⎤⎢⎣⎡+⎰⎰=⎰--1112)(C dx e xe e x p dx xx dx x ()1ln ln 2C dx e xee x xx +=⎰--()12C dx exx+=⎰-()12C e x x +-=-即()12C ex y x+-='-.两边积分,即得原方程通解()()⎰⎰+-=+-=--dx x C xedx C e x y xx 1122()21x C e xd x +=⎰-21x C dx e xe x x +-=⎰--221)1(C x C e x x +++=-其中21C C 、为任意常数.例5-10 求微分方程()02='-''y y y 的通解.解 令)(y p y =',则)(y p p y '=''.于是,原方程可化为02=-'p p yp ,即01=-'p yp .这是关于p p ',的一阶线性齐次微分方程.其通解为 y C e C eC y p y dyy 1ln 111)(==⎰=,即y C y 1='.所以原方程通解为x C dxC e C e C y 1122=⎰=,其中21C C 、为任意常数.5.3.2 二阶常系数齐次线性微分方程 定义5.4 形如常数 0为、,q p qy y p y =+'+'' (5-5) 的微分方程,称为二阶常系数齐次线性微分方程.1. 二阶常系数齐次线性微分方程解的结构定理5.1 如果函数)(1x y 和)(2x y 是方程(5-5)的两个解,那么为任意常数)()(212211C C x y C x y C y 、,+= (5-6) 也是方程(5-5)的解.(证明略)定理 5.1表明,二阶常系数齐次线性微分方程的解具有叠加性.那么叠加起来的解)()(2211x y C x y C y +=就是通解吗?不一定.例如,设函数)(1x y 是方程(5-5)的一个解,则函数)(2)(12x y x y =也是方程(5-5)的一个解.由定理5.1可知,)()2()(2)(1211211x y C C x y C x y C y +=+=是方程(5-5)的解.但C C C =+212仍是一个任意常数,所以)()()2(1121x Cy x y C C y =+=不是方程(5-5)的通解.那么在什么条件下才能保证)()(2211x y C x y C y +=就是通解呢?定义5.5 设)(1x y 和)(2x y 是定义在某区间I 上的两个函数,如果存在两个不全为零的常数1k 和2k ,使0)()(2211=+x y k x y k 在区间I 上恒成立,则称函数)(1x y 与)(2x y 在区间I 上线性相关,否则称线性无关.由定义5.5可知,判断函数)(1x y 与)(2x y 线性相关或线性无关的方法: 当=-=2112)()(k k x y x y 常数时,)(1x y 与)(2x y 线性相关.当≠)()(12x y x y 常数时,)(1x y 与)(2x y 线性无关.定理 5.2 如果函数)(1x y 和)(2x y 是方程(5-5)的两个线性无关的特解,那么 (5-6)是方程(5-5)的通解.(证明略)2. 二阶常系数齐次线性微分方程的解法由上述关于解的结构分析可知,欲求方程(5-5)的通解,首先需讨论如何求出方程(5-5)的两个线性无关的特解.猜想方程(5-5)有形如rx e y =的解,其中r 为待定常数.将rxe y =代入该方程,得0)()()()(22=++=++=+'+''rx rx rx rx rx rx rx e q pr r qe pre e r e q e p e ,由于0≠rx e ,所以只要r 满足方程为常数、,q p q pr r 02=++ (5-7)即当r 是方程(5-7)的根时,函数rxe y =就是方程(5-5)的解.定义5.6 方程(5-7)称为方程(5-5)的特征方程.特征方程的根称为特征根. 设21r r 、为特征方程(5-7)的两个特征根.根据特征根的不同情形,确定方程(5-5)的通解有以下三种情况:(1)若方程(5-7)有两个不相等的实根21r r ≠,则xr e y 11=和xr ey 22=是方程(5-5)的两个线性无关的特解,故方程(5-5)的通解为x r xr e C e C y 2121+=,其中21C C 、为任意常数.(2)若方程(5-7)有两个相等实根221p r r r -===,则仅得到一个特解rxe y =1,利用常数变易法可得到与rxe y =1线性无关的另一个特解rxxe y =2,故方程(5-5)的通解为x r xr xe C eC y 21+=,其中21C C 、为任意常数.(3)若方程(5-7)有一对共轭复根βαi r +=1与βαi r -=2,则xi ey )(1βα+=和x i e y )(2βα-=是方程(5-5)的两个复数特解.为便于在实数范围内讨论问题,在此基础上可找到两个线性无关的实数特解x exβαcos 和x e x βαsin .故方程(5-5)的通解为)s in cos (21x C x C e y x ββα+=,其中21C C 、为任意常数.由定理5.1可知,以上两个函数x e xβαcos 和x e x βαsin 均为方程(5-5)的解,且它们线性无关.上述依据特征根的不同情形来求二阶常系数齐次线性微分方程通解的方法,称为特征根法.一般步骤:第一步 写出所给微分方程的特征方程;第二步 求出特征根;第三步 根据特征根的三种不同情形,写出通解.(特征根与通解的关系参见表5-1)表5-1 特征根与通解的关系特征方程02=++q pr r 的两个根21r r , 微分方程0=+'+''qy y p y 的通解一 两个不相等实根21r r ≠ x r x r e C e C y 2121+=二 两个相等实根221pr r r -=== x r e x C C y )(21+=三一对共轭复根βαi r +=1,βαi r -=2)sin cos (21x C x C e y x ββα+=例5-11 求微分方程032=-'-''y y y 的通解.解 该方程的特征方程0322=--r r 的特征根为11-=r ,32=r (21r r ≠). 所以,方程的通解为x xe C eC y 321+=-.例5-12 求微分方程02=+'+''y y y 满足初始条件0)0(=y ,1)0(='y 的特解. 解 该方程的特征方程0122=++r r 的特征根为121-==r r .所以方程的通解为x e x C C y -+=)(21上式对x 求导,得: x xe x C C eC y --+-=')(212将0)0(=y ,1)0(='y 代入上两式,解得01=C ,12=C .因此,所求特解为xxey -=.例5-13 求微分方程052=+'-''y y y 的通解.解 该方程的特征方程0522=+-r r 的特征根为i r 211+=,i r 212-=. 所以,方程的通解为)2sin 2cos (21x C x C e y x+=.5.3.3 二阶常系数非齐次线性微分方程 定义5.7 形如常数 )(为、,q p x f qy y p y =+'+'' (5-8)的微分方程,称为二阶常系数非齐次线性微分方程.1. 二阶常系数非齐次线性微分方程解的结构定理5.3 如果函数)(x y *是方程(5-8)的一个特解,)(x Y 是该方程所对应的线性齐次方程(5-5)的通解,那么)()(x y x Y y *+= (5-9)是方程(5-8)的通解.定理5.4 如果函数)(1x y *是方程)(1x f qy y p y =+'+''的特解,函数)(2x y *是方程)(2x f qy y p y =+'+''的特解,那么)()(21x y x y y ***+= (5-10)就是方程)()(21x f x f qy y p y +=+'+''的特解.2. 二阶常系数非齐次线性微分方程的解法二阶常系数齐次线性微分方程的通解问题已经解决,根据定理 5.3,求二阶常系数非齐次线性微分方程的通解的关键在于求其自身的一个特解.以下介绍当自由项)(x f 为几类特殊函数时求特解的方法:(1)xn e x P x f λ)()(=,)(x P n 是x 的n 次多项式,λ是常数微分方程的特解可设为⎪⎩⎪⎨⎧====*2,1,0,)(k k k e x Q x y x n k 是二重特征根时是单特征根时不是特征根时,λλλλ其中)(x Q n 是与)(x P n 同次待定多项式.(2)x x P x f n ωcos )()(=(或x x P n ωsin )(),)(x P n 是x 的n 次多项式,ω是常数 微分方程的特解可设为⎩⎨⎧==+=*10]sin )(cos )([k i k i x x R x x Q x y n n k是特征根时,非特征根时,,ωωωω 其中)(x Q n 和)(x R n 是与)(x P n 同次待定多项式.(3)x ex f xωλcos )(=(或x e x ωλsin ),λ与ω均为常数微分方程的特解可设为⎩⎨⎧=+=++=*1]sin cos [k i k i x B x A e x y x k 是特征根时,非特征根时,,ωλωλωωλ (4)当)(x f 为上述任意两类函数之和时,根据定理5.4处理即可. 例5-14 求微分方程132+='-''x y y 的通解.解 方程02='-''y y 的特征方程022=-r r 的特征根为21=r ,02=r .于是方程02='-''y y 的通解为221C e C y x +=又因为13)(+=x x P n ,0=λ是单特征根,所以原方程的特解可设为)()(B Ax x x xQ y n +==*代入原方程,解得43-=A ,45-=B .故原方程的通解为 x x C e C y x 45432221--+=.例5-15 求微分方程xe y y y 23=+'+''的一个特解.解 方程0=+'+''y y y 的特征方程012=++r r 的特征根为i r 23211+-=,i r 23212--=.x e x f 23)(=,2=λ非特征根,所以原方程的特解可设为 x Ae y 2=*代入原方程,解得73=A .故所求特解为x e y 273=*. 例5-16 求微分方程xxey y y 223-=+'+''的一个特解.解 方程023=+'+''y y y 的特征方程0232=++r r 的特征根为21-=r ,12-=r .x xe x f 2)(-=,x x P n =)(,2-=λ是单特征根,所以原方程的特解可设为x e B Ax x y 2)(-*+=代入原方程,解得21-=A ,1-=B .故所求特解为xe x x y 2)12(-*--=. 例5-17 求微分方程x y y sin =+''的通解.解 方程0=+''y y 的特征方程012=+r 的特征根为i r =1,i r -=2.于是方程0=+''y y 的通解为x C x C y sin cos 21+=又因为x x f sin )(=,i i =+ωλ是特征根,所以原方程的特解可设为)sin cos (x B x A x y +=*代入原方程,解得21-=A ,0=B .故原方程的通解为 x x x C x C y cos 21sin cos 21-+=.例5-18 求微分方程x x y y 2cos =+''的一个特解.解 方程0=+''y y 的特征方程012=+r 的特征根为i r =1,i r -=2.x x x f 2cos )(=,i i 2=+ωλ不是特征根,所以原方程的特解可设为x D Cx x B Ax y 2sin )(2cos )(+++=*代入原方程,解得31-=A ,0=B ,0=C ,94=D .故所求特解为x x x y 2sin 942cos 31+-=*.例5-19 求微分方程x e y y y x2cos 3=-'+''的一个特解.解 方程03=-'+''y y y 的特征方程0132=-+r r 的特征根为213231+-=r ,213232--=r .x e x f x2cos )(=,i i 21+=+ωλ不是特征根,所以原方程的特解可设为)2sin 2cos (x B x A e y x +=*代入原方程,解得1011-=A ,10110=B .故所求特解为 )2sin 101102cos 1011(x x e y x +-=*.例5-20 求微分方程x e y y y xsin 212+=+'-''的一个特解.解 方程02=+'-''y y y 的特征方程0122=+-r r 的特征根为121==r r .xe xf 21)(1=,x x f sin )(2=,1=λ是二重特征根,i i =ω不是特征根,所以两个分解方程的特解可分别设为x e Ax y 21=*与x C x B y sin cos 2+=*分别代入两个分解方程,解得41=A ,21=B ,0=C .故所求特解为x e x y x cos 21412+=*.习题5.31.求下列各微分方程的通解:(1)x x y sin +=''; (2)xxe y ='''; (3)0='+''y y x ; (4)x xe y xy ='-''1;(5)2)(1y y '+=''; (6)0)(122='-+''y yy . 2.求下列各微分方程满足所给初始条件的特解:(1)x e y 2=''',0)1()1()1(=''='=y y y ;(2)0)(32='-''y y ,0)0(=y ,1)0(-='y .3.判断下列各函数组是线性相关还是线性无关:(1)x 与2x ;(2)x e 2与x e 26;(3)x 与x xe ;(4)x e x cos 与x e xsin . 4.求下列各微分方程的通解:(1)0='-''y y ; (2)04=+''y y ;(3)02510=+'-''y y y ; (4)0=+'+''y y y .5.求下列各微分方程满足所给初始条件的特解:(1)034=+'-''y y y ,6)0(=y ,10)0(='y ;(2)044=+'-''y y y ,1)0(=y ,4)0(='y .6.求下列各微分方程的一个特解:(1)1332+=-'-''x y y y ; (2)x ey y y 244=+'-''; (3)x e y y y x sin 22-=+'-''; (4)x x y y sin 14++=+''.7.求下列各微分方程的通解:(1)22x y y y =+'-''; (2)xe y y y =-'+''32;(3)x e y y x cos +=+''; (4)x x y y y 2cos 2+=-'-''.8.求下列各微分方程满足所给初始条件的特解:(1)523=+'-''y y y ,1)0(=y ,2)0(='y ;(2)x xe y y 4=-'',0)0(=y ,1)0(='y .5.4 微分方程应用举例微分方程在实践中有着广泛的应用.在实际应用中,常常需要应用微分方程寻求实际问题中的未知函数.而要建立微分方程,除了需要数学知识外,往往还需要许多专业方面的知识.本节通过举例来介绍微分方程在几何学、电工学及力学方面的一些简单应用.例5-21 曲线L 上点),(y x M 处的法线与x 轴的交点为N ,且线段MN 被y 轴平分.求曲线L 的方程.解 如图5-2,设曲线的方程为)(x y y =.先建立法线MN 的方程.设法线上的动点坐标为),(Y X ,由于法线MN 的的斜率为y k '-=1法,于是法线MN 的方程为 )(1x X yy Y -'-=- 又因为线段MN 被y 轴平分,从而MN 与y 轴交点坐标为)2,0(yP ,代入上式,得 )0(12x y y y -'-=-,即x y y 2-=' 用分离变量法解得C y x =+222,其中C 为任意正数.yy M (x ,y )L xN O x图5—2例5-22 设有一C R 电路如图5-3所示,电阻Ω10=R ,电容F C 1.0=,电源电压)(sin 10V t u =,开关K 闭合前,电容电压0=C u ,求开关K 闭合后电容电压随时间而变化的规律)(t u C .KuCiR图5-3解 设开关K 闭合后电路中的电流为)(t i ,电容极板上的电荷为)(t q ,则有C Cu q =,dtdu C dt Cu d dt dq i C C ===)(, 根据回路电压定律:电容电压与电阻电压之和等于电源电压,即u Ri u C =+,于是有u dtdu RC u C C =+.将10=R ,1.0=C ,t u sin 10=代入,得t u u C C sin 10=+'.又因为开关K 闭合前,电容电压0=C u ,即0)0(=C u .从而问题转化为初值问题:⎩⎨⎧==+'0)0(sin 10CC C u t u u 用通解公式求得通解)c o s (s i n5t t Ae u t C -+=- 将初始条件0)0(=C u 代入通解,求得5=A .所以,所求特解为)cos (sin 55t t e u t C -+=-此即为所求规律)(t u C 的表达式.例5-23 设跳伞员开始跳伞后所受的空气阻力与其下落的速度成正比(比例系数为常数0>k ),起跳时的速度为0.求跳伞员下落的速度与时间之间的函数关系.解 这是一个运动问题,可利用牛顿第二定律ma F =建立微分方程.设跳伞员下落的速度与时间之间的函数关系为)(t v v =,则加速度)(t v a '=.由于跳伞员在下落过程中所受外力只有重力和空气阻力,于是有kv mg F -=,由牛顿第二定律ma F =可得速度)(t v v =应满足的微分方程为v m kv mg '=-.又因为起跳时的速度为0,即其初始条件为0)0(=v .所以,这个运动问题可化为初值问题:⎩⎨⎧='=-0)0(v v m kv mg 用分离变量法求出通解为t m k Ce kv mg -=-.将初始条件为0)0(=v 代入通解,解得mg C =.因此,所求特解为)1(t m k e kmg v --=,T t ≤≤0(T 为降落伞着地时间),此即为所求函数关系.例5-24 物体冷却过程.将某高温物体置于空气中冷却,假定空气温度恒为C ︒24,在时刻0=t 时,测得其温度为C ︒150,10分钟后测得温度为C ︒100.已知牛顿冷却定律:物体冷却速率与物体和介质的温差成正比.求物体的温度与时间的函数关系,并计算20分钟后该物体的温度.解 设物体的温度与时间的函数关系为)(t T T =.因为热量总是从温度高的物体向温度低的物体传导,从而物体随时间增加而逐渐冷却,所以冷却速率(温度的变化速度)0)(<'t T ,而物体和空气的温差恒为正.所以,根据牛顿冷却定律可得)24(--=T k dtdT .又因为在时刻0=t 时,测得其温度为C ︒150,即有150)0(=T .从而问题转化为初值问题:⎪⎩⎪⎨⎧=--=150)0()24(T T k dt dT ,其中0>k 为比例常数. 用分离变量法或通解公式解得t k e T -+=12624.将100)10(=T 代入,求得051.076126ln 101≈=k .故物体的温度与时间的函数关系为t e T 051.012624-+=.将20=t 代入,得)(6412624)20(20051.0C e T ︒≈+=⨯-.例5-25 弹簧振动问题.设有一弹簧上端固定,下端挂着一个质量为m 的物体.当弹簧处于平衡位置时,物体所受的重力与弹簧恢复力大小相等,方向相反.设给物体一个初始位移0x ,初速度0v ,则物体便在其平衡位置附近上下振动.已知阻力与其速度成正比,求振动过程中位移x 的变化规律.Ox图5-4解 建立坐标系如图5-4所示,平衡位置为原点.位移x 是时间t 的函数)(t x x =.物体在振动过程中受到弹簧恢复力f 与阻力R 的作用.由虎克定律,有kx f -=,其中0>k 为弹性系数,负号表示弹簧恢复力与位移方向相反;v R μ-=,其中0>μ为比例系数(或称阻尼系数),负号表示阻力与速度方向相反.根据牛顿第二定律ma F =,可得v kx ma μ--=.又因为)(t x a ''=,)(t x v '=,记m n μ=2,mk =2ω,0>n ,0>ω,所以上述弹簧振动问题化为初值问题:⎪⎩⎪⎨⎧='==++0022)0(,)0(02v x x x x dt dx n dt x d ω 这是一个二阶常系数齐次线性方程,其特征方程为0222=++ωnr r ,特征根为222,1ω-±-=n n r .具体情况讨论如下:(1)大阻尼情形,即ω>n .这时,特征根是两个不相等实根,所以方程的通解为t n n t n n e C e C x )(2)(12222ωω-+----+=.(2)临界阻力情形,即ω=n . 这时,特征根n r r -==21,所以方程的通解为nt e t C C x -+=)(21.(3)大阻尼情形,即ω>n . 这时,特征根是一对共轭复根i n n r 222,1-±-=ω,所以方程的通解为)sin cos (222221t n C t n C e x nt -+-=-ωω.上述三种情形中的任意常数均可由初始条件确定.这类振动问题均会因阻尼的作用而停止,称为弹簧的阻尼自由振动.习题5.41.设过点)1,1(的曲线L 上任意点),(y x M 处的切线分别与x 轴、y 轴交于点A 、B ,且线段AB 被点M 平分.求曲线L 的方程.2.在如图5-5所示的C R 电路中,已知开关S 闭合前,电容上没有电荷,电容两端电压为零,电阻为R ,电容为C ,电源电压为E .把开关S 合上,电源对电容充电,电容电压C u 逐渐升高.求电容电压C u 随时间t 变化的规律.SECiR图5-53.将温度为C ︒100的沸水注入杯中,放在室温为C ︒20的环境中自然冷却,min 5后测得温度为C ︒60.求水温与时间的函数关系,并计算水温自C ︒100降至C ︒30所需时间.4.设有一弹簧上端固定,下端挂着一个质量为kg 025.0的物体.先将物体用手拉到离平衡位置m 04.0处,然后放手,让物体自由振动.若物体所受的阻力大小与运动速度成正比,方向相反,弹簧的弹性系数m N k /625.0=,阻尼系数m s N /2.0⋅=μ.求物体的运动规律.知识拓展:马尔萨斯(Malthus )模型马尔萨斯(Malthus )模型是最简单的生态学模型.给定一个种群,我们的目的是确定种群的数量是如何随着时间发展变化的.为此,我们作出如下假设:模型假设:1.初始种群规模已知0)0(x x =,种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的;2.种群在空间分布均匀,没有迁入和迁出(或迁入和迁出平衡);3.种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等;4.环境资源是无限的.确定变量和参数:为把问题转化为数学问题,我们首先确定建模中所需变量和参数:t :时间(自变量),)(t x :t 时刻的种群密度,b :瞬时出生率,d :瞬时死亡率. 模型的建立与求解:考察时间段],[t t t ∆+(不失一般性,设0>t ∆),由物质平衡原理,在此时间段内种群的数量满足:t t ∆+时刻种群数量t -时刻种群数量t ∆=内新出生个体数t ∆-内死亡个体数,即t t dx t t bx t x t t x ∆∆∆)()()()(-=-+亦即)()()()(t x d b tt x t t x -=-+∆∆ 令0→t ∆,可得 )(:)()()(t x t x d b dtt dx λ=-= 满足初始条件0)0(x x =的解为t t d b e x e x t x λ0)(0)(==-于是有0>λ时,即d b >,则有+∞=∞→)(lim t x t , 0=λ时,即d b =,则有0)(lim x t x t =∞→, 0<λ时,即d b <,则有0)(lim =∞→t x t . 马尔萨斯(Malthus )模型的积分曲线)(t x 呈“J ”字型,因而种群的指数增长又称为“J ”型增长.人也是一种生物种群,人口预测问题就是在马尔萨斯(Malthus )模型的基础上通过修改而得以解决。
§4.3 高阶方程的降阶和幂级数解法4.3.1 可降阶的一些方程类型 n 阶微分方程一般地可写为()(,,,,)0n F t x x x '=下面讨论三类特殊方程的降阶问题:1)方程不显含未知函数x ,或更一般地,设方程不含(1),,,k x x x -',即方程呈形状:()(1)()(,,,,)0k k n F t x x x += (1)k n ≤≤ (4.57)若令()k x y =,则方程即降为关于y 的n k -阶方程()(,,,,)0n k F t y y y -'= (4.58)如果能够求得方程(4.58)的通解12(,,,,)n k y t c c c ϕ-=即 ()12(,,,,)k n k x t c c c ϕ-=再经过k 次积分得到12(,,,,)n x t c c c ψ=其中12,,,n c c c 为任意常数。
可以验证,这就是方程(4.57)的通解。
特别地,若二阶方程不显含x (相当于2n =,1k =的情形)。
则用变换x y '=便把方程化为一阶方程。
例1 求方程545410d x d xdt t dt-=的解。
解 令44d xy dt=,则方程化为10dy y dx t-= 这是一阶方程,积分后得y ct =,即44d xct dt=,于是53212345x c t c t c t c t c =++++其中125,,,c c c 为任意常数,这就是原方程的通解。
2)不显含自变量t 的方程()(,,,)0n F x x x '= (4.59)我们指出,若令x y '=,并以它为新未知函数,而视x 为新自变量,则方程就可降低一阶。
事实上,在所作假定下,x y '=,dy dy dy x x y dt dx dx'''===,2222dy d y x y y dx dx ⎛⎫'''=+ ⎪⎝⎭,…,采用数学归纳法不难证明,可用表出(k n ≤)。
填空题(50)1、 曲线上任一点(,)x y 处的切线斜率等于(1)yx-+,且过点(2,1),则该曲线方程是 .答案:142y x x=-+ 难度等级:2;知识点:一阶线性常微分方程.分析 直接由切线斜率的定义及过定点可得一阶线性微分方程的初值问题111dy y y dx x x ⎛⎫=-+=-- ⎪⎝⎭及初始条件(2)1y = ,由通解公式可得142y x x =-+。
2、 一潜水艇在下沉力P (含重力)的作用下向水底下沉,已知水的阻力与下沉速度成正比(比例系数为k ),开始下沉速度为零,则速度与时间的函数关系是 . 答案:()kt me v t k kP P -=- 难度等级:2;知识点:一阶非齐次线性常微分方程. 分析 由牛顿第二定律可得一阶微分方程的初值问题()()dv t m P kv t dt=- 可得一阶线性微分方程的初值问题()()dv t kv t Pdt m m-=+ 及初始条件(0)0v = ,由通解公式可得()ktme v t k kP P-=-。
3、 曲线上任一点的切线斜率恒为该点的横坐标与纵坐标之比,则此曲线的方程是 . 答案:22y x C -=难度等级:2;知识点:一阶线性常微分方程.分析 直接由切线斜率的定义及过定点可得一阶线性微分方程的初值问题dy x dx y= ,即有0ydy xdx -= ,2202y x d ⎛⎫-= ⎪⎝⎭,故可得曲线方程为22y x C -=。
4、 满足方程21,(1)1,(1)0x y y y '''==-=的解为 . 答案:ln 2y x x =-+-难度等级:2;知识点:可降阶的二阶常微分方程.分析 将方程变形为2221d y dx x= ,连续积分两次可得通解为12ln y x C x C =-++ ,再代入初始条件可解得121,2C C ==-,故可得解为ln 2y x x =-+-。
5、 当λ等于 时,0y y λ''+=存在满足(0)(1)0y y '==的非零解。
第四节 可降阶的二阶微分方程
对一般的二阶微分方程没有普遍的解法,本节讨论三种特殊形式的二阶微分方程,它们
有的可以通过积分求得,有的经过适当的变量替换可降为一阶微分方程,然后求解一阶微分
方程,再将变量回代,从而求得所给二阶微分方程的解.
分布图示
★ )(xfy型
★ 例1 ★ 例2
★ ),(yxfy型
★ 例3 ★ 例4 ★ 例5
★ ),(yyfy型
★ 例6 ★ 例7
★ 内容小结 ★ 课堂练习
★ 习题8-4
内容要点:
一、 )(xfy型
在方程)(xfy两端积分,得
1
)(Cdxxfy
再次积分,得
21
)(CdxCdxxfy
注:这种类型的方程的解法,可推广到n阶微分方程
)()(xfyn
,
只要连续积分n次, 就可得这个方程的含有n个任意常数的通解.
二、 ),(yxfy型
这种方程的特点是不显含未知函数y,求解的方法是:
令),(xpy 则)(xpy,原方程化为以)(xp为未知函数的一阶微分方程,
).,(pxfp
设其通解为
),,(1Cxp
然后再根据关系式,py 又得到一个一阶微分方程
).,(1Cxdxdy
对它进行积分,即可得到原方程的通解
.),(21CdxCxy
三、),(yyfy型
这种方程的特点是不显含自变量x. 解决的方法是:把y暂时看作自变量,并作变换
),(ypy
于是,由复合函数的求导法则有
.dydppdxdydydpdxdpy
这样就将原方程就化为
).,(pyfdydpp
这是一个关于变量y、p的一阶微分方程. 设它的通解为
),,(1Cypy
这是可分离变量的方程,对其积分即得到原方程的通解
.),(21CxCydy
例题选讲:
)(xfy
型
例1(E01)求方程xeyxcos2满足1)0(,0)0(yy的特解.
解 对所给方程接连积分二次,得
,sin2112Cxeyx
(1)
,cos41212CxCxeyx
(2)
在(1)中代入条件,1)0(y得,211C在(2)中代入条件,0)0(y得,452C
从而所求题设方程的特解为
.4521cos412xxey
x
例2求方程0)3()4(yxy的通解.
解 设),(xPy代入题设方程,得),0(0PPPx
解线性方程,得xCP11(C为任意常数),即,1xCy
两端积分,得,21221CxCy,63231CxCxCy
再积分得到所求题设方程的通解为
,224432241CxCxCxCy
其中)4,3,2,1(iCi为任意常数.
进一步通解可改写为.432241dxdxdxdy其中)4,3,2,1(idi为任意常数.
),(yxfy
型
例3(E02)求方程02)1(222dxdyxdxydx的通解.
解 这是一个不显含有未知函数y的方程.令),(xpdxdy则,22dxdpdxyd于是题设方程降
阶为,02)1(2pxdxdpx即.122dxxxpdp两边积分,得
|,|ln)1ln(||ln12Cxp即)1(21xCp
或).1(21xCdxdy
再积分得原方程的通解
.3231CxxCy
例4 求微分方程初值问题
3,1,2)1(002xxyyyxyx
的特解.
解 题设方程属),(yxfy型.设,py代入方程并分离变量后,有.122dxxxpdp
两端积分,得,)1ln(||ln2Cxp即)1(21xCyp).(1ceC
由条件,30xy得,31C所以).1(32xy
两端再积分,得.323Cxxy又由条件,10xy得,12C
于是所求的特解为 .133xxy
例5 求微分方程12yyx满足),1(2)1(yy 且当0x时, y有界的特解.
解法1 所给方程不显含,y属),(yxfy型,令,py则,py代入方程降阶后求解,
此法留给读者练习.
解法2 因为,)(2yyxyyx即,111xCyxy这是一阶线性微分方程,解得
,221xCCxy
因为0x时,y有界,得,02C故,21Cxy由此得21y及,21)1(1Cy
又由已知条件),1(2)1(yy得,211C从而所求特解为.212xy
),(yyfy
型
例6(E03)求方程02yyy的通解.
解 设),(ypy则,dydppy代入原方程得,02pdydppy即.0pdydpyp
由,0pdydpy可得,1yCp所以,1yCdxdy
原方程通解为 .12xCeCy
例7 求微分方程)(22yyyy满足初始条件,1)0(y 2)0(y的特解.
解 令,py由,dydppy代入方程并化简得
).1(2pdydpy
上式为可分离变量的一阶微分方程,解得,12Cyyp
再分离变量,得,12dxCydy由初始条件,1)0(y
2)0(y
定出,1C从而得,12dxydy再两边积分,得1arctanCxy或),tan(1Cxy
由1)0(y定出,41arctan1C从而所求特解为).4tan(xy
课堂练习
1.求方程xyln的通解.