2019年连云港市赣榆县八年级上册期末数学试题(有答案)-精编试题
- 格式:doc
- 大小:300.50 KB
- 文档页数:19
2019-2020学年江苏省连云港八年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共8小题,共24.0分)1.如图所示,图中不是轴对称图形的是().A. B.C. D.2.下列各点中,位于第四象限的点是()A. (3,4)B. (−3,4)C. (3,−4)D. (−3,−4)3.下列四组线段中,可以构成直角三角形的是()A. 4cm、5cm、6cmB. 1cm、√2cm、3cmC. 2cm、3cm、4cmD. 1.5cm、2cm、2.5cm4.如图,某同学把三角形玻璃打碎成三片,现在他要去配一块完全一样的,他想了一想,结果带第3片去.理由是根据三角形全等的判定方法中()A. SSSB. SASC. ASAD. AAS5.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A. 9cmB. 12cmC. 15cmD. 12cm或15cm6.一次函数y=3x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.下列说法中正确的有()①零是最小的实数;②无理数就是带根号的数;③不带根号的数是有理数;④无限小数不能化成分数;⑤无限不循环小数就是无理数.A. 0个B. 1个C. 2个D. 3个8.若点M(m,n)在一次函数y=−5x+b的图像上,且5m+n<3,则b的取值范围为()A. b>3B. b>−3C. b<3D. b<−3第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)9.16的平方根是___________.10.若一次函数y=2x+b的图象经过A(−1,1),则b=______,该函数图象经过点B(1,______)和点C(______,0).11. 6.4358精确到0.01的近似数是______.12.已知点A(x1,y1)、点B(x2,y2)都在直线y=−4x+3上,且x1<x2,则y1与y2的大小关系是_______.13.如图,在平面直角坐标系中,函数y=2x−3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x−3>kx+b的解集是______.14.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为______.15.如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是______.16. 如图,已知正方形ABCD ,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2016次变换后,正方形ABCD 的对角线交点M 的坐标变为_______________. 三、计算题(本大题共1小题,共8.0分)17. 已知一次函数图象经过点(3,5),(−4,−9)两点.(1)求一次函数解析式;(2)求该函数图象与坐标轴围成的三角形的面积.四、解答题(本大题共9小题,共94.0分)18. 计算或求x 的值:(1)√36−√643+√916(2)2(x −13)2=1819. 如图,在△ABC 中,AB =AC ,点D 在BC 边上,AE//BC ,AE =BD.求证:AD =CE .20.如图,在长度为1个单位的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线MN成轴对称的△A1B1C1;(不写画法)(2)请你判断△ABC的形状,并求出AC边上的高.21.如图,一架长为5米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子底端距离墙ON有3米.(1)求梯子顶端与地面的距离OA的长.(2)若梯子顶点A下滑1米到C点,求梯子的底端向右滑到D的距离.22.如图所示,△ABC中,点D在BC边上,且BD=AD=AC.(1)用尺规作图作出线段DC的垂直平分线AE,交DC于E点.(保留作图痕迹不要求写出作法和证明)(2)若∠CAE=16°,求∠B的度数.23.某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价−购买原材料成本−水费)24.如图,已知AB=CD,∠B=∠C,AC和BD交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.25.26.甲、乙两地相距480km,一辆货车从甲地匀速驶往乙地,货车出发一段时间后,一辆汽车从乙地匀速驶往甲地,设货车行驶的时间为xh.线段OA表示货车离甲地的距离y1km与xh的函数图象;折线BCDE表示汽车距离甲地的距离y2km与x(ℎ)的函数图象.(1)求线段OA与线段CD所表示的函数表达式;(2)若OA与CD相交于点F,求点F的坐标,并解释点F的实际意义;(3)当x为何值时,两车相距100千米?26.综合与探究:如图在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(12,0)、C(0,9),将矩形OABC的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB的长度为____________;(2)求直线BD所对应的函数表达式;(3)若点Q在线段BD上,在线段BC上是否存在点P,使以D、E、P、Q为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】【分析】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.结合轴对称图形的概念进行求解即可.【解答】解:A、是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项不符合题意;C、不是轴对称图形,本选项符合题意;D、是轴对称图形,本选项不符合题意;故选C.2.【答案】C【解析】【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据各象限内点的坐标特征对各选项分析判断即可得解.【解答】解:A.(3,4)在第一象限;B.(−3,4)在第二象限;C. (3,−4)在第四象限;D.(−3,−4)在第三象限.故选C.3.【答案】D【解析】【分析】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A.52+42≠62,不能构成直角三角形,故不符合题意;B.12+(√2)2≠32,不能构成直角三角形,故不符合题意;C.22+32≠42,不能构成直角三角形,故不符合题意;D.1.52+22=2.52,能构成直角三角形,故符合题意.故选D.4.【答案】C【解析】【分析】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.根据全等三角形的判定定理即可得到结论.【解答】解:理由是根据三角形全等的判定方法中的ASA.故选:C.5.【答案】C【解析】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选:C.题中没有指明哪个是底哪个是腰,则应该分两种情况进行分析,从而得到答案.本题考查了三角形三边关系与周长的求解.6.【答案】D【解析】解:∵k=3>0,b=2>0,∴直线y=3x+2经过一、二、三象限,不经过第四象限.故选:D.一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过1,2,3象限,据此作答.本题考查一次函数的k>0,b>0的图象性质.一次函数的图象经过第几象限,取决于x的系数和常数项.7.【答案】B【解析】【分析】此题主要考查了实数、无理数、有理数的定义.①根据实数的定义即可判定;②根据无理数的定义即可判定;③根据无理数、有理数的定义即可判定;④根据分数和无限小数的关系即可判定;⑤根据无理数的概念即可解答.【解答】解:①没有最小的实数,故说法错误;②无理数就是无限不循环小数,其中有开方开不尽的数,故说法错误;③不带根号的数不一定是有理数,例π就不带根号但它是无理数,故说法错误;④无限循环小数能化成分数,故说法错误;⑤无限不循环小数是无理数,故说法正确;故选B.8.【答案】C【解析】【分析】本题考查了一次函数图象与系数的关系,根据一次函数图象上点满足函数解析式这一特点,结合5m+n<3,确定b<3是解题的关键.由点M的坐标结合一次函数图象上点的坐标特征,可得出−5m+b=n,再由5m+n<3,即可得出结论.【解答】解:∵点M(m,n)在一次函数y=−5x+b的图象上,∴−5m+b=n.∵5m+n<3,∴5m−5m+b<3,即b<3.故选C.9.【答案】±4【解析】【分析】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为±4.10.【答案】3;5;−32【解析】解:将A(−1,1)代入函数解析式,得1=−2+b,解得b=3,函数解析式为y=2x+3,当x=1时,y=2+3=5,,当y=0时,0=2x+3,x=−32.故答案为:3,5,−32根据待定系数法,可得函数解析式,根据自变量与函数值的对应关系,可得答案.本题考查了一次函数图象上点的坐标特征,利用图象上点的坐标满足函数解析式是解题关键.11.【答案】6.44【解析】解:6.4358精确到0.01的近似数为6.44.故答案为6.44.把千分位上的数字5进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.【答案】y1>y2【解析】【试题解析】【分析】本题考查的是一次函数图象上点的坐标特点,一次函数的性质,属于基础题.先根据一次函数的解析式判断出函数的增减性,再由x1<x2即可得出结论.【解答】解:∵直线y=−4x+3中,k=−4<0,∴y随x的增大而减小.∵x1<x2,∴y1>y2.故答案为y1>y2.13.【答案】x>2【解析】解:把P(m,1)代入y=2x−3得2m−3=1,解得m=2,即P点(2,1),当x>2时,2x−3>kx+b,即不等式2x−3>kx+b的解集为x>2.故答案为x>2.先利用一次函数图象上点的坐标特征确定P点坐标,然后写出直线y=2x−3在直线y=kx+b上方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.【答案】√10−1【解析】【分析】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示−1,可得M点表示的数.【解答】解:AC=√AB2+CB2=√32+12=√10,则AM=√10,∵A点表示−1,∴M点表示√10−1,故答案为:√10−1.15.【答案】6013【解析】【分析】此题主要考查了等腰三角形的性质、勾股定理、三角形面积的求法等知识的综合应用能力.过A作BC的垂线,由勾股定理易求得此垂线的长,即可求出△ABC的面积;连接CD,由于AD=BD,则△ADC、△BCD等底同高,它们的面积相等,由此可得到△ACD的面积;进而可根据△ACD的面积求出DE的长.【解答】解:过A作AF⊥BC于F,连接CD.∵△ABC中,AB=AC=13,AF⊥BC,BC=5.∴BF=FC=12在Rt△ABF中,由勾股定理,得AF=√132−52=12,BC⋅AF=60,∴S△ABC=12∵AD=BD,S△ABC=30,∴S△ADC=S△BCD=12AC⋅DE=30,∵S△ADC=12∴DE =2×30AC =6013. 故答案为:6013. 16.【答案】(−2014,2)【解析】【分析】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n 次变换后的对角线交点M 的对应点的坐标为:当n 为奇数时为(2−n,−2),当n 为偶数时为(2−n,2)是解此题的关键.首先由正方形ABCD ,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2−n,−2),当n 为偶数时为(2−n,2),继而求得把正方形ABCD 连续经过2015次这样的变换得到正方形ABCD 的对角线交点M 的坐标.【解答】解:∵正方形ABCD ,顶点A(1,3)、B(1,1)、C(3,1),∴对角线交点M 的坐标为(2,2),根据题意得:第1次变换后的点M 的对应点的坐标为(2−1,−2),即(1,−2), 第2次变换后的点M 的对应点的坐标为:(2−2,2),即(0,2),第3次变换后的点M 的对应点的坐标为(2−3,−2),即(−1,−2),第n 次变换后的点M 的对应点的为:当n 为奇数时为(2−n,−2),当n 为偶数时为(2−n,2),∴连续经过2016次变换后,正方形ABCD 的对角线交点M 的坐标变为(−2014,2), 故答案为(−2014,2).17.【答案】解:(1)设一次函数解析式为y =kx +b ,把(3,5),(−4,−9)代入得:{3k +b =5−4k +b =−9,解得:{k =2b =−1, 则一次函数解析式为y =2x −1;(2)对于y =2x −1,令x =0,得到y =−1,令y =0,得到x =12,∴函数图象与两坐标轴交点坐标为(0,−1),(12,0),则函数图象与坐标轴围成的三角形面积S =12×1×12=14.【解析】本题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.(1)设一次函数解析式为y =kx +b ,把已知两点坐标代入求出k 与b 的值,即可确定出解析式;(2)分别令x 与y 为0求出y 与x 的值,确定出一次函数与坐标轴的交点坐标,确定出函数图象与坐标轴围成三角形的面积即可.18.【答案】解:(1)√36−√643+√916=6−4+34=234;(2)2(x −13)2=18 x −13=±√9,即x −13=±3,解得:x 1=103,x 2=−83.【解析】(1)直接利用立方根以及算术平方根的性质化简各数得出答案;(2)直接利用平方根的定义化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】 证明:∵ AB =AC ,∴∠B =∠ACB ,∵AE//BC,∴∠EAC=∠ACB,∴∠EAC=∠B,在△ABD和△CAE中,{AB=CA∠ABC=BD=AE∠CAE,∴△ABD≌△CAE(SAS),∴AD=CE.【解析】本题考查全等三角形的判定和性质、平行线的性质.等腰三角形的性质等知识,解题的关键是正确寻找全等的条件,属于基础题中考常考题型.欲证明AD=CE,只要证明△ABD≌△CAE即可.20.【答案】解:(1)△A1B1C1如图所示.(2)∵AB=√12+42=√17,BC=√12+42=√17,AC=√32+52=√34,∴AB2+BC2=AC2,AB=BC,∴△ABC是等腰直角三角形.设AC边上的高为h,则有:12⋅√17⋅√17=12√34⋅ℎ,∴ℎ=√342.∴AC边上的高为√34.2【解析】本题考查作图−轴对称变换,勾股定理,勾股定理的逆定理、三角形的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)利用勾股定理以及勾股定理的逆定理判断出三角形ABC的形状,利用三角形的面积公式求出AC边上的高;21.【答案】解:(1)AO=√52−32=4(米);(2)OD=√52−(4−1)2=4(米),BD=OD−OB=4−3=1(米).【解析】能够运用数学知识解决实际生活中的问题,考查了勾股定理的应用.(1)已知直角三角形的斜边和一条直角边,可以运用勾股定理计算另一条直角边;(2)在直角三角形OCD中,已知斜边仍然是5,OC=4−1=3(米),再根据勾股定理求得OD的长即可.22.【答案】解:(1)如图所示,线段AE即为所求.(2)∵AD=AC,AE垂直平分DC,∴∠DAC=2∠CAE=32°,∴∠ADC=∠ACD=74°,∵AD=BD,∴∠B=1∠ADC=37°.2【解析】本题主要考查作图−复杂作图,解题的关键是掌握等腰三角形的三线合一的性质与三角形的内角和定理、外角的性质等知识点.(1)由AD=AC,利用等腰三角形三线合一的性质作∠DAC平分线即可得;(2)先由等腰三角形三线合一的性质得∠DAC=32°,利用三角形内角和定理得出∠ADC 度数,继而根据AD=BD可得答案.23.【答案】解:设甲车间用x箱原材料生产A产品,则乙车间用(60−x)箱原材料生产A产品,由题意得:4x+2(60−x)≤200,解得:x≤40,w=30[12x+10(60−x)]−80×60−5[4x+2(60−x)]=50x+12600,∵50>0,∴w随x的增大而增大,∴当x=40时,w取得最大值,为14600元,答:甲车间用40箱原材料生产A产品,乙车间用20箱原材料生产A产品,使这次生产所能获取的利润w最大,最大利润是14600元.【解析】本题考查了一次函数的应用,一元一次不等式的应用,解决本题的关键是根据题意列出关系式,利用一次函数的性质解决问题.设甲车间用x箱原材料生产A产品,则乙车间用(60−x)箱原材料生产A产品,根据题意列出不等式,确定x的取值范围,从而得到w=50x+12600,根据一次函数的性质即可解答.24.【答案】证明:(1)在△AOB和△DOC中,∴△AOB≌△DOC(AAS);解:(2)∵△AOB≌△DOC,∴AO=DO.∵E是AD的中点,∴AE=DE.在△AOE和△DOE中,{AO=DO, AE=DE, OE=OE,∴△AOE≌△DOE(SSS).∴∠AEO=∠DEO.∵∠AEO +∠DEO =180°,∴∠AEO =∠DEO =90°.【解析】此题考查了对全等三角形的判定和性质的掌握,要熟练掌握全等三角形的判定和性质是解题的关键,并能灵活运用.(1)由已知条件可以利用AAS 来判定其全等;(2)根据△AOB≌△DOC 得到AO =DO ,再由E 是AD 的中点,得到AE =DE ,证明△AOE≌△DOE ,得到∠AEO =∠DEO ,又因为∠AEO +∠DEO =180°,即可得到∠AEO =∠DEO =90°.25.【答案】(1)线段OA 对应的函数关系式为y 1=80x(0≤x ≤6),线段CD 对应的函数关系式为y 2=−120x +624(1.2≤x ≤5.2);(2)点F 的坐标为(3.12,249.6),点F 的实际意义是:在货车出发3.21小时时,距离甲地249.6千米,此时与汽车相遇;(3)x 为2.62或x =3.62时,两车相距100千米.【解析】【分析】(1)根据函数图象中的数据可以求得相应的函数解析式;(2)根据(1)中的函数解析式可以求得点F 的坐标,并写出点F 表示的实际意义;(3)根据题意可以得到相应的方程,从而可以解答本题.【详解】(1)设线段OA 对应的函数关系式为y 1=kx ,6k =480,得k =80,即线段OA 对应的函数关系式为y 1=80x(0≤x ≤6),设线段CD 对应的函数关系式为y 2=ax +b ,{5.2a +b =01.2a+b=480,得{b =624a=−120,即线段CD对应的函数关系式为y2=−120x+624(1.2≤x≤5.2);y=80x,(2){y=−120x+624x=3.12,解得,{y=249.6∴点F的坐标为(3.12,249.6),点F的实际意义是:在货车出发3.21小时时,距离甲地249.6千米,此时与汽车相遇;(3)由题意可得,|80x−(−120x+624)|=100,解得,x1=2.62,x2=3.62,答:x为2.62或x=3.62时,两车相距100千.【点睛】考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.26.【答案】解:(1)15;(2)如图,设AD=x,则OD=OA=AD=12−x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,∴OE=OB−BE=15−9=6,在Rt△OED中,OE2+DE2=OD2,即62+x 2=(12−x)2,解得 x =92,∴OD =OA −AD =12−92=152,∴点D(152,0),设直线BD 所对应的函数表达式为:y =kx +b(k ≠0)则{12k +b =9152k +b =0,解得{k =2b =−15, ∴直线BD 所对应的函数表达式为:y =2x −15;(3)过点E 作EP//BD 交BC 于点P ,过点P 作PQ//DE 交BD 于点Q ,则四边形DEPQ 是平行四边形,再过点E 作EF ⊥OD 于点F ,由12·OE ·DE =12·DO ·EF ,得EF =6×92152=185,即点E 的纵坐标为185, 又点E 在直线OB :y =34x 上,∴185=34x ,解得x =245, ∴E(245,185), 由于PE//BD ,所以可设直线PE :y =2x +n ,∵E(245,185),在直线EP 上 ∴185=2×245+n ,解得 n =−6,∴直线EP :y =2x −6,令y =9,则9=2x −6,解得x =152,∴P(152,9).【解析】本题考查一次函数综合题、矩形的性质、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握待定系数法,学会构建一次函数解决问题,属于中考压轴题.(1)根据勾股定理即可解决问题;(2)设AD=x,则OD=OA=AD=12−x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,可得OE=OB−BE=15−9=6,在Rt△OED中,根据OE2+DE2=OD2,构建方程即可解决问题;(3)过点E作EP//BD交BC于点P,过点P作PQ//DE交BD于点Q,则四边形DEPQ 是平行四边形,再过点E作EF⊥OD于点F,想办法求出最小PE的解析式即可解决问题.【解答】解:(1)在Rt△ABC中,∵OA=12,AB=9,∴OB=√OA2+AB2=√92+122=15,故答案为15;(2)见答案;(3)见答案.。
连云港市八年级上学期期末数学试卷 (解析版) 一、选择题 1.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1 B .x=-1 C .x=3 D .x=-32.下列各点中,在函数y=-8x 图象上的是( ) A .(﹣2,4)B .(2,4)C .(﹣2,﹣4)D .(8,1) 3.点P (3,﹣4)关于y 轴的对称点P′的坐标是( )A .(﹣3,﹣4)B .(3,4)C .(﹣3,4)D .(﹣4,3) 4.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:505.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等6.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( )A .总体B .个体C .样本D .样本容量7.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=8.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .69.下列各组数是勾股数的是( )A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.5 10.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38二、填空题11.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.12.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.13.等腰三角形中有一个角的度数为40°,则底角为_____________.14.计算:32()x y -=__________.15.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.16.4的算术平方根是 .17.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.18.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.19.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.20.若代数式321x x -+有意义,则x 的取值范围是______________. 三、解答题21.一次函数(0)y kx b k =+≠的图象经过点(3,1)A 和点(0,2)B -.(1)求一次函数的表达式;(2)若此一次函数的图像与x 轴交于点C ,求BOC ∆的面积.22.如图,已知ABC ∆各顶点的坐标分别为()3,2A -,()4,3B --,()1,1C --,直线l 经过点()1,0-,并且与y 轴平行,111A B C ∆与ABC ∆关于直线l 对称.(1)画出111A B C ∆,并写出点1 A 的坐标 . (2)若点()P m n ,是ABC ∆内一点,点1P 是111 A B C ∆内与点P 对应的点,则点1P 坐标 .23.如图,一次函数()40y kx k k =+≠的图像与x 轴交于点A ,与y 轴交于点B ,且经过点()2C m ,.(1)当92m =时; ①求一次函数的表达式;②BD 平分ABO ∠交x 轴于点D ,求点D 的坐标;(2)若△AOC 为等腰三角形,求k 的值;(3)若直线42y px p =-+也经过点C ,且24p ≤<,求k 的取值范围.24.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.25.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为 °.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.四、压轴题26.阅读并填空:如图,ABC是等腰三角形,AB AC=,D是边AC延长线上的一点,E在边AB上且联接DE交BC于O ,如果OE OD,那么CD BE=,为什么?解:过点E作EF AC交BC于F所以ACB EFB∠=∠(两直线平行,同位角相等)D OEF∠=∠(________)在OCD与OFE△中()________COD FOEOD OED OEF⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE△≌△,(________)所以CD FE=(________)因为AB AC=(已知)所以ACB B=∠∠(________)所以EFB B∠=∠(等量代换)所以BE FE=(________)所以CD BE=27.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,求∠HPQ的度数.28.如图①,在ABC∆中,12AB=cm ,20BC=cm,过点C作射线//CD AB.点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM ∆与MCN ∆全等时, ①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值; (3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.29.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠.(初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.30.如图,直线l 1的表达式为:y=-3x+3,且直线l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C .(1)求点D 的坐标;(2)求直线l 2的解析表达式;(3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】当x=1时,分母为零,没有意义,所以是增根.故选A.2.A解析:A【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.3.A解析:A【解析】试题解析:∵点P(3,-4)关于y轴对称点P′,∴P′的坐标是:(-3,-4).故选A.4.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h,从而可得走后一半路程的速度为60km/h,根据时间=路程÷速度即可求得答案.【详解】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40km/h,因为匀速行驶了一半的路程后将速度提高了20km/h,所以以后的速度为20+40=60km/h,时间为4060×60=40分钟,故该车到达乙地的时间是当天上午10:40,故选B.本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.5.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.6.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.解析:D【解析】【分析】根据算术平方根的定义对A 进行判断;根据二次根式的加减法对B 进行判断;根据二次根式的性质对C 、D 进行判断.【详解】解:A 3=,所以A 选项错误;B B 选项错误;C 3=,所以C 选项错误;D 、(23=,所以D 选项正确. 故选D.【点睛】 此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.8.C解析:C【解析】【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABE ≌△ACF ,∴AC =AB =6,∴EC =AC ﹣AE =6-2=4,故选:C .【点睛】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.9.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C.【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.10.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn,难度适中.二、填空题11.【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10. ∴斜边上的中线长=×10=5.考点:1.勾股定理;2. 直角三角形斜边上的中线性质.解析:【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=12×10=5.考点:1.勾股定理;2. 直角三角形斜边上的中线性质.12.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.解:一次函数的图象向上平移3个单位长度可得:.故答案为:【点睛】本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.13.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°; 当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°. 故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.14.【解析】【分析】根据积的乘方法则进行计算.【详解】故答案为:【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.解析:62x y【分析】根据积的乘方法则进行计算.【详解】()2323262-=-=()x y x y x yx y故答案为:62【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.15.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.16.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.17.22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键.18.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.19.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.20.【解析】【分析】代数式有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式有意义,∴2x+1≠0,解得x≠.故答案为:x≠.【点睛】本题考查了分式有意义的条件.解析:12 x≠-【解析】【分析】代数式321xx-+有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式321xx-+有意义,∴2x+1≠0,解得x≠12 -.故答案为:x≠12 -.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.三、解答题21.(1)2y x =-;(2)2.【解析】【分析】(1)根据待定系数法将A 、B 两点的坐标代入求出k 、b 的值即可解决;(2)根据求出C 点坐标,由B 、C 两点的坐标即可求出△BOC 的面积.【详解】解:(1)将(3,1)A 和点(0,2)B -代入(0)y kx b k =+≠,得:312k b b +=⎧⎨=-⎩解得:21b k =-⎧⎨=⎩故一次函数解析式为:2y x =-.(2)令y=0得:0=x-2,x=2,所以C 点坐标为(2,0),OC=2所以三角形OBC 的面积=22222OC OB ⋅⨯== 【点睛】本题考查了待定系数法求函数解析式,利用点的坐标求三角形面积,解决本题的关键是熟练掌握待定系数法.22.(1) (1,2) ; (2) ()2,m n --.【解析】【分析】(1)根据轴对称的性质找到各点的对应点,然后顺次连接即可,画出图形即可直接写出坐标.(2)根据轴对称的性质可以直接写出1P .【详解】(1)如图所示:直接通过图形得到1A (1,2)(2) 由题意可得:由于()P m n ,与1P 关于x=-1 对称所以()12,P m n --.【点睛】此题主要考查了轴对称作图的知识,注意掌握轴对称的性质,找准各点的对称点是关键.23.(1)①334y x =+;②(-32,0);(2) 33k =;(3) 113k -<≤-. 【解析】【分析】(1)①把x=2,y=92代入4y kx k =+中求出k 值即可; ②作DE ⊥AB 于E ,先求出点A 、点B 坐标,继而求出OA 、OB 、AB 的长度,由角平分线的性质可得到OD=DE,于是BE=OB 可求BE 、AE 的长,然后在Rt AED ∆中用勾股定理可列方程,解方程即可求得OD 的长;(2)求得点A 坐标是(-4,0),点C 坐标是(2,6k ),由△AOC 为等腰三角形,可知OC=OA=4,故2222(6)4k +=,解方程即可;(3) 由直线42y px p =-+经过点C ()2m ,, 得242m p p =-+=22p -+,由(2)知6m k =,故226p k -+=,用k 表示p 代入24p ≤<中得到关于k 的不等式,解不等式即可.【详解】解:(1)当92m =时,点C 坐标是922⎛⎫ ⎪⎝⎭,, ①把x=2,y=92代入4y kx k =+中, 得9242k k =+,解得34k =, 所以一次函数的表达式是334y x =+; ②如图,BD 平分ABO ∠交x 轴于点D ,作DE ⊥AB 于E ,∵在334y x =+中,当x=0时,y=3;当y=0时,x=-4, ∴点A 坐标是(-4,0),点B 坐标是(0,3),∴OA=4,OB=3, ∴22345AB +=,∵BD 平分ABO ∠, DE ⊥AB, DO ⊥OB,∴OD=DE,∵BD=BD,∴OBD EBD ∆≅∆,∴BE=OB=3,∴AE=AB-BE=5-3=2,∵在Rt AED ∆中,222AE DE AD +=,∴2222(4)OD OD +=-,∴OD= 32, ∴点D 坐标是(-32,0), (2) ∵在4y kx k =+中,当y=0时,x=-4;当x=2时,y=6k , ∴点A 坐标是(-4,0),点C 坐标是(2,6k ), ∵△AOC 为等腰三角形,∴OC=OA=4,∴2222(6)4k +=,∴13k =,233k =-(不合题意,舍去),∴33k =. (3) ∵直线42y px p =-+经过点C ()2m ,,∴242m p p =-+=22p -+,由(2)知6m k =,∴226p k -+=,∴13p k =-,∵24p ≤<,∴2134k ≤-<,∴113k -<≤-. 【点睛】本题考查了一次函数的综合应用,熟练掌握一次函数的性质及运用数形结合的思想解题是关键.24.(1)反比例函数解析式为y=12x ;(2)点B 的坐标为(9,3);(3)△OAP 的面积=5.【解析】【分析】(1)将点A 的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB ∥x 轴即可得点B 的坐标;(3)先根据点B 坐标得出OB 所在直线解析式,从而求得直线与双曲线交点P 的坐标,再利用割补法求解可得.【详解】(1)将点A (4,3)代入y=k x ,得:k=12, 则反比例函数解析式为y=12x; (2)如图,过点A 作AC ⊥x 轴于点C ,则OC=4、AC=3,∴2243+,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=13 x,由1312y xyx⎧=⎪⎪⎨⎪=⎪⎩可得点P坐标为(6,2),(负值舍去),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=5.【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.25.(1)18;(2)CE的长为83;(3)CG的长为910.【解析】【分析】(1)由矩形的性质可知∠BAD=90°,易知∠DAC的度数,由折叠的性质可知∠DAE=12∠DAC,计算可得∠DAE的度数.(2)由矩形四个角都是直角及对边相等的性质及折叠后图形对应边相等的性质,结合勾股定理可得BF长,由CF=BC﹣BF可求出CF长,设CE=x,则EF=ED=6﹣x,在Rt△CEF 中,根据勾股定理求出x值即可;(3)连接EG,由中点及折叠的性质利用HL定理可证Rt△CEG≌△FEG,结合全等三角形对应边相等的性质可设CG=FG=y,可用含y的代数式表示出AG、BG,在Rt△ABG中,根据勾股定理求解即可.【详解】解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=12∠DAC=18°;故答案为:18;(2)∵四边形ABCD 是矩形,∴∠B =∠C =90°,BC =AD =10,CD =AB =6,由折叠的性质得:AF =AD =10,EF =ED ,∴BF =22AF AB -=22106-=8,∴CF =BC ﹣BF =10﹣8=2,设CE =x ,则EF =ED =6﹣x ,在Rt △CEF 中,由勾股定理得:22+x 2=(6﹣x )2,解得:x =83, 即CE 的长为83; (3)连接EG ,如图3所示:∵点E 是CD 的中点,∴DE =CE ,由折叠的性质得:AF =AD =10,∠AFE =∠D =90°,FE =DE ,∴∠EFG =90°=∠C ,在Rt △CEG 和△FEG 中,EG EG CE FE=⎧⎨=⎩, ∴Rt △CEG ≌△FEG (HL ),∴CG =FG ,设CG =FG =y ,则AG =AF +FG =10+y ,BG =BC ﹣CG =10﹣y ,在Rt △ABG 中,由勾股定理得:62+(10﹣y )2=(10+y )2,解得:y =910, 即CG 的长为910.【点睛】本题考查了四边形的折叠问题,涉及了矩形的性质、折叠的性质、直角三角形的判定、勾股定理,灵活利用矩形与折叠的性质是解题的关键.四、压轴题26.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE△≌△,写出证明过程和依据即可.【详解】解:过点E作//EF AC交BC于F,∴ACB EFB∠=∠(两直线平行,同位角相等),∴D OEF∠=∠(两直线平行,内错角相等),在OCD与OFE△中()()()COD FOEOD OED OEF⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证,∴OCD OFE△≌△,(ASA)∴CD FE=(全等三角形对应边相等)∵AB AC=(已知)∴ACB B=∠∠(等边对等角)∴EFB B∠=∠(等量代换)∴BE FE=(等角对等边)∴CD BE=;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.27.(1)AB∥CD,理由见解析;(2)证明见解析;(3)45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知∠BEF+∠EFD=180°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得90902KPG PKG HPK ︒︒∠=-∠=-∠;然后由邻补角的定义、角平分线的定义推知1452QPK EPK HPK ︒∠=∠=+∠;最后根据图形中的角与角间的和差关系求得∠HPQ =45°.【详解】(1)AB ∥CD ,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF ,∠2=∠CFE ,∴∠AEF +∠CFE =180°,∴AB ∥CD ;(2)由(1)知,AB ∥CD ,∴∠BEF +∠EFD =180°.又∵∠BEF 与∠EFD 的角平分线交于点P , ∴1()902FEP EFP BEF EFD ︒∠+∠=∠+∠= ∴∠EPF =90°,即EG ⊥PF .∵GH ⊥EG ,∴PF ∥GH ;(3)∵∠PHK =∠HPK ,∴∠PKG =2∠HPK .又∵GH ⊥EG ,∴∠KPG =90°﹣∠PKG =90°﹣2∠HPK ,∴∠EPK =180°﹣∠KPG =90°+2∠HPK .∵PQ 平分∠EPK , ∴1452QPK EPK HPK ︒∠=∠=+∠, ∴∠HPQ =∠QPK ﹣∠HPK =45°.答:∠HPQ 的度数为45°.【点睛】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.28.(1)203;(2)①t =83;②a =185;(3)t =6.4或t =103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM =CN =3t ,则只可以是△CMN ≌△BAM ,AB =CM ,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.29.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴DB=CE ,∠ABD=∠ACE ,∵∠BOD=∠AOC ,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.30.(1)(1,0);(2)362y x -=;(3)92;(4)(6,3). 【解析】【分析】(1)由题意已知l 1的解析式,令y=0求出x 的值即可;(2)根据题意设l 2的解析式为y=kx+b ,并由题意联立方程组求出k ,b 的值;(3)由题意联立方程组,求出交点C 的坐标,继而即可求出S △ADC ;(4)由题意根据△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到AD 的距离进行分析计算.【详解】解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D (1,0);(2)设直线l 2的解析表达式为y=kx+b ,由图象知:x=4,y=0;x=3,y =32-,代入表达式y=kx+b , ∴40332k b k b +⎧⎪⎨+-⎪⎩==, ∴326k b ⎧⎪⎨⎪-⎩==, ∴直线l 2的解析表达式为362y x -=; (3)由33362y x y x ⎪-+-⎧⎪⎨⎩==,解得23x y ⎧⎨⎩-==, ∴C (2,-3),∵AD=3, ∴331922ADC S =⨯⨯-=; (4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD的距离,即C纵坐标的绝对值=|-3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=1.5x-6,y=3,∴1.5x-6=3,解得x=6,所以P(6,3).【点睛】本题考查的是一次函数图象的性质以及三角形面积的计算等有关知识,熟练掌握求一次函数解析式的方法以及一次函数图象的性质和三角形面积的计算公式是解题的关键.。
江苏省连云港市八年级上学期期末数学试卷 (解析版) 一、选择题1.4的平方根是( )A .2B .2±C .2D .2±2.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m 3.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x = B .||y x = C .1y x = D .412x y = 4.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形5.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .56.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒ 7.在同一平面直角坐标系中,函数y x =-与34y x =-的图像交于点P ,则点P 的坐标为( )A .(1,1)-B .(1,1)-C .(2,2)-D .(2,2)- 8.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是( )A .它精确到百位B .它精确到0.01C .它精确到千分位D .它精确到千位 9.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .1210.下列各组数是勾股数的是( )A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.5二、填空题11.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.12.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 13.如图,AD 是ABC ∆的角平分线,DE AB ⊥于E ,若18AB =,12AC =,ABC ∆的面积等于30,则DE =_______.14.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.15.点A (2,-3)关于x 轴对称的点的坐标是______.16.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.17.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.18.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.19.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.20.如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为_____.三、解答题21.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?22.先化简,再求值:(1﹣11a -)÷2244a a a a -+-,其中2. 23.已知25a =+25b =(1)22a b ab +;(2)223a ab b -+24.证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.25.小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y (km )与出发时间t (h )之间的函数关系如图1中线段AB 所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s (km )与出发时间t (h )之间的函数关系式如图2中折线段CD ﹣DE ﹣EF 所示.(1)小明骑自行车的速度为 km/h 、妈妈骑电动车的速度为 km/h ;(2)解释图中点E 的实际意义,并求出点E 的坐标;(3)求当t 为多少时,两车之间的距离为18km .四、压轴题26.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.27.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.28.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)29.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.30.一次函数y =kx +b 的图象经过点A (0,9),并与直线y =53x 相交于点B ,与x 轴相交于点C ,其中点B 的横坐标为3.(1)求B 点的坐标和k ,b 的值;(2)点Q 为直线y =kx +b 上一动点,当点Q 运动到何位置时△OBQ 的面积等于272?请求出点Q 的坐标;(3)在y 轴上是否存在点P 使△PAB 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】±解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 2.D解析:D【解析】【分析】作BD⊥OC于点D,首先由题意得:AO=BD=3m,AB=OD=2m,然后根据OC=6米,得到DC=4 m,最后利用勾股定理得BC的长度即可.【详解】解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=5-3=2m,∵OC=6m,∴DC=6-2=4m,∴由勾股定理得:22+,34∴旗杆的高度为5+5=10m,故选:D.【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.3.C解析:C【解析】【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数.【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x =,y 是x 的函数,故正确; D. 412x y =,y 不是x 的函数,故错误; 故选C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.4.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a 、b ,斜边为c .则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck(ak )2+(bk )2=k 2(a 2+b 2)=(ck )2∴三角形仍为直角三角形.故选:A .【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.5.C解析:C【解析】【分析】延长CE 交AD 于F ,连接BD ,先判定△ABC ∽△CAF ,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF 为△ABD 的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD 的长.【详解】解:如图,延长CE 交AD 于F ,连接BD ,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE 为中线, ∴CE=AE=BE=1 2.52AB =, ∴∠ACF=∠BAC ,又∵∠AFC=∠BCA=90°,∴△ABC ∽△CAF , ∴CF AC AC BA =,即445CF =, ∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE ,∴CE 垂直平分AD ,又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴BD=2EF=1.4,∵AE=BE=DE ,∴∠DAE=∠ADE ,∠BDE=∠DBE ,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt △ABD 中,2222245 1.45AB BD -=-=, 故选:C .【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题. 6.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC 与△A ′B ′C ′关于直线l 对称,∴∠A =∠A ′=30°,∠C =∠C ′=60°;∴∠B =180°−30°-60°=90°.故选:C .【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.7.B解析:B【解析】【分析】联立两直线解析式,解方程组即可.【详解】联立34y x y x -⎧⎨-⎩==, 解得11x y ⎧⎨-⎩==, 所以,点P 的坐标为(1,-1).故选B .【点睛】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.8.D解析:D【解析】【分析】根据近似数的精确度求解.【详解】解:1.36×105精确到千位.故选:D .【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.9.B解析:B【解析】【分析】将点(﹣2,1)代入y =kx 即可求出k 的值.【详解】解:∵正比例函数y =kx 的图象经过点(﹣2,1),∴1=﹣2k ,解得k =﹣12, 故选:B .【点睛】 本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.10.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.二、填空题11.【解析】【分析】先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(,m ),则当时,,由图像可知,解析:3x <-【解析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,∴0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.12.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233ab , 故答案为:-1且5233a b ,.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.13.2【解析】【分析】延长AC,过D 点作DF⊥AF 于F ,根据角平分线的性质得到DE=DF,由即可求出.【详解】解:如图延长AC,过D 点作DF⊥AC 于F∵是的角平分线,DE⊥AB,∴DE解析:2【解析】【分析】延长AC ,过D 点作DF ⊥AF 于F ,根据角平分线的性质得到DE=DF,由ABC ABD ACD S S S =+即可求出.【详解】解:如图延长AC ,过D 点作DF ⊥AC 于F∵AD 是ABC ∆的角平分线,DE⊥AB,∴DE =DF∵ABC ABD ACD SS S =+=30 ∴113022AB DE DF AC ⋅+⋅= ∵18AB =,12AC = ,DE =DF∴1118123022DE DE ⨯⋅+⨯= 得到 DE=2故答案为:2.此题主要考查了角平分线的性质,熟记概念是解题的关键.14.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.15.(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x 轴,y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.16..【解析】【分析】根据一次函数,,时图象经过第二、三、四象限,可得,,即可求解;【详解】经过第二、三、四象限,∴,,∴,,∴,故答案为.【点睛】本题考查一次函数图象与系数的关系解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.17.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.18.【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴AC=AB,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD ,∴∠ACE=∠ABC=90°, ∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22,当点D 运动到点C 时,2,∴点E移动的路线长为cm.19.【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,解析:【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故答案为:12.【点睛】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.20.k=±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y =kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当解析:k=±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y=kx+4(k≠0)与直线AB平行时,②当直线y=kx+4(k≠0)与直线AB不平行时分别进行解答即可.【详解】一次函数y=kx+4(k≠0)图象一定过(0,4)点,①当直线y=kx+4(k≠0)与直线AB平行时,如图1,设直线AB 的关系式为y =kx +b ,把A (3,0),B (4,1)代入得,3041k b k b +=⎧⎨+=⎩,解得,k =1,b =﹣3, ∴一次函数y =kx +4(k ≠0)中的k =1;②当直线y =kx +4(k ≠0)与直线AB 不平行时,如图2,根据题意,直线y =kx +4(k ≠0)垂直平分线段AB ,此时一定经过点C ,∴点C 的坐标为(4,0),代入得,4k +4=0,解得,k =﹣1,因此,k =1或k =﹣1.故答案为:k =±1.【点睛】本题考查了一次函数的图象和性质,掌握两条平行直线的k 值相等和一次函数的图象和性质是解决问题的关键.三、解答题21.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x 元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x 元,则每支圆珠笔(2)x +元.假设能买到相同数量的笔,则30452x x =+. 解这个方程,得4x =.经检验,4x =是原方程的解.但是,3047.5÷=, 7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.22.原式=2a a -. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.(1)-4;(2)21【解析】【分析】(1)根据a ,b 的值求出a+b ,ab 的值,再根据a 2+b 2=(a+b )2-2ab ,代入计算即可; (2)根据(1)得出的a+b ,ab 的值,再根据代入计算即可.【详解】(1)∵2a =+2b =∴4a b +=,222525251ab, ∴22=144ab aa b a b b (2)由(1)得4a b +=,1ab =-,∴223a ab b -+2225a ab b ab25a b ab245121=【点睛】此题考查了二次根式的化简求值,用到的知识点是二次根式的性质、完全平方公式、平方差公式,关键是对要求的式子进行化简.24.见解析【解析】【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,AH DKAB DE=⎧⎨=⎩,∴Rt△ABH≌Rt△DEK(HL),∠B=∠E,在△ABC和△DEF中,AB DEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS)【点睛】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.25.(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(95,1445);(3)12或3 2【解析】【分析】(1)由点A,点B,点D表示的实际意义,可求解;(2)理解点E表示的实际意义,则点E的横坐标为小明从家到图书馆的时间,点E纵坐标为小明这个时间段走的路程,即可求解;(3)根据题意列方程即可得到结论.【详解】解:(1)由题意可得:小明速度=362.25=16(km/h)设妈妈速度为xkm/h由题意得:1×(16+x)=36,∴x=20,答:小明的速度为16km/h,妈妈的速度为20km/h,故答案为:16,20;(2)由图象可得:点E表示妈妈到了家,此时小明没到,∴点E的横坐标为:369 205=,点E的纵坐标为:95×16=1445∴点E(95,1445);(3)根据题意得,(16+20)t=(36﹣18)或(16+20)t=36+18,解得:t=12或t=32,答:当t为12或32时,两车之间的距离为18km.【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.四、压轴题26.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.27.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【解析】【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH AF,∵在Rt△AEF中,AE2=AF2+EF2,AF)2+EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.28.(1)见解析;(2)CD AD+BD,理由见解析;(3)CD+BD【解析】【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠BAC =90°,AD =AE ,∴DE =2AD ,∵CD =DE +CE ,∴CD =2AD +BD ; (3)作AH ⊥CD 于H .∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠DAE =120°,AD =AE ,∴∠ADH =30°,∴AH =12AD , ∴DH 22AD AH -3, ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD 3+BD ,故答案为:CD 3+BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.29.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(828-,0).【解析】【分析】(1)根据(42,0)A ,(0,2)B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=2,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A,(0,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解; (2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
江苏省连云港市八年级上第一学期期末数学试卷一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t(时)之间函数关系的图象是()A.B.C.D.2.下列图书馆的馆徽不是..轴对称图形的是()A.B.C.D.3.下列四个实数:223,0.1010017π,3,,其中无理数的个数是()A.1个B.2个C.3个D.4个4.一次函数y=﹣2x+3的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5.下列各数中,是无理数的是()A.38B.39C.4-D.22 76.用科学记数法表示0.000031,结果是()A.53.110-⨯B.63.110-⨯C.60.3110-⨯D.73110-⨯7.下列交通标识中,是轴对称图形的是()A.B.C.D.8.已知一次函数y=kx+b,函数值y随自变置x的增大而减小,且kb<0,则函数y=kx+b 的图象大致是()A .B .C .D .9.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2 B .b>-2 C .b<2 D .b<-210.在△ABC 中,∠C =90°,∠B =60°,下列说法中,不一定正确的是( )A .BC 2+AC 2=AB 2B .2BC =ABC .若△DEF 的边长分别为1,2,3,则△DEF 和△ABC 全等D .若AB 中点为M ,连接CM ,则△BCM 为等边三角形二、填空题11.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.13.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.142(5)-=_____.15.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 16.等腰三角形的顶角为76°,则底角等于__________. 17.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.18.若代数式321x x -+有意义,则x 的取值范围是______________. 19.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .20.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题21.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.22.求下列各式中的x :(1)()2116x -=;(2)321x +=.23.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.24.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE .(1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.25.如图,△ABC 中,∠ABC =30°,∠ACB =50°,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.(1)求∠DAF 的度数;(2)若△DAF 的周长为10,求BC 的长.四、压轴题26.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.27.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.28.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.29.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.30.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.2.D解析:D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B解析:B【解析】【分析】根据无理数的定义解答即可.227,0.101001是有理数;3.故选B.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π等;②③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.4.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C .5.B解析:B【解析】【分析】根据无理数的定义结合算术平方根和立方根逐一判断即可得.【详解】2=,为有理数,故该选项错误;D. 2-,为有理数,故该选项错误; D.227,为有理数,故该选项错误. 故选B.【点睛】 本题考查无理数的定义,立方根,算术平方根. 初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A【解析】根据科学记数法的表示形式10(1||10)na a ⨯≤<(n 为整数)即可求解【详解】0.000031-5=3.110⨯,故选:A .【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键. 7.B解析:B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B 是轴对称图形,故选B8.A解析:A【解析】试题分析:根据一次函数的性质得到k <0,而kb <0,则b >0,所以一次函数y=kx+b 的图象经过第二、四象限,与y 轴的交点在x 轴是方.解:∵一次函数y=kx+b ,y 随着x 的增大而减小,∴k <0,∴一次函数y=kx+b 的图象经过第二、四象限;∵kb <0,∴b >0,∴图象与y 轴的交点在x 轴上方,∴一次函数y=kx+b 的图象经过第一、二、四象限.故选A .考点:一次函数的图象.9.D解析:D【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解.详解:∵点A (m ,n )在一次函数y=3x+b 的图象上,∴3m+b=n .∵3m-n >2,∴3m-(3m+b)>2,即-b>2,∴b <-2.点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n>2,得出-b>2是解题的关键.10.C解析:C【解析】【分析】根据勾股定理、等边三角形的判定以及相似三角形的判定即可求出答案.【详解】A、由勾股定理可知BC2+AC2=AB2,故A正确;B、∵∠C=90︒,∠B=60︒,∴∠A=30︒,∴AB=2BC,故B正确;C、若△DEF的边长分别为1,2DEF和△ABC不一定全等,故C错误;D、∵CM是△ACB的中线,∴CM=BM=CB,∴△BCM是等边三角形,故D正确.故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及相似三角形的判定,本题属于基础题型.二、填空题11.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】(k是常数,k≠0)的函数叫做正比本题考查的是正比例函数的定义,一般地形如y kx例函数.12.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.13.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键. 14.5【解析】根据二次根式的性质知:5.解析:5【解析】=5.15.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】 解:∵分式23x a b a b x++-+,当1x =时,分式的值为零, ∴10a b 且230a b , ∴1a b +=-,且5233ab , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少. 16.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=5222⨯︒︒⨯︒︒(180-76), 故答案为:52°.【点睛】 本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.17.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a代入多项式后进行移项整理是解题关键.18.【解析】【分析】代数式有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式有意义,∴2x+1≠0,解得x≠.故答案为:x≠.【点睛】本题考查了分式有意义的条件.解析:12 x≠-【解析】【分析】代数式321xx-+有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式321xx-+有意义,∴2x+1≠0,解得x≠12 -.故答案为:x≠12 -.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.19.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=12×4×4=8cm2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.20..【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解:∵DE垂直平分AB交BC于点E,∴EA=EB,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴△ACE为等腰直角三角形,∴CA=CE=1,∴三角形ACE的面积=12×1×1=12.故答案为:12.【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键.三、解答题21.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠ 在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.22.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.23.(1)详见解析;(2)2.【解析】【分析】(1)在三角形ABE 与三角形ABC 中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证;(2)由FD 与BC 平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF 为角平分线得到一对角相等,再由AF=AF ,利用ASA 得到三角形ABE 与三角形ADF 全等,利用全等三角形对应边相等得到AB=AD ,由AC-AD 求出DC 的长即可.【详解】(1)证明:在ABE ∆中,180ABE BAE AEB ∠=-∠-∠︒,在ABC ∆中,180C BAC ABC ∠=︒-∠-∠,∵AEB ABC ∠=∠,BAE BAC ∠=∠,∴ABE C ∠=∠;(2)解:∵FD BC ,∴ADF C =∠∠,又ABE C ∠=∠,∴ABE ADF ∠=∠,∵AF 平分BAE ∠,∴BAF DAF ∠=∠,在ABE ∆和ADF ∆中,ABE ADF AF AFBAF DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ADF ASA ∆∆≌, ∴AB AD =,∵8AB =,10AC =,∴1082DC AC AD =-=-=.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.(1)见解析(2)9613 【解析】【分析】(1)连接BD ,依题意得BD=CD ,所以∠C=∠CBD ,可证明∠CBD=2E ∠,进而可得结论; (2)过点F 作FM BC ⊥,FN AC ⊥,根据已知求出CD=5,AC=10,由勾股定理求出BC=8,求出S △BCD =12S △ABC ,再根据BCD BCF CDF S S S ∆∆∆=+,即111222CD FN BC FM =⋅+⋅可求出FM ,从而可得结论. 【详解】(1)连接BD点D 为AC 中点,且90ABC ∠=︒,12BD AC CD AD ∴===, CD BE =,BE BD ∴=, BDE E ∴∠=∠,又BD CD ∴=,C DBC ∴∠=∠,2C DBC BDE E E ∴∠=∠=∠+∠=∠,(2)过点F 作FM BC ⊥,FN AC ⊥.CG 平分ABC ∠,FM FN ∴=,5BE =,5,10CD AD BE AC ∴====,又6AB =∴在Rt ABC ∆中,222AB BC AC +=,8BC ∴=BD 为ABC ∆中线,11111681222222BCD ABC S S AB BC ∆∆∴==⨯⨯=⨯⨯⨯=, 又BCD BCF CDF S S S ∆∆∆=+,111222CD FN BC FM ∴=⋅+⋅, 11581222FM FM ∴⨯⨯+⨯⨯=, 2413FM ∴=, 1124968221313BCF S BC FM ∆∴=⋅=⨯⨯=, 【点睛】此题考查了直角三角形的性质,角平分线的性质以及三角形中线的性质,熟练掌握这些性质是解题的关键.25.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质得到DA =DB ,FA =FC ,得到∠DAB =∠ABC =30︒,∠FAC =∠ACB =50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC =180︒﹣∠ABC ﹣∠ACB =180︒﹣30︒﹣50︒=100︒,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠DAB =∠ABC =30︒,∵FG 是AC 的垂直平分线,∴FA =FC ,∴∠FAC =∠ACB =50︒,∴∠DAF =∠BAC ﹣(∠DAB +∠FAC )=20︒;(2)∵△DAF 的周长为10,∴AD +DF +FC =10,∴BC =BD +DF +FC =AD +DF +FC =10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.四、压轴题26.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°;③若CP=CE ,则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.27.(1)①6;②5或﹣3;(2)直线AC 的表达式为:y =﹣x+3或y =x+1;(3)m 的取值范围为﹣3≤m ≤﹣或2m ≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A (1,2)作直线y =﹣1的垂线,垂足为点G ,则AG =3求出正方形AGCH 的边长为3,分两种情况求出直线AC 的表达式即可;(3)由题意得出点M 在直线y =2上,由等边三角形的性质和题意得出OD =OE =12DE =1,EF =DF =DE =2,得出OF OD①当点N 在边EF 上时,若点N 与E 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(﹣3,2)或(1,2);若点N 与F 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(﹣2);得出m 的取值范围为﹣3≤m ≤﹣或2﹣≤m ≤1;②当点N 在边DF 上时,若点N 与D 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N 与F 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(22);得出m 的取值范围为2≤m ≤3或2﹣≤m ≤1;即可得出结论.【详解】解:(1)①∵b =﹣2,∴点B 的坐标为(﹣2,0),如图2﹣1所示:∵点A 的坐标为(1,2),∴由矩形的性质可得:点A ,B 的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A ,B 的“相关矩形”的面积=|b ﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF OD分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2)或(2,2);∴m的取值范围为﹣3≤m≤﹣2m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2﹣3,2)或(﹣2+3,2);∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.28.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090AMC ︒︒︒-+∠=,即可求出解. (3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.29.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,EDF DCADFE CADDE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,AB BCABF CBFBF BF=⎧⎪∠=∠⎨⎪=⎩,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=12AF=12CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.30.(1)①见解析;②DE=297;(2)DE的值为517【解析】【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。
2019-2020学年江苏省连云港市赣榆区八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A. (3,2)B. (−2,−3)C. (−2,3)D. (2,−3)2.下列四组线段中,可以构成直角三角形的是()A. 1,√2,3B. 4,5,6C. 2,3,4,D. 3,4,53.下列各数中最小的数是()A. 0B. √2C. −√2D. −√34.下列运算正确的是()A. √4=−2B. |−3|=3C. √4=±2D. √93=35.一次函数y=2x−3的图象经过的象限是()A. 一、二、三B. 二、三、四C. 一、三、四D. 一、二、四6.如图,在△ABC中.∠ACB=90°,AC=4,BC=√2,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D//BC,则A1E的长为()A. 2√2B. 83C. 5√23D. 4−3√227.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=().A. 15°B. 25°C. 30°D. 55°8.2017年怀柔区中考体育加试女子800米耐力测试中,同时起跑的李丽和吴梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD.下列说法正确的是()A. 李丽的速度随时间的增大而增大B. 吴梅的平均速度比李丽的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,吴梅在李丽的前面二、填空题(本大题共8小题,共24.0分)9. 点A(m −2,5)在y 轴上,则m = ______ .10. 等腰三角形的一个外角是80°,则其底角是_____度.11. 在下列各数227,3.14159265,√7,−8,32 ,0.6,0,√36,π3中,其中无理数有______个.12. 把1.5972精确到十分位得到的近似数是______ .13. 若x ,y 为实数,且|x +5|+√y −5=0,则(x y )2017= ______ . 14. 将正比例函数y =3x 的图象沿y 轴向下平移3个单位后,所得图象的函数表达式是____________.15. 在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1y −k 2x =b 2的解是________.16. 已知点A(m,2)在直线y =2x +1上,则m = ______ .三、计算题(本大题共1小题,共6.0分)17. 已知:如图,CD =BE ,CD//BE ,∠D =∠E.求证:点C 是线段AB 的中点.四、解答题(本大题共9小题,共72.0分))−118.−(−1)2018+√4−(1319.求下列各式中的x.(1)125x3=8(2)(−2+x)2=9.20.已知一次函数y=kx+b,当x=2时y的值是−1,当x=−1时y的值是5.(1)求此一次函数的解析式;(2)若点P(m,n)是此函数图象上的一点,−3≤m≤2,求n的最大值.21.如图,点C在线段AB上,AD//EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.22.△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,有a2+b2=c2;若△ABC不是直角三角形,而是如图2和如图3所示的锐角三角形和钝角三角形.(1)请你类比勾股定理,猜想a2+b2与c2的关系:如图2中,a2+b2____c2;如图3中,a2+b2____c2.(2)证明你在(1)中猜想的结论;(3)在图2中,若AB的长为140米,AC的长为130米,BC的长为150米,请你求出△ABC的面积.23.如图:直线l1:y=kx与直线l2:y=mx+n相交于点P(1,1),且直线l2与x轴,y轴分别相交于A,B两点,△POA的面积是1.(1)求l2的解析式;(2)直接写出kx>mx+n的解集.24.某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?25.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系.根据图象提供的信息,解答下列问题:(1)求线段AB所在直线的函数关系式和甲、乙两地的距离;(2)求两车的速度;(3)求点C的坐标,并写出点C的实际意义.26.[模型建立]如图①,在等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED 于点D,过点B作BE⊥ED于点E.求证:△ACD≌△CBE.[模型应用]x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45°至直线l2,(1)如图②,直线l1:y=43求直线l2的函数表达式.(2)如图③,四边形ABCO是长方形,O为坐标原点,点B的坐标为(8,−6),点A、C分别在坐标轴上,P是线段BC上的动点,D是直线y=−2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.-------- 答案与解析 --------1.答案:D解析:解:∵点(2,3)关于x轴对称;∴对称的点的坐标是(2,−3).故选:D.平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,−y),据此即可求得点(2,3)关于x轴对称的点的坐标.本题主要考查了直角坐标系点的对称性质,比较简单.2.答案:D解析:解:A、12+(√2)2≠32,不可以构成直角三角形,故A选项错误;B、42+52≠62,不可以构成直角三角形,故B选项错误;C、22+32≠42,不可以构成直角三角形,故C选项错误;D、32+42=52,可以构成直角三角形,故D选项正确.故选:D.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.答案:D解析:本题考查无理数的大小的比较,估算无理数大小.根据正数>0>负数,两个负无理数的大小比较,绝对值大的反而小的法则得出结论.解:因为正数>0>负数,−√3<−√2,所以最小的数是−√3.故选D.4.答案:B解析:本题主要考查了算术平方根和绝对值的知识点,解题的关键点是利用算术平方根、立方根、绝对值的定义逐项判定,即可解答.解:A.√4=2,错误;B.|−3|=3,正确;C.√4=2,错误;D.√93无法化简,错误.故选B.5.答案:C解析:解:∵一次函数y=2x−3,∴该函数经过第一、三、四象限,故选:C.根据题目中的函数解析式和一次函数的性质可以解答本题.本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.答案:B解析:本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是得到CE⊥AB以及面积法的运用.利用平行线的性质以及折叠的性质,即可得到∠A1+∠A1DB=90°,即AB⊥CE,再根据勾股定理可得AB=√AC2+BC2=3√2,最后利用面积法得到12AB×CE=12BC×AC,可得CE=BC×ACAB=43,进而依据A1C=AC=4,即可得到A1E=83.解:∵A1D//BC,∴∠B=∠A1DB,由折叠可得,∠A1=∠A,又∵∠A+∠B=90°,∴∠A1+∠A1DB=90°,∴AB⊥CE,∵∠ACB=90°,AC=4,BC=√2,∴AB=√AC2+BC2=3√2,∵12AB×CE=12BC×AC,∴CE=BC×ACAB =43,又∵A1C=AC=4,∴A1E=4−43=83,故选B.7.答案:D解析:本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.解:∵∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,{AB=AC∠1=∠EAC AD=AE,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故选D.8.答案:D解析:解:由题意可得,李丽对应的函数图象是线段OA,由图象可知李丽在匀速跑步,故选项A错误,由图象可知,李丽先跑完800米,则吴梅的平均速度比李丽的平均速度小,故选项B错误,由图象可知,在起跑后180秒时,李丽在吴梅的前面,此时李丽正好跑完800米,故选项C错误,在起跑后50秒时,吴梅在李丽的前面,故选项D正确,故选:D.根据函数图象可以判断各个选项中语句是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题得关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.答案:2解析:解:∵点A(m−2,5)在y轴上,∴m−2=0,解得m=2.故答案为:2.根据y轴上点的横坐标为0求解即可得到m的值.本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.10.答案:40解析:[分析]首先判断出与80°角相邻的内角是底角还是顶角,然后再结合等腰三角形的性质及三角形内角和定理进行计算.[详解]解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故答案为:40.[点睛]本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.11.答案:2解析:解:√7,π是无理数,3故答案为:2.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.答案:1.6解析:解:把1.5972精确到十分位得到的近似数是1.6.故答案为:1.6.把1.5972精确到十分位就是对这个数的十分位后面的数进行四舍五入.此题考查了近似数和有效数字,本题中四舍五入的方法是需要识记的内容.13.答案:−1解析:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质列方程求出x、y的值,然后代入代数式进行计算即可得解.解:由题意得,x+5=0,y−5=0,解得x =−5,y =5,所以,(x y )2017=(−55)2017=−1.故答案为−1.14.答案:y =3x −3解析:本题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键,属于基础题. 直接利用一次函数平移规律,“上加下减”进而得出结果.解:将函数y =3x 的图象沿y 轴向下平移3个单位长度后,所得图象对应的函数关系式为:y =3x −3.故答案为:y =3x −3.15.答案:{x =2y =1解析:解:∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组{y −k 1x =b 1y −k 2x =b 2的解是{x =2y =1. 故答案为{x =2y =1. 利用方程组的解就是两个相应的一次函数图象的交点坐标求解.本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 16.答案:12解析:本题考查一次函数的解析式问题,解题的关键是若点在图象上,可将点的坐标代入解析式,本题属于基础题型.由于点A 在直线上,所以可将点的坐标代入解析式即可求出m 的值.解:把A(m,2)代入y =2x +1,∴2=2m +1,∴m=12.故答案为12.17.答案:证明:∵CD//BE,∴∠ACD=∠B,在△ACD和△CBE中,{∠ACD=∠B CD=BE∠D=∠E,∴△ACD≌△CBE(ASA),∴AC=BC,则点C是线段AB的中点.解析:由CD与BE平行,利用两直线平行同位角相等得到一对角相等,利用ASA得到三角形ACD 与三角形CBE全等,利用全等三角形对应边相等得到AC=BC,即可得证.此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.18.答案:解:原式=−1+2−3=−2.解析:直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.答案:解:(1)x3=8125,x=35;(2)−2+x=±3,x=±3+2,x=5或−1.解析:(1)根据立方根的定义进行计算即可;(2)根据平方根的定义进行计算即可.本题考查了立方根和平方根,掌握立方根和平方根定义是解题的关键.20.答案:解:(1)依题意得:{2k +b =−1−k +b =5, 解得:{k =−2b =3., 所以一次函数的解析式是y =−2x +3;(2)∵由(1)可得,y =−2x +3,∴k =−2<0,y 随x 的增大而减小,又∵点P (m,n ) 是此函数图象上的一点,−3≤m ≤2,∴把m =−3代入得出n 的最大值是−2×(−3)+3=9,即n 的最大值是9.解析:(1)把x =2,y =−1代入函数y =kx +b ,得出方程组,求出方程组的解即可;(2)根据函数的性质得出m =−3时n 最大,代入求出即可.本题考查了用待定系数法求一次函数的解析式的应用,能求出函数的解析式是解此题的关键. 21.答案:证明:(1)∵AD//BE ,∴∠A =∠B ,在△ACD 和△BEC 中{AD =BC ∠A =∠B AC =BE,∴△ACD≌△BEC(SAS);(2)∵△ACD≌△BEC ,∴CD =EC ,∴△CDE 是等腰三角形,又∵CF 平分∠DCE ,∴CF ⊥DE .解析:本题考查了平行线性质,全等三角形的性质和判定,等腰三角形性质的应用,属于中档题.(1)根据平行线性质求出∠A =∠B ,根据SAS 推出即可.(2)根据全等三角形性质推出CD =EC ,根据等腰三角形性质求出即可.22.答案:解:(1)>;<;(2)如图2,作BC边上的高AD,在直角三角形ABD和ACD中,设CD=x,则:b2−x2=AD2=c2−(a−x)2,整理得:a2+b2=c2+2ax∵2ax>0,∴a2+b2>c2.如图3,作AC边上的高BD,在直角三角形ADB中BDC中,设CD=x,则:c2−(b+x)2=BD2=a2−x2,整理得:a2+b2=c2−2bx∵2bx>0,∴a2+b2<c2.(3)如图2,设CD=x米,则BD=(150−x)米,在Rt△ABD中,由勾股定理得:AD2=AB2−BD2,在Rt△ACD中,由勾股定理得:AD2=AC2−CD2,所以AB2−BD2=AC2−CD2,即1402−x2=1302−(150−x)2,解得x=84.所以AD2=AC2−CD2=1402−842=1122,则AD=112(取正值)所以所求的面积为BC⋅AD=×150×112=8400(米 2).故△ABC的面积是8400米 2.,解析:本题考查了勾股定理的应用,勾股定理不仅可以用于求直角三角形的边长,而且还可以利用其列出方程.(1)类比勾股定理,猜想a2+b2与c2的关系即可.(2)作出高把三角形分成两个直角三角形,观察两个直角三角形有一个共同的直角边,利用勾股定理求出共同边的长,从各得到三边的关系.(3)作BC边上的高AD,设CD=x米,则可表示出BD为(150−x)米,在Rt△ABD中与在Rt△ACD 中,由勾股定理得到AB2−BD2=AC2−CD2,从而求得x=50,然后利用三角形的面积计算方法计算即可.解:(1)如图2中,a2+b2>c2;如图3中,a2+b2<c2,故答案为>;<;(2)见答案;(3)见答案.,23.答案:解:(1)∵△POA 的面积是1,直线l 1:y =kx 与直线l 2:y =mx +n 相交于点P(1,1), ∴12OA ×1=1,∴OA =2,∴A(2,0).将A(2,0),P(1,1)代入y =mx +n ,得:{2m +n =0m +n =1, 解得:{m =−1n =2, ∴直线l 2的解析式为:y =−x +2;(2)由图象可知,当x >1时,直线l 1在直线l 2上方,即kx >mx +n ,所以kx >mx +n 的解集为x >1.解析:本题考查了待定系数法确定一次函数解析式和一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.(1)先根据△POA 的面积是1求出A 点坐标,再将A 、P 两点的坐标代入y =mx +n ,得到直线l 2的解析式;(2)利用函数图象,写出直线l 1在直线l 2上方所对应的自变量的范围即可.24.答案:解:(1)设每本甲种词典的价格为x 元,每本乙种词典的价格为y 元,依题意,得:{x +2y =1702x +3y =290, 解得:{x =70y =50. 答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.(2)设学校购买甲种词典m 本,则购买乙种词典(30−m)本,依题意,得:70m +50(30−m)≤1600,解得:m ≤5.答:学校最多可购买甲种词典5本.解析:(1)设每本甲种词典的价格为x 元,每本乙种词典的价格为y 元,根据“购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设学校购买甲种词典m 本,则购买乙种词典(30−m)本,根据总价=单价×数量结合总费用不超过1600元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.答案:解:(1)设直线AB 的函数关系式为y =kx +b ,由题意知直线AB 过(2,150)和(3,0),{150=2k +b 0=3k +b ,解得{k =−150b =450. ∴直线AB 的函数关系式为y =−150x +450;当x =0时,y =450,∴甲乙两地的距离为450千米.(2)设轿车和货车的速度分别为V 1千米/小时,V 2千米/小时.根据题意得3V 1+3V 2=450,3V 1−3V 2=90.解得:V 1=90,V 2=60,故轿车和货车速度分别为90千米/小时,60千米/小时.(3)轿车到达乙地的时间为450÷90=5小时,此时两车间的距离为(90+60)×(5−3)=300千米,故点C 的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.解析:(1)设线段AB的解析式为y=kx+b,将(2,150)和(3,0)代入,可求线段AB的解析式,根据线段AB的解析式求A点坐标,得出甲乙两地之间的距离;(2)设两车相遇时,设轿车和货车的速度分别为V1千米/小时,V2千米/小时,根据相遇时:轿车路程+货车路程=甲乙两地距离,轿车路程−货车路程=90,列方程组求解即可.(3)根据两车相遇后继续前行,轿车到达乙地时,两车之间的距离为y(千米),即可得出点C的实际意义.本题考查了一次函数的运用.关键是通过图象,求出直线解析式,利用直线解析式求A点坐标,得出甲乙两地距离,再根据路程、速度、时间的关系解题.26.答案:解:证明:如图1,∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,{∠D=∠E∠ACD=∠EBC CA=CB,∴△ACD≌△CBE(AAS);(1)如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由前面可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=43x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则{7=−4k +b 0=−3k +b,, 解得{k =−7b =−21,, ∴l 2的解析式:y =−7x −21;(2)D(4,−2),(203,−223).理由:当点D 是直线y =−2x +6上的动点且在第四象限时,分两种情况: 当点D 在矩形AOCB 的内部时,如图,过D 作x 轴的平行线EF ,交直线OA于E ,交直线BC 于F ,设D(x,−2x +6),则OE =2x −6,AE =6−(2x −6)=12−2x ,DF =EF −DE =8−x ,由(1)可得,△ADE≌△DPF ,则DF =AE ,即:12−2x =8−x ,解得x =4,∴−2x +6=−2,∴D(4,−2),此时,PF =ED =4,CP =6=CB ,符合题意;当点D 在矩形AOCB 的外部时,如图,过D 作x 轴的平行线EF ,交直线OA于E ,交直线BC 于F ,设D(x,−2x +6),则OE =2x −6,AE =OE −OA =2x −6−6=2x −12,DF =EF −DE =8−x ,同理可得:△ADE≌△DPF ,则AE =DF ,即:2x −12=8−x ,解得x =203,∴−2x +6=−223,∴D(203,−223),此时,ED =PF =203,AE =BF =43,BP =PF −BF =163<6,符合题意.解析:本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定△ACD≌△CBE;(1)过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD=AO=3,CD=OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(2)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+ 6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.。
江苏省连云港市赣榆县八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.(3分)4的平方根是()A.±2B.2C.±D.2.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.3.(3分)下列各组数中,可以构成直角三角形的是()A.2,3,5B.3,4,5C.5,6,7D.6,7,8 4.(3分)点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.(3分)一次函数y=x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)下列各式中,正确的是()A.=±2B.=3C.=﹣3D.=﹣3 7.(3分)如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.1cm B.2cm C.3cm D.4cm8.(3分)如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE的长为()A.3B.1C.2D.4二、填空题:(共8小题,每题3分,共24分。
将结果直接填写在横线上.)9.(3分)一个等腰三角形的两边长分别为5和2,则这个三角形的周长为.10.(3分)把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.11.(3分)函数y=kx的图象过点(﹣1,2),那么k=.12.(3分)取=1.4142135623731…的近似值,若要求精确到0.01,则=.13.(3分)如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是.14.(3分)将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表达式为.15.(3分)已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3上,则y1与y2的大小关系是.16.(3分)如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x、y轴的正半轴上,OA=3,OB=4,D为OB边的中点,E 是OA边上的一个动点,当△CDE的周长最小时,E点坐标为.三、解答题(共10小题,共102分。
江苏省连云港市2019届数学八上期末试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.下列等式成立的是( )A .0(1)1-=-B .0(1)1-=C .101-=-D .101-=2.下列式子中不是分式的是( )A. B. C. D. 3.如果分式有意义,那么x 的取值范围是( ) A.x≠0 B.x=﹣1 C.x≠﹣1 D.x≠14.下列计算正确的是( )A .m 2+m=3m 3B .(m 2)3 =m 5C .(2m)2 =2m 2D .m ·m 2=m 35.下列运算正确的是( )A .325a a a +=B .326a a a ∙=C .()326a a =D .263a a a ÷= 6.如图,图形面积可以由以下哪个公式表示( )A .22()()a b a b a b -=+-B .22()()4a b a b ab +--=C .5-4D .222()2a b a ab b -=-+ 7.下列博物馆的标识中是轴对称图形的是( )A. B.C. D.8.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线OD交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC度数为( )∘.A.108°B.135°C.144°D.160°9.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD//BE,∠1=40°,则∠2的度数是()A.70°B.55°C.40°D.35°10.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是( )A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF11.如图,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=46°,则∠DEF等于()A.100°B.54°C.46°D.34°12.下列命题是真命题的是()A.将点A(﹣2,3)向上平移3个单位后得到的点的坐标为(1,3)B.三角形的三条角平分线的交点到三角形的三个顶点的距离相等C.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等D.平行四边形的对角线相等13.若一个正多边形的每一个外角都等于40°,则它是( ).A.正九边形B.正十边形C.正十一边形D.正十二边形14.一个三角形的三边长分别为4、5、x,则x的取值范围是( )A.1≤x≤9B.1≤x<9 C.1<x≤9D.1<x<915.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形 B.八边形 C.正六边形 D.正八边形二、填空题16.当x __________没有意义. 17.若a m =16,a n =2,则a m ﹣2n 的值为_____.18.如图,在四边形ABCD 中,90BAD BCD ∠=∠=,AB AD =,如果AC =,则四边形ABCD 的面积为________2cm .19.若正多边形的一个外角是45°,则该正多边形的边数是_________.20.在平面直角坐标系中,已知A B 、两点的坐标分别为(1,1),(3,2)A B -,若点M 为x 轴上一点,且MA MB +最小,则点M 的坐标为__________.三、解答题21.计算:(1)()1020201132π-⎛⎫-+-+ ⎪⎝⎭; (2)()32328292a a a a a a ⋅⋅+--÷.22.(1)()10153π-⎛⎫+- ⎪⎝⎭; (2)计算:()()()252x x x x -+--;23.已知:如图,在△ABC 中,∠BAC 的平分线AP 与BC 的垂直平分线PQ 相交于点P ,过点P 分别作PM ⊥AC 于点M ,PN ⊥AB 交AB 延长线于点N ,连接PB ,PC .求证:BN=CM .24.在梯形ABCD 中,//,=90,=45AD BC A C ∠∠,点E 在直线AD 上,联结BE ,过点E 作BE 的垂线,交直线CD 与点F ,(1)如图1,已知BE EF =,:求证:AB AD =;。
连云港市八年级(上)期末数学试卷解析版一、选择题1.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,82.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .103.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D .4.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm5.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .46.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C7.若3n +3n +3n =19,则n =( ) A .﹣3 B .﹣2 C .﹣1 D .08.下列分式中,x 取任意实数总有意义的是( )A .21x x +B .221(2)x x -+C .211x x -+D .2x x + 9.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在x 轴,y 轴的正半轴上,点B (6,3),现将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P .则点P 的坐标为( )A .(94,3)B .(32,3)C .(125,3)D .(5,32) 10.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .265二、填空题11.17.85精确到十分位是_____.12.某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km .13.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.14.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.15.如图,在Rt △ABO 中,∠OBA=90°,AB=OB ,点C 在边AB 上,且C (6,4),点D 为OB 的中点,点P 为边OA 上的动点,当∠APC=∠DPO 时,点P 的坐标为 ____.16.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.17.36的算术平方根是 .18.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y19.如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为5和11,则b 的面积为__________.20.若正比例函数y=kx 的图象经过点(2,4),则k=_____.三、解答题21.已知2y -与x 成正比例,当2x =时,6y =. (1)求y 与x 的函数关系式;(2)当6y >时,求x 的取值范围.22.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.23.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.24.(1)求x 的值:225x =(2)计算:23(2)816--+25.如图,M 、N 两个村庄落在落在两条相交公路AO 、BO 内部,这两条公路的交点是O ,现在要建立一所中学C ,要求它到两个村庄的距离相等,到两条公路的距离也相等.试利用尺规找出中学的位置(保留作图痕迹,不写作法).四、压轴题26.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______.(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.如图,在平面直角坐标系中,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,过点B 的另一条直线交x 轴正半轴于点C ,且OC =3.图1 图2(1)求直线BC 的解析式;(2)如图1,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,请求出点M 的坐标;(3)如图2,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标;28.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________. (2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)29.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.2.A解析:A【解析】【分析】由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,易得△BCF 的周长等于AB+BC ,则可求得答案.【详解】解:由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,所以△BCF 的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A .【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.3.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.4.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.5.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.7.A解析:A【解析】【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【详解】 解:13339n n n ++=, 1233n +-∴=,则12n +=-,解得:3n =-.故选:A .【点睛】此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.8.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.【详解】A .x =0时,x 2=0,A 选项不符合题意;B .x =﹣2时,分母为0,B 选项不符合题意;C .x 取任意实数总有意义,C 选项符号题意;D .x =﹣2时,分母为0.D 选项不符合题意.故选:C .【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.9.A解析:A【解析】【分析】由折叠的性质和矩形的性质证出OP =BP ,设OP =BP =x ,则PC =6﹣x ,再用勾股定理建立方程9+(6﹣x )2=x 2,求出x 即可.【详解】∵将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P ,∴∠A 'OB =∠AOB ,∵四边形OABC 是矩形,∴BC ∥OA ,∴∠OBC=∠AOB,∴∠OBC=∠A'OB,∴OP=BP,∵点B的坐标为(6,3),∴AB=OC=3,OA=BC=6,设OP=BP=x,则PC=6﹣x,在Rt△OCP中,根据勾股定理得,OC2+PC2=OP2,∴32+(6﹣x)2=x2,解得:x=154,∴PC=6﹣154=94,∴P(94,3),故选:A.【点睛】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题. 10.D解析:D【解析】【分析】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.求出CE′即可.【详解】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+2268+,∴CH=AC BCAB⋅=245,∴AH22AC CH-=222465⎛⎫- ⎪⎝⎭185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系.二、填空题11.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解解析:【解析】设行驶xkm,由油箱内剩余油量不低于油箱容量的18,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的18,∴﹣10100x+40≥40×18,解得:x≤350,答:该辆汽车最多行驶的路程是350km,故答案为:350.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.13.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.14.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.15.(,)【解析】【分析】根据题意,△ABO 为等腰直角三角形,由点C 坐标为(6,4),可知点B 为(6,0),点A 为(6,6),则直线OA 为,作点D 关于OA 的对称点E ,点E 恰好落在y 轴上,连接CE ,解析:(185,185) 【解析】【分析】 根据题意,△ABO 为等腰直角三角形,由点C 坐标为(6,4),可知点B 为(6,0),点A 为(6,6),则直线OA 为y x =,作点D 关于OA 的对称点E ,点E 恰好落在y 轴上,连接CE ,交OA 于点P ,则点E 坐标为(0,3),然后求出直线CE 的解析式,联合y x =,即可求出点P 的坐标.【详解】解:在Rt △ABO 中,∠OBA=90°,AB=OB ,∴△ABO 是等腰直角三角形,∵点C 在边AB 上,且C (6,4),∴点B 为(6,0),∴OB=6=AB ,∴点A 坐标为:(6,6),∴直线OA 的解析式为:y x =;作点D 关于OA 的对称点E ,点E 恰好落在y 轴上,连接CE ,交OA 于点P ,∴∠APC=∠OPE=∠DPO,OD=OE,∵点D是OB的中点,∴点D的坐标为(3,0),∴点E的坐标为:(0,3);设直线CE的解析式为:y kx b=+,把点C、E代入,得:643k bb+=⎧⎨=⎩,解得:163kb⎧=⎪⎨⎪=⎩,∴直线CE的解析式为:136y x=+;∴136y xy x⎧=+⎪⎨⎪=⎩,解得:185185xy⎧=⎪⎪⎨⎪=⎪⎩,∴点P的坐标为:(185,185);故答案为:(185,185).【点睛】本题考查了一次函数的图像和性质,等腰直角三角形的性质,以及线段动点问题,正确的找到P点的位置是解题的关键.16.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.17.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.18.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.19.16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BC解析:16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.20.2【解析】解析:2【解析】⇒=k k4=22三、解答题y>时,x>221.(1) y=2x+2 (2) 6【解析】【分析】(1) 根据正比例函数的定义设y-2=kx(k≠0)然后把x,y的值代入求出k,即可求出解析式;(2)根据 (1)中的解析式,判断即可.【详解】(1)∵y-2与x成正比例函数∴设 y-2=kx(k≠0)将x=2,y=6 代入得,2k=6-2 k=2∴ y-2=2x∴y=2x+2(2)根据函数解析式 y=2x+2得到y随x的增加而增大∵ y=6时 x=2y>时,x>2.∴6【点睛】此题主要考查了待定系数法求一次函数解析式及判断函数取值范围,熟练掌握相关概念是解题的关键.22.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.【解析】【分析】(1) 根据题意即可列出一次函数,化简即可;(2) 设甲的件数为x,那么乙的件数为:200-x,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x)得到:y=-0.1x+100所以y与x之间的函数表达式为y=-0.1x+100(2)设甲的件数为x,那么乙的件数为:200-x,依题意可得:0.6x+0.8(200-x)≤150解得:x≥50由y=-0.1x+100得到y随x的增大而减小所以当利润最大时,x值越小利润越大所以甲产品x=50 乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.23.(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【解析】【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.x=±;(2)424.(1)5【解析】【分析】(1)直接开平方,即可得到答案;(2)先根据二次根式的性质进行化简,然后合并同类项即可.【详解】x=,解:(1)225x=±;∴5=-+=;(2)23(2)816--+2244【点睛】本题考查了二次根式的性质,立方根,以及直接开平方法解方程,解题的关键是熟练掌握二次根式的性质进行解题.25.作图见解析.【解析】【分析】先连接MN,根据线段垂直平分线的性质作出线段MN的垂直平分线DE,再作出∠AOB的平分线OF,DE与OF相交于C点,则点C即为所求.【详解】点C为线段MN的垂直平分线与∠AOB的平分线的交点,则点C到点M、N的距离相等,到AO、BO的距离也相等,作图如下:.【点睛】此题考查作图-应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.四、压轴题26.(1) (3,-2);(2) (n,m);(3)图见解析,点Q到E、F点的距离之和最小值为10【解析】【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答.【详解】(1)如图,C '的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为10【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)443y x =-+;(2)612(,)55M ;(3)23(0,)7G 或(0,-1)G 【解析】【分析】(1)求出点B ,C 坐标,再利用待定系数法即可解决问题;(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,∴A (-2,0),B (0,4),,又∵OC=3,∴C (3,0),设直线BC 的解析式为y=kx+b ,将B 、C 的坐标代入得: 304k b b +=⎧⎨=⎩, 解得:434k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为443y x =-+; (2)连接OM ,∵S △AMB =S △AOB ,∴直线OM 平行于直线AB ,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组2443y x y x =⎧⎪⎨=-+⎪⎩, 解得:65125x y ⎧=⎪⎪⎨⎪=⎪⎩故点612(,)55M ; (3)∵FA=FB ,A (-2,0),B (0,4),∴F (-1,2),设G (0,n ),①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .∵四边形FGQP 是正方形,易证△FMG ≌△GNQ ,∴MG=NQ=1,FM=GN=n-2,∴Q (n-2,n-1),∵点Q 在直线443y x =-+上, ∴41(2)43n n -=--+, ∴23=7n , ∴23(0,)7G . ②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),∵点Q 在直线443y x =-+上, ∴4+1(2)43n n =--+, ∴n=-1,∴(0,-1)G . 综上所述,满足条件的点G 坐标为23(0,)7G 或(0,-1)G 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥, ∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.29.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.30.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案. 【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°, 在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。
江苏省连云港市赣榆县八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2B.2C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5B.3,4,5C.5,6,7D.6,7,84.点A(﹣3,2)关于轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A. =±2B. =3C. =﹣3D. =﹣37.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B 落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE的长为()A.3B.1C.2D.4二、填空题:(共8小题,每题3分,共24分。
将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.11.函数y=的图象过点(﹣1,2),那么= .12.取=1.4142135623731…的近似值,若要求精确到0.01,则= .13.如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是.14.将函数y=2的图象向下平移3个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2+3上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在、y轴的正半轴上,OA=3,OB=4,D为OB边的中点,E是OA边上的一个动点,当△CDE的周长最小时,E点坐标为.三、解答题(共10小题,共102分。
解答时应写出必要的步骤、过程或文字说明.) 17.(10分)计算或解方程:(1)﹣20(2)32=2718.(8分)已知y与﹣1成正比例,且当=3时,y=4.(1)求y与之间的函数表达式;(2)求=﹣5时y的值.19.(8分)在4×4的方格中有三个同样大小的正方形如图摆放,请你在图1﹣图3中的空白处添加一个正方形方格(涂黑),使它与其余三个黑色正方形组成的新图形是一个轴对称图形.20.(10分)如图,点A、E、B、D在同一条直线上,BC∥DF,∠A=∠F,AB=FD.求证:AC=EF.21.(10分)已知点(﹣1,﹣1)在一次函数y=+b的图象上,且一次函数y=+b与y=﹣0.5+t 的图象相交于点(2,5),求t、、b的值.22.(10分)某蔬菜基地要把一批新鲜蔬菜运往外地,现有汽车和火车两种运输方式可供选择.方式一:使用汽车运输,装卸收费400元,另外每千米再加收4元;方式二:使用火车运输,装卸收费720元,另外每千米再加收2元.(1)请分别写出用汽车、火车运输的总费用y1、y2(元)与运输路程(千米)之间的函数表达式;(2)你认为选用哪种运输方式较好,为什么?23.(10分)如图,在△ABC中,AB=AC,点D、E、F分别在边AB,BC,AC上,且BD=CE,BE=CF.(1)求证:ED=EF;(2)当点G是DF的中点时,请判断EG和DF的位置关系,并说明理由.24.(10分)如图,将长方形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9.(1)求BE的长;(2)求FC的长.25.(12分)如图(1),公路上有A、B、C三个车站,一辆汽车从A站以速度v匀速驶向B站,1匀速驶向C站,汽车行驶路程y(千米)与行驶时间(小时)到达B站后不停留,以速度v2之间的函数图象如图(2)所示.(1)当汽车在A、B两站之间匀速行驶时,求y与之间的函数关系式及自变量的取值范围;的值;(2)求出v2(3)若汽车在某一段路程内刚好用50分钟行驶了90千米,求这段路程开始时的值.26.(14分)如图,平面直角坐标系中,直线AB:y=﹣+b交y轴于点A,交轴于点B,S=8.△AOB (1)求点B的坐标和直线AB的函数表达式;(2)直线a垂直平分OB交AB于点D,交轴于点E,点P是直线a上一动点,且在点D的上方,设点P的纵坐标为m.①用含m的代数式表示△ABP的面积;=6时,求点P的坐标;②当S△ABP③在②的条件下,在坐标轴上,是否存在一点Q,使得△ABQ与△ABP面积相等?若存在,直接写出点Q的坐标,若不存在,请说明理由.江苏省连云港市赣榆县八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2B.2C.±D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数,使得2=a,则就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义判断即可.【解答】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:B.【点评】本题考查轴对称图形、中心对称图形的定义,解题的关键是理解轴对称图形的性质,属于中考常考题型.3.下列各组数中,可以构成直角三角形的是()A.2,3,5B.3,4,5C.5,6,7D.6,7,8【分析】两边的平方和等于第三边平方的三角形是直角三角形,根据此可找到答案.【解答】解:∵32+42=25,52=25.∴32+42=52.可构成直角三角形的是3、4、5.故选:B.【点评】本题考查勾股定理的逆定理,根据勾股定理的逆定理判断出直角三角形.4.点A(﹣3,2)关于轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)【分析】利用关于轴对称点的性质,横坐标不变,纵坐标互为相反数.即点P(,y)关于轴的对称点P′的坐标是(,﹣y),进而得出答案.【解答】解:∵点A(﹣3,2)关于轴的对称点为A′,∴A′点的坐标为:(﹣3,﹣2).故选:A.【点评】此题主要考查了关于轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.一次函数y=+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接根据一次函数的图象与系数的关系求出一次函数y=+1经过的象限即可.【解答】解:∵一次函数y=+1中,=1>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选:D.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=+b(≠0)中,当>0,b>0时函数的图象在一、二、三象限是解答此题的关键.6.下列各式中,正确的是()A. =±2B. =3C. =﹣3D. =﹣3【分析】根据一个正数的算术平方根和平方根的性质可判断A、B;根据可判断C;根据立方根的定义可判断D.【解答】解:,故A错误; =±3,故B错误; =|﹣3|=3,故C错误;正确.故选:D.【点评】本题主要考查的是立方根、平方根和算术平方根的性质,熟记性质是解题的关键.7.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B 落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.1cm B.2cm C.3cm D.4cm【分析】根据勾股定理可将斜边AB的长求出,根据折叠的性质知,AE=AB,已知AC的长,可将CE的长求出.【解答】解:在Rt△ABC中,AB=,根据折叠的性质可知:AE=AB=10∵AC=8∴CE=AE﹣AC=2即CE的长为2故选:B.【点评】此题考查翻折问题,将图形进行折叠后,两个图形全等,是解决折叠问题的突破口.8.如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE的长为()A.3B.1C.2D.4【分析】根据角平分线的性质,可得∠DBO与∠OBC的关系,∠ECO与∠OCB的关系,根据两直线平行,可得∠DOB与∠OBC的关系,∠EOC与∠OCB的关系,根据等腰三角形的判定,可得BD与DO的关系,EO与EC的关系,可得答案.【解答】解:OB和OC分别平分∠ABC和∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB.∵DE∥BC,∴∠OBC=∠DOB,∠EOC=∠OCB.∠DBO=∠DOB,∠EOC=∠ECO.∴DB=DO,EO=EC,DE=DO+EO=DB+EC,∵DE=5,BD=3,∴EC=5﹣3=2,故选:C.【点评】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.二、填空题:(共8小题,每题3分,共24分。
将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为12 .【分析】题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故答案为12.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.【分析】由数轴先判断出被覆盖的无理数的范围,再确定出,,﹣的范围即可得出结论.【解答】解:由数轴知,被墨迹覆盖住的无理数在3到4之间,∵9<11<16,∴3<<4,∵4<5<9,∴2<<3,∵1<3<4,∴1<<2,∴﹣2<﹣<﹣1∴被墨迹覆盖住的无理数是,故答案为:.【点评】此题主要实数与数轴,算术平方根的范围,确定出,,﹣的范围是解本题的关键.11.函数y=的图象过点(﹣1,2),那么= ﹣2 .【分析】由点的坐标利用一次函数图象上点的坐标特征可求出值,此题得解.【解答】解:∵函数y=的图象过点(﹣1,2),∴2=﹣,∴=﹣2.故答案为:﹣2.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=+b是解题的关键.12.取=1.4142135623731…的近似值,若要求精确到0.01,则= 1.41 .【分析】利用精确值的确定方法四舍五入,进而化简求出答案.【解答】解:∵=1.4142135623731…的近似值,要求精确到0.01,∴=1.41.故答案为:1.41.【点评】此题主要考查了近似数,正确把握相关定义是解题关键.13.如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是12 .【分析】根据线段的垂直平分线的性质即可解决问题;【解答】解:∵AB垂直平分线段CD,∴AC=AD=4,BC=BD=2,∴四边形ACBD的周长为4+4+2+2=12,故答案为12.【点评】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.14.将函数y=2的图象向下平移3个单位,则得到的图象相应的函数表达式为y=2﹣3 .【分析】直接根据函数图象平移的法则进行解答即可.【解答】解:将一次函数y=2的图象向下平移3个单位长度,相应的函数是y=2﹣3;故答案为:y=2﹣3.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2+3上,则y1与y2的大小关系是y1>y2.【分析】根据一次函数的增减性可以直接可得.【解答】解:∵点A(1,y1)、B(2,y2)都在直线y=﹣2+3上,且y随的增大而减小.∴y1>y2故答案为y1>y2【点评】本题考查了一次函数图象上点的坐标特征,关键是灵活利用一次函数的增减性解决问题.16.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在、y轴的正半轴上,OA=3,OB=4,D为OB边的中点,E是OA边上的一个动点,当△CDE的周长最小时,E点坐标为(1,0).【分析】作出D的对称点D′连接CD′,将三角形的周长转化为CE+CD,根据两点之间线段最短得到CD'的长即为最短距离,求出CD′的解析式,即可求出E点坐标.【解答】解:作D关于轴的对称点D′,连接D′C,连接CD′交轴于E,△CDE的周长为CD+DE+EC=CD+D′E+EC=CD′+CD,∵D为BO的中点,∴BD=OD=2,∵D和D′关于轴对称,∴D′(0,﹣2),∴易得,C(3,4),设直线CD'的解析式为y=+b,把C(3,4),D′(0,﹣2)分别代入解析式得,,解得,,解析式为y=2﹣2,当y=0时,=1,故E点坐标为(1,0).【点评】此题结合坐标系和矩形的性质,考查了轴对称﹣﹣﹣最短路径问题,作出D的对称点,将三角形的周长转化为线段是解题的关键.三、解答题(共10小题,共102分。