压缩感知理论及两种贪婪算法详解
- 格式:pdf
- 大小:159.50 KB
- 文档页数:2
压缩感知理论包括三个关键技术:信号的稀疏表示、测量矩阵的设计与重构算法的研究。
1 信号的稀疏表示将N 维信号x ∈R N×1在一组正交基{ψi }i=1N (其中ψi ∈RN×1)是进行展开,得到: x =∑θi ψi N i=1 (1-1)其中θi =<x,ψi >=ψi T x 。
写成矩阵的形式可以得到:x =ΨΘ (1-2)其中Ψ=[ψi ,ψ2,…,ψN ]∈R N×N 为正交基字典矩阵,Θ=[θi ,θ2,…,θN ]T信号x 被称为K 项稀疏,表示其等价表示,向量Θ中,只有K 项元素非零,其它元素全部为零。
在我们研究的压缩感知中,主要考虑K ≪N 这种情况。
这时,信号x 称为可压缩的。
通过采用测量矩阵ΦM×N (M 行N 列,且M <N )与式(1-2)中信号向量x 相乘,可以得到M 个测量结果,可写为:y =ΦΨΘ (1-3)式(1-3)中M ×1的列向量y 是信号x 的压缩线性测量结果(观测向量)。
令公式(1-3)中A =ΦΨ,得到无噪声情况下的压缩感知的模型为:y =AΘ (1-4)显然,式(1-4)中A 是M ×N 维观测矩阵。
而含有噪声的压缩感知模型为:y =AΘ+z (1-5)式(1-5)中z 为噪声项。
恢复出了Θ后,通过x =ΨΘ即可恢复出x 。
接下来我们要做的是找到一个合适的观测矩阵A ,使得降维后的观测向量y依然可以保存信号Θ中的信息。
然后由于式(1-5)是个欠定方程组,我们要寻找合适的重构算法来恢复Θ。
2 观测矩阵的设计2.1 受限等距性质信号能够重构的必要条件是测量矩阵A 满足受限等距性质RIP (Restrictedisometry property )。
为了更好的描述看受限等跟性质的定义。
定义2.1受限等距性质(RestrictedIsometry Property,RIP)[7]:令观测矩阵A的列范数归一化,稀疏度K为自然数;任意向量v,它最多只有K项的非零元素,对于常数δK∈(0,1),满足下式:(1−δK)‖v‖22≤‖Av‖22≤(1+δK)‖v‖22(2-1)那么,我们称A∈RIP(K,δK),即称A服从参数为δK的K项稀疏,矩阵A保存了K项稀疏信号的信息。
无线传感器网络中的压缩感知算法研究与应用指南无线传感器网络(Wireless Sensor Network,WSN)已经成为了各类应用场景中的重要组成部分,如环境监测、智能交通系统、医疗健康等。
随着传感器节点数量的增加和数据传输量的增大,传感器网络中的数据压缩成为了一项重要的研究领域。
本文将介绍无线传感器网络中的压缩感知算法,并提供相应的应用指南。
一、压缩感知算法简介压缩感知算法是一种通过对信号进行稀疏表示,从而实现在保持一定的数据质量的同时,减少传感器节点之间的通信开销的方法。
通过对信号进行压缩表达,可以在从传感器节点中收集到的原始数据中快速提取出有用的信息,从而降低能源消耗和通信带宽的需求。
传感器节点通常通过采集信号的采样数据来获得信息,并将这些数据传输到网关节点或中心服务器进行处理和分析。
然而,由于传感器节点数量庞大且资源有限,直接传输原始数据往往会导致信号交叉和冗余,造成能耗过大、网络拥塞等问题。
因此,压缩感知算法的引入可以有效地解决这些问题。
二、常用的压缩感知算法1. 稀疏表示算法稀疏表示算法是压缩感知算法中最常用的方法之一。
该算法基于信号在某个稀疏基上的线性表示,利用稀疏性的特点将信号压缩到较低维度的空间中,从而实现数据压缩的目的。
常见的稀疏表示算法包括基于最小二乘法的OMP(Orthogonal Matching Pursuit)、BP(Basis Pursuit)等。
2. 矩阵分解算法矩阵分解算法是另一种常用的压缩感知算法。
该算法通过对信号进行矩阵分解,将信号分解成低秩的近似表示,从而实现数据的压缩。
通过引入矩阵分解,可以在一定程度上减少数据的冗余,提高压缩效率。
常见的矩阵分解算法包括主成分分析(PCA)、奇异值分解(SVD)等。
3. 信息论算法信息论算法是基于信息论原理设计的一种压缩感知算法。
该算法以信源熵为理论基础,通过降低信源熵来实现数据的压缩。
信息论算法可以充分利用信号的冗余性和统计特性,实现对信号的高效压缩。
压缩感知的重构算法算法的重构是压缩感知中重要的一步,是压缩感知的关键之处。
因为重构算法关系着信号能否精确重建,国内外的研究学者致力于压缩感知的信号重建,并且取得了很大的进展,提出了很多的重构算法,每种算法都各有自己的优缺点,使用者可以根据自己的情况,选择适合自己的重构算法,大大增加了使用的灵活性,也为我们以后的研究提供了很大的方便。
压缩感知的重构算法主要分为三大类:1.组合算法2.贪婪算法3.凸松弛算法每种算法之中又包含几种算法,下面就把三类重构算法列举出来。
组合算法:先是对信号进行结构采样,然后再通过对采样的数据进行分组测试,最后完成信号的重构。
(1) 傅里叶采样(Fourier Representaion)(2) 链式追踪算法(Chaining Pursuit)(3) HHS追踪算法(Heavy Hitters On Steroids)贪婪算法:通过贪婪迭代的方式逐步逼近信号。
(1) 匹配追踪算法(Matching Pursuit MP)(2) 正交匹配追踪算法(Orthogonal Matching Pursuit OMP)(3) 分段正交匹配追踪算法(Stagewise Orthogonal Matching Pursuit StOMP)(4) 正则化正交匹配追踪算法(Regularized Orthogonal Matching Pursuit ROMP)(5) 稀疏自适应匹配追踪算法(Sparisty Adaptive Matching Pursuit SAMP)凸松弛算法:(1) 基追踪算法(Basis Pursuit BP)(2) 最小全变差算法(Total Variation TV)(3) 内点法(Interior-point Method)(4) 梯度投影算法(Gradient Projection)(5) 凸集交替投影算法(Projections Onto Convex Sets POCS)算法较多,但是并不是每一种算法都能够得到很好的应用,三类算法各有优缺点,组合算法需要观测的样本数目比较多但运算的效率最高,凸松弛算法计算量大但是需要观测的数量少重构的时候精度高,贪婪迭代算法对计算量和精度的要求居中,也是三种重构算法中应用最大的一种。
万方数据 万方数据为稀疏基,得到稀疏个数K=30。
在基于CS理论的编解码框架中,编码端采用高斯测量矩阵,解码端采用OMP法进行恢复重构。
仿真实验首先观察CS理论下测量值数量对信号重建效果的影响。
由图3可知。
当测量值的样本数图3一维稀疏信号恢复成功概率数量M增加时,信号成功恢复的概率同步增加。
而且当样本数目达到膨=llO时.信号已经能够准确恢复。
此时由图4可以看出信号得到了准确的解码重构。
銎毒0.5圈壁堕豳2广—■———————T——]墨。
卜●■)_—严_TLL——+-f-—剥Oj粤馨.0b菇焉。
篡蔷赢.《零妻§蕊,赢球薅热j盛》德0蛾Z一碰潼舔.《}糟哿,学一氛77≯叩’6哆滞可刘(c)CS解码重构后信号。
长度N=256图4源信号、解码重构稀疏系数、解码重构信号图6.2二维图像情况下的实验仿真源图像为256x256的boat图,选小波基为稀疏基。
基于CS理论的编解码框架中,测量编码端采用分块(块大小为32x32)Hadamard测量矩阵.解码端基于Tv最小化的梯度投影法进行恢复重构。
图像的测量样本数胜25000,其重构结果如图5a所示。
在传统的编解码理论下,对图像小波变换后保留其中的25000个大系数进行编码,后进行解码、反变换重建,其结果如图5b所示。
仿真结果表明。
在编码端的测量值个数相同的情况下,CS理论下的恢复图像PSNR达到27.9dB,远远高于传统编图5CS与传统编解码boat图恢复效果比较181塑丝查正面磊i西函再孬丽孺面解码的15.49dB。
7小结笔者主要阐述了CS理论框架,以及基于CS理论的编解码模型。
通过对一维信号、二维图像进行编解码的仿真实验说明了CS理论是一种能够使用少量测量值实现信号准确恢复的数据采集、编解码理论。
由于CS理论对处理大规模稀疏或可压缩数据具有十分重要的意义。
所以该理论提出后在许多研究领域得到了关注。
目前,国外研究人员已开始将CS理论用于压缩成像、医学图像、模数转换、雷达成像、天文学、通信等领域。
2023-11-11contents •压缩感知理论概述•基于压缩感知的重构算法基础•基于压缩感知的信号重构算法•基于压缩感知的图像重构算法•基于压缩感知的重构算法优化•基于压缩感知的重构算法展望目录01压缩感知理论概述在某个基或字典下,稀疏信号的表示只包含很少的非零元素。
稀疏信号通过测量矩阵将稀疏信号转换为测量值,然后利用优化算法重构出原始信号。
压缩感知压缩感知基本原理压缩感知理论提出。
2004年基于稀疏基的重构算法被提出。
2006年压缩感知技术被应用于图像处理和无线通信等领域。
2008年压缩感知在雷达成像和医学成像等领域取得重要突破。
2010年压缩感知发展历程压缩感知应用领域压缩感知可用于高分辨率雷达成像,提高雷达系统的性能和抗干扰能力。
雷达成像医学成像无线通信图像处理压缩感知可用于核磁共振成像、超声成像和光学成像等领域,提高成像速度和分辨率。
压缩感知可用于频谱感知和频谱管理,提高无线通信系统的频谱利用率和传输速率。
压缩感知可用于图像压缩和图像加密等领域,实现图像的高效存储和传输。
02基于压缩感知的重构算法基础重构算法的基本概念基于压缩感知的重构算法是一种利用稀疏性原理对信号进行重构的方法。
重构算法的主要目标是恢复原始信号,尽可能地保留原始信号的信息。
重构算法的性能受到多种因素的影响,如信号的稀疏性、观测矩阵的设计、噪声水平等。
重构算法的数学模型基于压缩感知的重构算法通常采用稀疏基变换方法,将信号投影到稀疏基上,得到稀疏表示系数。
通过求解一个优化问题,得到重构信号的估计值。
重构算法的数学模型包括观测模型和重构模型两个部分。
重构算法的性能评估重构算法的性能评估通常采用重构误差、重构时间和计算复杂度等指标进行衡量。
重构误差越小,说明重构算法越能准确地恢复原始信号。
重构时间越短,说明重构算法的效率越高。
计算复杂度越低,说明重构算法的运算速度越快。
03基于压缩感知的信号重构算法基于稀疏基的重构算法需要选择合适的稀疏基,使得信号能够稀疏表示,同时需要解决稀疏基选择不当可能导致的过拟合或欠拟合问题。