数学模型_贪心算法及实例
- 格式:ppt
- 大小:364.00 KB
- 文档页数:7
在现代数学建模中,动态规划和贪心算法是两种常用的方法。
它们具有重要的理论和实际意义,可以在很多实际问题中得到应用。
动态规划是一种通过将问题分解为子问题,并反复求解子问题来求解整个问题的方法。
它的核心思想是将原问题分解为若干个规模较小的子问题,并将子问题的最优解合并得到原问题的最优解。
动态规划的求解过程通常包括问题的建模、状态的定义、状态转移方程的确定、初始条件的设置和最优解的确定等步骤。
通过动态规划方法,可以大大减少问题的求解时间,提高求解效率。
举个例子,假设我们有一组物品,每个物品有重量和价值两个属性。
我们希望从中选出一些物品放入背包中,使得在背包容量限定的条件下,背包中的物品的总价值最大化。
这个问题可以使用动态规划来解决。
首先,我们定义一个状态变量,表示当前的背包容量和可选择的物品。
然后,我们根据背包容量和可选择的物品进行状态转移,将问题分解为子问题,求解子问题的最优解。
最后,根据最优解的状态,确定原问题的最优解。
与动态规划相比,贪心算法更加简单直接。
贪心算法是一种通过每一步的局部最优选择来达到全局最优解的方法。
贪心算法的核心思想是每一步都做出当前看来最好的选择,并在此基础上构造整个问题的最优解。
贪心算法一般包括问题的建模、贪心策略的确定和解的构造等步骤。
尽管贪心算法不能保证在所有情况下得到最优解,但在一些特定情况下,它可以得到最优解。
举个例子,假设我们要找零钱,现有的零钱包括若干2元、5元和10元的硬币。
我们希望找出一种最少的方案来凑出某个金额。
这个问题可以使用贪心算法来解决。
首先,我们确定贪心策略,即每次选择最大面额的硬币。
然后,我们根据贪心策略进行解的构造,直到凑够目标金额。
动态规划和贪心算法在数学建模中的应用广泛,在实际问题中也有很多的成功应用。
例如,动态规划可以用于求解最短路径、最小生成树等问题;贪心算法可以用于求解调度、路径规划等问题。
同时,动态规划和贪心算法也相互补充和影响。
有一些问题既可以使用动态规划求解,也可以使用贪心算法求解。
贪心算法实例分析贪心算法,是一种常见的解决问题的方法,尤其在最优化问题中得到了广泛的应用。
简单来说,贪心算法是建立在选取局部最优解的基础上,通过不断的贪心选择,达到全局最优解的目的。
本文将通过两个实例,介绍使用贪心算法的思路和实现方法。
实例一:零钱兑换问题假设有 n 种不同面值的硬币,每种面值的硬币数量无限,现在需要兑换一个目标值amount 元,求兑换所需的最少硬币数。
例如:有2元、5元、10元、20元、50元、100元六种面值的硬币,需要兑换52元,则兑换最少需要三枚硬币:两枚20元硬币和一枚10元硬币。
思路分析:对于这个问题,我们可以把它看成选择一定数量的硬币使其面值之和等于 amount,且硬币数量最少。
为了使硬币数量最少,我们每次都选取当前面值最大并且小于剩余兑换金额的硬币。
这相当于在每个阶段选择局部最优解,最终得到的就是全局最优解。
实现方法:1. 排序:将硬币面额按从大到小的顺序排列。
2. 贪心选择:从面额最大的硬币开始选取,直到兑换金额为 0 或全部面额都被选择过。
代码示例:```pythondef coinChange(coins, amount):coins.sort(reverse=True) # 排序res = 0for coin in coins:while amount >= coin: # 贪心选择amount -= coinres += 1return res if amount == 0 else -1```实例二:区间调度问题假设有 n 个区间 [start, end],现在需要选出最多的区间,使得它们没有重叠。
例如:有四个区间[1,3]、[2,4]、[3,6]、[5,7],选出的最多区间数是 3,即选出[1,3]、[3,6]、[5,7]这三个区间。
思路分析:这个问题可以看成排序和贪心选择问题的复合。
首先,我们将所有区间按照 end 非递减的顺序排序。
然后从第一个区间开始,依次选取与当前区间不重叠且start 大于等于当前区间的所有区间,直到所有区间都被检查完。
列举用贪心算法求解的经典问题贪心算法是一种简单而高效的问题求解方法,通常用于求解最优化问题。
它通过每一步选择当前状态下的最优解,最终得到全局最优解。
贪心算法的核心思想是:每一步都做出一个局部最优的选择,并认为这个选择一定可以达到全局最优。
以下是一些经典问题,可以用贪心算法求解:1. 零钱兑换问题(Coin Change Problem):给定一些不同面额的硬币和一个目标金额,找到最少的硬币数量,使得硬币总额等于目标金额。
贪心算法可以按照硬币的面额从大到小进行选择,每次选择尽量大面额的硬币。
2. 区间调度问题(Interval Scheduling Problem):给定一些区间,找到最多的不相交区间。
贪心算法可以按照区间的结束时间进行排序,每次选择结束时间最早的区间,确保选择的区间不重叠。
3. 分糖果问题(Candy Problem):给定一个数组表示每个孩子的评分,要求给这些孩子分糖果,满足以下要求:每个孩子至少分到一个糖果,评分高的孩子要比相邻孩子分到的糖果多。
贪心算法可以从左到右进行两次遍历,分别处理评分递增和评分递减的情况。
4. 跳跃游戏问题(Jump Game Problem):给定一个非负整数数组,表示每个位置的最大跳跃长度,判断是否能从第一个位置跳到最后一个位置。
贪心算法可以记录当前能够到达的最远位置,并且更新为更远的位置。
5. 任务调度器问题(Task Scheduler Problem):给定一串任务,每个任务需要一定的冷却时间,要求以最短的时间完成所有任务。
贪心算法可以按照出现次数进行排序,优先执行出现次数最多的任务,并在冷却时间内执行其他任务。
6. 区间覆盖问题(Interval Covering Problem):给定一些区间,找到最少的区间数,使得它们的并集覆盖了所有输入区间。
贪心算法可以根据区间的起始位置进行排序,每次选择最早结束的区间,并将它添加到最终结果中。
以上仅是一些经典问题的例子,实际上还有很多问题可以用贪心算法来求解。
因为贪心而失败的例子贪心算法是一种常用的解决问题的算法思想,它通常在每一步选择中都采取当前状态下最好或最优的选择,从而希望最终能够达到全局最优的结果。
然而,贪心算法的贪心选择可能会导致最终结果并非全局最优,而是局部最优或者根本无法得到可行解。
因此,贪心算法在某些问题上会因为贪心而失败。
下面将列举10个因为贪心而失败的例子。
1. 颜色分配问题:假设有n个节点需要着色,并且相邻的节点不能具有相同的颜色。
贪心算法选择每次都选择可用颜色最少的节点进行着色。
然而,这种贪心选择可能会导致最终无法着色所有节点,因为后续节点的颜色选择受到前面节点的限制。
2. 找零问题:假设需要找零的金额为m,而只有面额为1元、5元、10元的硬币。
贪心算法选择每次都选择面额最大的硬币进行找零。
然而,在某些情况下,贪心选择可能会导致找零的硬币数量不是最小的。
3. 最小生成树问题:在一个连通图中,选择一些边构成一个树,使得这些边的权值之和最小,同时保证图中的所有节点都能够通过这些边连通。
贪心算法选择每次都选择权值最小的边加入到树中。
然而,这种贪心选择可能会导致最终得到的树不是最小生成树。
4. 背包问题:给定一组物品,每个物品有自己的重量和价值,在给定的背包容量下,选择一些物品放入背包中,使得背包中物品的总价值最大。
贪心算法选择每次都选择单位重量价值最大的物品放入背包中。
然而,在某些情况下,贪心选择可能会导致最终得到的背包价值不是最大的。
5. 最短路径问题:在一个有向图中,找到两个节点之间的最短路径。
贪心算法选择每次都选择距离最近的节点进行扩展。
然而,这种贪心选择可能会导致最终得到的路径不是最短的。
6. 任务调度问题:给定一组任务,每个任务有自己的开始时间和结束时间,在给定的时间段内,选择一些任务进行调度,使得能够完成尽可能多的任务。
贪心算法选择每次都选择结束时间最早的任务进行调度。
然而,在某些情况下,贪心选择可能会导致最终完成的任务数量不是最多的。
数学建模贪心算法贪心算法是一种常用的数学建模方法,它在解决问题时采用一种“贪心”的策略,即每一步都选择当前最优的解决方案,最终达到全局最优解。
贪心算法在很多实际问题中都有广泛的应用,比如任务调度、背包问题等。
在本文中,我们将介绍贪心算法的基本思想和应用,并通过几个实际问题的例子来展示贪心算法的具体应用过程。
贪心算法的基本思想是通过局部最优解逐步推导出全局最优解。
在每一步的选择中,贪心算法总是选择当前状态下的最优解决方案,而不考虑之后的选择可能会带来的影响。
这意味着贪心算法没有回溯或者重新考虑之前的选择,它只关注当前的局部最优解。
贪心算法的应用非常广泛,其中一种常见的应用是任务调度问题。
假设有n个任务需要在一台计算机上执行,每个任务需要一定的时间和资源。
我们的目标是在不超过计算机资源限制的情况下,尽可能多地执行任务。
贪心算法可以通过选择执行时间最短的任务来实现最优解。
每次选择执行时间最短的任务,直到计算机资源达到限制或者所有任务都执行完毕。
另一个常见的应用是背包问题。
背包问题是指给定一个背包和一组物品,每个物品都有自己的重量和价值。
我们的目标是选择一些物品放入背包中,使得背包中的物品总价值最大化,同时不能超过背包的承重限制。
贪心算法可以通过选择单位重量价值最高的物品来实现最优解。
每次选择单位重量价值最高的物品放入背包,直到背包已满或者所有物品都放入背包。
除了任务调度和背包问题,贪心算法还可以应用于一些其他的实际问题。
比如在路径规划中,贪心算法可以通过选择当前最短路径上的下一个节点来实现最优解。
在图着色问题中,贪心算法可以通过选择当前节点的邻居节点中未被着色的颜色来实现最优解。
虽然贪心算法在很多问题中都能得到较好的结果,但并不是所有问题都适合用贪心算法求解。
有些问题可能存在局部最优解并不一定能得到全局最优解的情况,这时就需要使用其他的算法来求解。
此外,贪心算法的求解过程比较简单,但并不一定能得到最优解,只能得到一个近似解。
c++贪心算法经典例题和详解贪心算法(Greedy Algorithm)是一种优化问题解决方法,其基本思想是每一步都选择当前状态下的最优解,以期望达到全局最优解。
贪心算法的特点是每一步都要做出一个局部最优的选择,而这些局部最优选择最终构成了全局最优解。
下面是一个经典的贪心算法例题以及详解:例题:活动选择问题(Activity Selection Problem)假设有一个需要在同一时段使用同一个资源的活动集合,每个活动都有一个开始时间和结束时间。
设计一个算法,使得能够安排最多数量的互不相交的活动。
# 输入:-活动的开始时间数组`start[]`。
-活动的结束时间数组`end[]`。
# 输出:-选择的互不相交的活动的最大数量。
# 算法详解:1. 首先,将活动按照结束时间从小到大排序。
2. 选择第一个活动,并将其加入最终选择的集合中。
3. 对于剩下的活动,选择下一个结束时间最早且与前一个活动不冲突的活动。
4. 重复步骤3,直到所有活动都被选择。
```cpp#include <iostream>#include <algorithm>#include <vector>using namespace std;// 定义活动结构体struct Activity {int start, end;};// 比较函数,用于排序bool compareActivities(Activity a, Activity b) {return a.end < b.end;}// 贪心算法解决活动选择问题void activitySelection(vector<Activity>& activities) {// 按照结束时间排序sort(activities.begin(), activities.end(), compareActivities);// 第一个活动总是被选中cout << "Selected activity: (" << activities[0].start << ", " << activities[0].end << ")" << endl;// 选择其余活动int lastSelected = 0;for (int i = 1; i < activities.size(); i++) {// 如果当前活动的开始时间大于等于上一个选择的活动的结束时间,则选择该活动if (activities[i].start >= activities[lastSelected].end) {cout << "Selected activity: (" << activities[i].start << ", " << activities[i].end << ")" << endl;lastSelected = i;}}}int main() {vector<Activity> activities = {{1, 2}, {3, 4}, {0, 6}, {5, 7}, {8, 9}, {5, 9}};cout << "Activities before sorting:" << endl;for (const Activity& activity : activities) {cout << "(" << activity.start << ", " << activity.end << ") ";}cout << endl;activitySelection(activities);return 0;}```在这个例子中,我们首先定义了一个活动的结构体`Activity`,然后编写了一个比较函数`compareActivities` 用于排序。
贪心算法的应用案例贪心算法是一种简单直观的算法策略,用于解决一些优化问题。
它的基本思想是在每一步选择中都选择当前状态下的最优解,以期望最终达到全局最优解。
本文将通过几个具体的应用案例来展示贪心算法的实际应用。
1. 最小生成树问题最小生成树问题是图论中经典的问题之一,主要涉及到如何在一个连通加权无向图中找到一个包含所有顶点且权重最小的树。
其中,贪心算法的应用使得问题的解决更加高效。
例如,我们有一个城市网络,城市之间的距离用边的权重表示,我们希望在城市之间建立最小的铁路网络以确保每个城市都能够连通。
这可以转化为一个最小生成树问题,其中贪心算法通过选择权重最小的边,快速找到最优解。
2. 零钱兑换问题零钱兑换问题是一个经典的动态规划问题,但同样可以使用贪心算法来解决。
给定一定面值的硬币,我们需要找零某个金额的钱,求出所需硬币的最少数量。
贪心算法解决这个问题的思路是,每次选择价值最大的硬币,直到凑够所需的金额。
这样可以保证得到的结果是最优解。
例如,假设我们有面值为[1, 5, 10, 25]的硬币,需要凑够30美分,贪心算法会优先选择25美分硬币,然后再选择5美分硬币,最后选择1美分硬币,总共需要三枚硬币。
贪心算法快速获得了最优解。
3. 区间调度问题区间调度问题是一类经典的贪心算法问题,主要涉及到如何在一组任务中选择最大数量的相容任务。
每个任务都有一个开始时间和结束时间,任务之间不能同时进行,我们需要找到最大数量的任务能够不发生冲突地进行。
贪心算法解决这个问题的思路是,每次选择结束时间最早的任务,然后排除与其冲突的任务,直到没有任务可选为止。
这样就能够保证选择的任务最多且不发生冲突。
例如,假设我们有以下任务与其对应的开始时间和结束时间:A(1, 4),B(3, 6),C(5, 7)。
贪心算法会先选择A(1, 4),然后排除与其冲突的任务B(3, 6),最后剩下任务C(5, 7)。
贪心算法得到了最大数量的相容任务。
贪心算法求解程序存储问题的数学模型
通常,贪心算法是可以用来求解程序存储问题的数学模型。
程序存储问题是指在有限的存储空间中放置最多的程序。
假设有一个存储空间大小为N,要存储的程序有n个,每个程序占用存储空间的大小为 si(i=1,2……,n)。
我们可以建立一个数学模型来求解程序存储问题,即:
最大化∑si
且∑si≤N
其中si ≥ 0, i = 1, 2, …, n。
为了求解上述的数学模型,我们可以采用贪心算法,其思想是:从n个程序中依次取出,使存储空间剩余的空间最小,同时它的大小不超过N。
算法过程如下:
①从n个程序中选取最大的程序,记为s1 。
②计算剩余的存储空间 S = N - s1;
③从n-1个剩余的程序中选取最大的程序,记为s2;
④若s2 ≤ S,则将s2存放在存储空间中,并将新的剩余空间记为S = S -s2;否则跳过步骤③;
⑤重复步骤③④,直到所有程序都存放完毕。
采用贪心算法求解程序存储问题的数学模型,能够有效地求解出一组最佳解,从而使得最大存储空间得到实现。
- 1 -。