FLACD岩土软件本构模型
- 格式:ppt
- 大小:6.01 MB
- 文档页数:49
FLAC-3D(ThreeDimensionalFastLagrangianAnalysisofContinua)是美国ItascaConsultingGouplnc开发的三维快速拉格朗日分析程序,该程序能较好地模拟地质材料在达到强度极限或屈服极限时,发生的破坏或塑性流动的力学行为,特别适用于分析渐进破坏和失稳以及模拟大变形.FLAC3D分析的使用领域根据手册总结如下:(1)承受荷载能力与变形分析:用于边坡稳定和基础设计(2)渐进破坏与坍塌反演:用于硬岩采矿和隧道设计(3)断层构造的影响研究:用于采矿设计(4)施加于地质体锚索支护所提供的支护力研究:岩锚和土钉的设计(5)排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研究:挡土墙结构的地下水流动,和土体固结研究(6)粘性材料的蠕变特性:用于碳酸钾盐矿设计(7)陡滑面地质结构的动态加载:用于地震工程和矿山岩爆研究(8)爆炸荷载和振动的动态响应:用于隧道开挖和采矿活动(9)结构的地震感应:用于土坝设计(10)由于温度诱发荷载所导致的变形和结构的不稳定(11)大变形材料分析:用于研究粮仓谷物流动和放矿的矿石流动10种材料本构模型Flac3D中为岩土工程问题的求解开发了特有的本构模型,总共包含了10种材料模型:(1)开挖模型null(2)3个弹性模型(各向同性,横观各向同性和正交各向同性弹性模型)(3)6个塑性模型(Drucker-Prager模型、Morh-Coulomb模型、应变硬化/软化模型、遍布节理模型、双线性应变硬化/软化遍布节理模型和修正的cam粘土模型).Flac3D网格中的每个区域可以给以不同的材料模型,并且还允许指定材料参数的统计分布和变化梯度.还包含了节理单元,也称为界面单元,能够模拟两种或多种材料界面不同材料性质的间断特性.节理允许发生滑动或分离,因此可以用来模拟岩体中的断层、节理或摩擦边界.FLAC3D中的网格生成器gen,通过匹配、连接由网格生成器生成局部网格,能够方便地生成所需要的三维结构网格.还可以自动产生交岔结构网格(比如说相交的巷道),三维网格由整体坐标系x,y,z系统所确定,这就提供了比较灵活的产生和定义三维空间参数.五种计算模式(l)静力模式:这是FLAC-3D默认模式,通过动态松弛方法得静态解.(2)动力模式:用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件,边界可以固定边界和自由边界.动力计算可以与渗流问题相藕合.(3)蠕变模式:有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型.(4)渗流模式:可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合.渗流服从各向同性达西定律,流体和孔隙介质均被看作可变形体.考虑非稳定流,将稳定流看作是非稳定流的特例.边界条件可以是固定孔隙压力或恒定流,可以模拟水源或深井.渗流计算可以与静力、动力或温度计算耦合,也可以单独计算.(5)温度模式:可以模拟材料中的瞬态热传导以及温度应力.温度计算可以与静力、动力或渗流计算藕合,也可单独计算.模拟多种结构形式(l)对于通常的岩体、土体或其他材料实体,用八节点六面体单元模拟.(2)FIAC-3D包含有四种结构单元:梁单元、锚单元、桩单元、壳单元.可用来模拟岩土工程中的人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩等.(3)FLAC-3D的网格中可以有界面,这种界面将计算网格分割为若干部分,界面两边的网格可以分离,也可以发生滑动,因此,界面可以模拟节理、断层或虚拟的物理边界.有多种边界条件边界方位可以任意变化,边界条件可以是速度边界、应力边界,单元内部可以给定初始应力,节点可以给定初始位移、速度等,还可以给定地下水位以计算有效应力、所有给定量都可以具有空间梯度分布.FLAC-3D内嵌语言FISHFLAC-3D具有强大内嵌语言FISH,使得用户可以定义新的变量或函数,以适应用户的特殊需要,例如,利用HSH做以下事情:(l)用户可以自定义材料的空间分布规律,如非线性分布等.(2)用户可以定义变量,追踪其变化规律并绘图表示或打印输出.(3)用户可以自己设计FLAC-3D内部没有的单元形态.(4)在数值试验中可以进行伺服控制.(5)用户可以指定特殊的边界条件.(6)自动进行参数分析(7)利用FLAC-3D内部定义的Fish变量或函数,用户可以获得计算过程中节点、单元参数,如坐标、位移、速度、材料参数、应力、应变、不平衡力等.FLAC-3D前后处理功能FLAC-3D具有强大的自动三维网格生成器,内部定义了多种单元形态,用户还可以利用FISH自定义单元形态,通过组合基本单元,可以生成非常复杂的三维网格,比如交叉隧洞等.在计算过程中的任何时刻用户都可以用高分辨率的彩色或灰度图或数据文件输出结果,以对结果进行实时分析,图形可以表示网格、结构以及有关变量的等值线图、矢量图、曲线图等,可以给出计算域的任意截面上的变量图或等直线图,计算域可以旋转以从不同的角度观测计算结果.FLAC3D计算分析一般步骤与大多数程序采用数据输入方式不同,FLAC采用的是命令驱动方式.命令字控制着程序的运行.在必要时,尤其是绘图,还可以启动FLAc用户交互式图形界面.为了建立FLAC计算模型,必须进行以下三个方面的工作:(1)有限差分网格(2)本构特性与材料性质(3)边界条件与初始条件完成上述工作后,可以获得模型的初始平衡状态,也就是模拟开挖前的原岩应力状态.然后,进行工程开挖或改变边界条件来进行工程的响应分析,类似于FLAC的显式有限差分程序的问题求解.与传统的隐式求解程序不同,FLAC采用一种显式的时间步来求解代数方程.进行一系列计算步后达到问题的解.在FLAC中,达到问题所需的计算步能够通过程序或用户加以控制,但是,用户必须确定计算步是否已经达到问题的最终的解.后处理(一)用tecplot绘制曲线(1)第一主应力(2)xdisp、ydisp、zdisp、disp(二)用excel做曲线隧道(1)做地表沉降槽(zdisp)(2)地表横向位移(xdisp)(3)隧道中线竖向沉降曲线(zdisp)(4)提取位移矢量图,(5)显示初期支护结构内力(6)显示state(找塑性区)基坑(1)做地表沉降槽(zdisp)(2)提取位移矢量图,(3)显示初期支护结构内力(4)显示state(找塑性区)边坡(1)做安全系数和应变图模型最优化用FLAC3D解决问题时,为了得到最有效的分析使模型最优化是很重要的.(1)检查模型运行时间:一个FLAC3D例子的运行时间是区域数的4/3倍.这个规则适用于平衡条件下的弹性问题.对于塑性问题,运行时间会有点改变,但是不会很大,但是如果发生塑性流动,这个时间将会大的多.对一个具体模型检查自己机子的计算速度很重要.一个简单的方法就是运行基准测试.然后基于区域数的改变,用这个速度评估具体模型的计算速度.(2)影响运行时间的因素:FLAC3D有时会需要较长时间才可以收敛主要发生在下列情况下:(a)材料本身刚度变异或材料与结构及接触面之间的刚度差异很大.(b)划分的区域尺寸相差很大.这些尺寸差异越大编码就越无效.在做详细分析前应该研究刚度差异的影响.例如,一个荷载作用下的刚性板,可以用一系列顶点固定的网格代替,并施以等速度.(记住FIX命令确定速度,而不是位移.)地下水的出现将使体积模量发生明显的增加(流体-固体相互作用).(3)考虑网格划分的密度:FLAC3D使用常应变单元.如果应力/应变曲线倾斜度比较高,那么你将需要许多区域来代表多变的分区.通过运行划分密度不同的同一个问题来检查影响.FLAC3D应用常应变区域,因为当用多的少节点单元与用比较少的多节点单元模拟塑性流动时相比更准确.应尽可能保持网格,尤其是重要区域网格的统一.避免长细比大于5:1的细长单元,并避免单元尺寸跳跃式变化(即应使用平滑的网格).应用GENERATE命令中的比率关键词,使细划分区域平滑过渡到粗划分区域.(4)自动发现平衡状态:默认情况下,当执行SOLVE命令时,系统将自动发现力的平衡.当模型中所有网格顶点中所有力的平均量级与其中最大的不平衡力的量级的比率小于1*10时,认为达到了平衡状态.注意一个网格顶点的力由内力(例如,由于重力)和外力(例如,由于所加的应力边界条件)共同引起.因为比率是没有尺寸的,所以对于有不同的单元体系的模型,在大多数情况下,不平衡力和所加力比率的限制给静力平衡提供了一个精确的限制.同时还提供了其他的比率限制;可以用SETratio命令施加.如果默认的比率限制不能为静力平衡提供一个足够精确的限制,那么应考虑可供选择的比率限制.默认的比率限制同样可用于热分析和流体分析的稳定状态求解.对于热分析,是对不平衡热流量和所加的热流量量级进行评估,而不是力.对于流体分析,对不平衡流度和所加流度量级进行评估.(5)考虑选择阻尼:对于静力分析,默认的阻尼是局部阻尼,对于消除大多数网格顶点的速度分量周期性为零时的动能很有效.这是因为质量的调节过程依赖于速度的改变.局部阻尼对于求解静力平衡是一个非常有效的计算法则且不会引入错误的阻尼力(见Cundall1987).如果在求解最后状态,重要区域的网格海域的速度分量不为零,那么说明默认的阻尼对于达到平衡状态是不够的.有另外一种形式的阻尼,叫组合阻尼,相比局部阻尼可以使稳定状态达到更好的收敛,这时网格将发生明显的刚性移动.例如,求解轴向荷载作用下桩的承载力或模拟蠕变时都可能发生.使用SETmechanicaldampcombined命令来调用组合阻尼.组合阻尼对于减小动能方面不如局部阻尼有效,所以应注意使系统的动力激发最小化.可以用SETmechanicaldamplocal命令转换到默认阻尼.(6)检查模型反应:FLAC3D显示了一个相试的物理系统是怎样变化的.做一个简单的试验证明你在做你认为你在做的事情.例如,如果荷载和实体在几何尺寸上都是对称的,当然反应也是对称的.改变了模型以后,执行几个时步(假如,5或10步),证明初始反应是正确的,并且发生的位置是正确的.对应力或位移的期望值做一个估计,与FLAC3D的输出结果作比较.如果你对模型施加了一个猛烈的冲击,你将会得到猛烈的反应.如果你对模型作了一些看起来不合理的事情,你一定要等待奇怪的结果.如果在分析的一个给定阶段,得到了意外值,那么回顾到这个阶段所用的时步.在进行模拟前很关键的是检查输出结果.例如,除了一个角点速度很大外,一切都很合理,那么在你理解原因前不要继续下去.这种情况下,你可能没有给定适当的网格边界.(7)初始化变量:在模拟基坑开挖过程时,在达到目的前通常要初始化网格顶点位移.因为计算次序法则不要求位移,所以可以初始化位移,这只是由网格顶点的速度决定,并有益于用户初始化速度却是一件难事.如果设定网格顶点的速度为一常数,那么这些点在设置否则前保持不变.所以,不要为了清除这些网格的速度而简单的初始化它们为零...这将影响模拟结果.然而,有时设定速度为零是有用的(例如,消除所有的动能).(8)最小化静力分析的瞬时效应:对于连续性静力分析,经过许多阶段逐步接近结果是很重要的...即,当问题条件突然改变时,通过最小化瞬时波的影响,使结果更加“静力”.使FLAC3D解决办法更加静态的方法有两种.(a)当突然发生一个变化时(例如,通过使区域值为零模拟开挖),设定强度性能为很高的值以得到静力平衡.然后为了确保不平衡力很低,设定性能为真实值,再计算,这样,由瞬时现象引起的失败就不会发生了.(b)当移动材料时,用FISH函数或表格记录来逐步减少荷载.(9)改变模型材料:FLAC3D对一个模拟中所用的材料数没有限制.这个准则已经尺寸化,允许用户在自己所用版本的FLAC3D中最大尺寸网格的每个区域(假如设定的)使用不同的材料.(10)运行在现场原位应力和重力作用下的问题:有很多问题在建模时需要考虑现场原位应力和重力的作用.这种问题的一个例子是深层矿业开挖:回填.此时大多数岩石受很高的原位应力区的影响(即,自重应力由于网孔尺寸的限制可以忽略不计),但是回填桩的放置使自重应力发展导致岩石在荷载作用下可能坍塌.在这些模拟中要注意的重点(因为任何一种模拟都有重力的作用)是网格的至少三个点在空间上应固定...否则,整个网格在重力作用下将转动.如果你曾经注意到整个网格在重力加速度矢量方向发生转动,那么你可能忘记在空间上固定网格了.FLAC3D主要适明模拟计算地质材料和岩土上程的力学行为。
基于FLAC3D二次开发的岩体损伤演化模型岩体损伤演化模型是基于FLAC3D软件的二次开发模型,用于模拟岩体的损伤演化过程。
岩体在地质作用的影响下,经历了多个阶段的变形和破坏过程,这些变形和破坏过程对岩体的稳定性和工程的安全产生了重要影响。
研究岩体的损伤演化过程对于地质灾害防治和工程设计具有重要意义。
岩体损伤演化模型的基本原理是将岩体看作一个具有初始缺陷和裂纹的连续介质,通过数值模拟的方法来模拟岩体内部的应力、应变和裂缝的演化过程,从而预测岩体的破坏形态和损伤程度。
岩体损伤演化模型主要包含以下几个方面的内容:1. 岩体力学性质的描述:岩石是一个非线性和各向异性材料,在岩体损伤演化模型中需要将岩石的本构关系和破裂准则进行描述。
常用的本构关系包括弹性模型、塑性模型和本构关系模型;常用的破裂准则包括脆性破裂准则、强度准则和势能准则。
2. 岩体力学参数的获取:岩体的力学参数对于模拟岩体的损伤演化过程至关重要,通过实验测定或者现场观测获取岩体的力学参数是岩体损伤演化模型开发的重要环节。
3. 初始缺陷和裂纹的建模:岩体在地质作用的影响下,常常含有大量的初始缺陷和裂纹。
通过建模和模拟的方法,将初始缺陷和裂纹引入到岩体模型中,从而模拟岩体的初始状态。
初始缺陷和裂纹的类型、分布和尺寸是模拟结果的重要参数。
4. 边界条件的设定:岩体损伤演化模型需要设定合适的边界条件来模拟实际工程中的岩体变形和破坏过程。
边界条件的设定需要考虑岩体的实际情况,如地下水位、侧压力和温度等因素。
5. 数值模拟方法的选择:岩体损伤演化模型可以采用有限元方法、边界元方法和离散元方法等数值模拟方法。
选择合适的数值模拟方法可以提高模拟结果的准确性和计算效率。
岩体损伤演化模型可以应用于地质灾害的预测和工程设计的优化。
通过模拟岩体的损伤演化过程,可以提前发现岩体的变形和破坏趋势,为地质灾害的预防和治理提供参考。
岩体损伤演化模型可以用于工程设计中的稳定性分析和优化设计,提高工程的安全性和稳定性。
FLAC(Fast Lagrangian Analysis of Continua)软件是由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本, 1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存,至今已发展到V5.0版本。
FLAC3D是一个三维有限差分程序,目前已发展到V3.1版本。
并且其推出的FLAC SLOPE有了WINDOWS界面。
FLAC(Fast Lagrangian Analysis of Continua)是一个利用显式有限差分方法求解的岩土、采矿工程师进行分析和设计的二维连续介质程序,主要用来模拟土、岩、或其他材料的非线性力学行为,可以解决众多有限元程序难以模拟的复杂的工程问题,例如大变形、大应变、非线性及非稳定系统(甚至大面积屈服/失稳或完全塌方)等问题。
FLAC的基本功能和特征为:●允许介质出现大应变和大变形;●Interface 单元可以模拟连续介质中的界面,并允许界面发生滑动和开裂;●显式计算方法,能够为非稳定物理过程提供稳定解,直观反映岩土体工程中的破坏;●地下水流动与力学计算完全耦合(包括负孔隙水压,非饱和流及相界面计算);●采用结构加固单元模拟加固措施,例如衬砌、锚杆、桩基等;●材料模型库(例如:弹性模型、莫尔库仑塑性模型、任意各向异性模型、双屈服模型、粘性及应变软化模型);●预定义材料性质,用户也可增加用户自己的材料性质设定并储存到数据库中;●一系列可选择模块,包括:热力学模块、流变模块、动力学模块、二相流模块等,用户还可用C++建立自己的模型;●边坡稳定系数计算满足边坡设计的要求;●用户可用内部语言(FISH)增加自己定义的各种特性(如:新的本构模型,新变量或新命令);FLAC软件的优势:连续体大应变模拟界面单元用已代表不连续接触界面可能出现的完全不连续性质的张开和滑动,因此可以模拟断层、节理和摩擦边界等显式求解模式可以获得不稳定物理过程的稳定解材料模型:✧“空(null)”模型;✧三种弹性模型(各向同性、横观各向异性、和正交各向异性);✧七种非线性模型(Drucker-Prager、Mohr-Coulomb、应变硬化及应变软化、节理化、双线性应变硬化/软化节理化、双屈服、修正的Cam-clay模型)任何参数指标的连续变化或统计分布的模拟外接口编程语言(FISH)允许用户添加用户自定义功能方便的边界定义和初始条件定义方式可定义水位线/面进行有效应力计算地下水渗流计算以及完全的应力场渗流场偶合计算(含负孔隙压力、非饱和流、井)结构单元如隧道衬砌、桩、壳、梁锚杆、锚索、土工织物及其组合,可以模拟不同的加固手段及其与围岩(土体)的相互作用自选模块包括:✧热和热力学分析模块;✧流变计算模块;✧动力分析模块实现真时间历程的瞬时动力响应模拟;✧用C++编写的用户自定义本构模块开挖直立坡的喷射混凝土墙加土钉加固的模拟加(下)和不加(上)土工织物土坡的潜在破坏特征FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序,是二维的有限差分程序FLAC2D的扩展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
ITASCA系列软件之FLAC3D 技术参数2013年5月Itasca International IncItasca(武汉)咨询有限公司Itasca国际公司简介Itasca国际公司(Itasca International Inc.)是岩体工程领域的著名跨国机构,以解决岩体工程生产实践中的超常规问题为工作方向,并以此开展岩石力学基础理论研究和高端技术开发。
公司总部设在美国,在全世界5大洲的14个国家设立分公司。
Itasca国际公司由一批国际著名岩石力学专家组成,员工在美国、英国、瑞典等国家共占院士席位5席,为岩石力学学科和国际岩石力学学会的创始者之一。
员工历任国际岩石力学学会1期、副主席2期,获国际上岩石力学和岩体工程行业最高奖Muller奖1人次,Rocha奖多人次,奠定了其国际前沿地位。
Itasca专家对岩石力学学科的建立和发展、岩体工程实践活动做出了突出贡献,世界上目前被普遍使用的一些技术和方法,如岩石伺服压力机、水压致裂地应力测量、FLAC、FLAC3D、UDEC、3DEC、PFC等都代表了Itasca 的突出贡献。
特别地,所有这些技术开发、特别是数值计算软件的开发和完善,都直接出自Itasca专家解决实际工程问题的需要,这些技术手段同时又促进了研究工作的深入和发展,从而在Itasca形成了良好的相互驱动。
研发工作和工程实践的高度结合成为Itasca区别世界上任何技术机构的特色,是维持Itasca国际前沿地位的重要保障。
目录1软件功能 (1)2FLAC3D技术参数 (4)3FLAC3D v5.0操作特点 (7)4常用领域 (7)5FLAC3D原理简介 (7)1软件功能FLAC3D是由美国ITASCA集团公司研发推出的连续介质力学分析程序,是岩土工程领域专业的分析软件,编制原理为显式有限差分方法求解技术和混合离散技术。
FLAC3D(快速拉格朗日程序)系列软件代表了当前世界范围内数值分析领域的高端技术,为岩土工程领域内工程、设计、科研工作者提供了全新方案解决手段。
FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。
三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。
三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。
基于FLAC3D二次开发的岩体损伤演化模型岩体损伤演化模型是岩石力学领域中的一种重要模型。
该模型通过计算岩石的变形、裂隙演化和破坏过程,模拟了岩石在不同载荷作用下的响应。
FLAC3D是一种流行的岩土工程数值模拟软件,该软件具有强大的三维计算能力和灵活的二次开发接口,适合进行岩体损伤演化模型的开发和应用。
本文基于FLAC3D二次开发平台,探讨了岩体损伤演化模型的关键实现技术,并介绍了该模型在岩石工程领域中的应用。
一、FLAC3D软件简介FLAC3D(Fast Lagrangian Analysis of Continua in 3D)是一种基于有限元方法的岩土工程数值模拟软件,可以模拟和分析各种地下工程、地震、岩土工程灾害等问题。
该软件具有以下特点:1. 灵活的二次开发接口:FLAC3D软件提供了多种编程语言接口,包括FISH、C++、Python等,可以方便地进行二次开发和自定义编程。
用户可以通过二次开发实现对软件功能的扩展和优化,满足多种分析需求。
2. 强大的计算能力:FLAC3D可以模拟大变形、大应变、大非线性、复杂接触和摩擦等问题,在复杂的数字岩土模型中进行快速数值计算,准确模拟岩土工程的力学行为。
3. 可视化的分析工具:FLAC3D提供了多种数据可视化和分析工具,帮助用户直观地观察和分析模拟结果,包括二维和三维物理显示、图形绘制和动画生成等。
二、岩体损伤演化模型的关键技术岩体损伤演化模型是一种描述岩石力学行为的数学模型,需要通过岩石试验和理论分析等手段获取材料性质和模型参数,并采用数值计算方法进行模拟和求解。
其中,岩石的力学性质、裂隙特征和破坏模式是岩体损伤演化模型的关键因素。
1. 材料模型:岩石的材料模型是岩体损伤演化模型的基础,其确定了岩石的力学行为和破坏模式。
常用的岩石材料模型包括弹性模型、弹塑性模型、弹塑性损伤模型等。
在FLAC3D中,采用Mohr-Coulomb本构模型作为岩石的材料模型,通过设置岩石的杨氏模量、泊松比、强度参数等参数来描述岩石的变形和破坏行为。
基于FLAC3D二次开发的岩体损伤演化模型
岩体损伤演化模型是基于FLAC3D软件的二次开发模型,用于模拟岩体在地质工程中的损伤演化过程。
本文将介绍该模型的基本原理和应用。
岩体损伤演化模型的基本原理是基于岩石力学和损伤力学理论。
岩石力学是研究岩石的力学性质和行为的学科,而损伤力学则是研究材料由于内部微观结构的破坏而引起的宏观损伤行为的学科。
该模型将岩体表示为单元网格,每个单元具有一定的强度和刚度。
在加载过程中,单元会根据其强度和刚度的变化而发生变形和破坏,从而模拟岩体的损伤演化过程。
岩体损伤演化模型的应用涵盖了地质工程中的多个方面。
该模型可以用于预测岩体在不同加载条件下的破坏形态和破坏机制,为地质工程设计和施工提供参考。
该模型还可以用于分析岩体在长期加载下的损伤积累过程,从而评估岩体的稳定性和寿命。
该模型还可以用于模拟岩体在地震作用下的破坏过程,研究地震对岩体的影响。
岩体损伤演化模型的开发基于FLAC3D软件平台,该软件是一个三维有限差分程序,主要用于模拟岩土工程中的力学问题。
通过二次开发,可以在FLAC3D软件中添加损伤模型和相关算法,实现岩体的损伤演化模拟。
在开发过程中,需要根据实际问题选择合适的损伤模型和参数,以及编写相应的程序代码。
基于FLAC3D的岩体损伤演化模型是一种有效的地质工程分析工具,可以模拟岩体在地质工程中的损伤演化过程,并提供科学依据和技术支持。
该模型的开发和应用有助于提高地质工程设计的准确性和可靠性,促进地质工程的发展和进步。
FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序, 该程序能较好地模拟地质材料在达到强度极限或屈服极限时, 发生的破坏或塑性流动的力学行为, 特别适用于分析渐进破坏和失稳以及模拟大变形.FLAC3D分析的使用领域根据手册总结如下:(1) 承受荷载能力与变形分析: 用于边坡稳定和基础设计(2) 渐进破坏与坍塌反演: 用于硬岩采矿和隧道设计(3) 断层构造的影响研究: 用于采矿设计(4) 施加于地质体锚索支护所提供的支护力研究: 岩锚和土钉的设计(5) 排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研究: 挡土墙结构的地下水流动, 和土体固结研究(6) 粘性材料的蠕变特性: 用于碳酸钾盐矿设计(7) 陡滑面地质结构的动态加载: 用于地震工程和矿山岩爆研究(8) 爆炸荷载和振动的动态响应: 用于隧道开挖和采矿活动(9) 结构的地震感应: 用于土坝设计(10) 由于温度诱发荷载所导致的变形和结构的不稳定(11) 大变形材料分析: 用于研究粮仓谷物流动和放矿的矿石流动10种材料本构模型Flac3D中为岩土工程问题的求解开发了特有的本构模型, 总共包含了10种材料模型:(1) 开挖模型null(2) 3个弹性模型(各向同性, 横观各向同性和正交各向同性弹性模型)(3) 6个塑性模型(Drucker-Prager模型、Morh-Coulomb模型、应变硬化/软化模型、遍布节理模型、双线性应变硬化/软化遍布节理模型和修正的cam粘土模型).Flac3D网格中的每个区域可以给以不同的材料模型, 并且还允许指定材料参数的统计分布和变化梯度. 还包含了节理单元, 也称为界面单元, 能够模拟两种或多种材料界面不同材料性质的间断特性. 节理允许发生滑动或分离, 因此可以用来模拟岩体中的断层、节理或摩擦边界.FLAC3D中的网格生成器gen, 通过匹配、连接由网格生成器生成局部网格, 能够方便地生成所需要的三维结构网格. 还可以自动产生交岔结构网格(比如说相交的巷道), 三维网格由整体坐标系x, y, z系统所确定, 这就提供了比较灵活的产生和定义三维空间参数.五种计算模式(l) 静力模式:这是FLAC-3D默认模式, 通过动态松弛方法得静态解.(2) 动力模式:用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件, 边界可以固定边界和自由边界. 动力计算可以与渗流问题相藕合.(3) 蠕变模式:有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型. (4) 渗流模式:可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合. 渗流服从各向同性达西定律, 流体和孔隙介质均被看作可变形体. 考虑非稳定流, 将稳定流看作是非稳定流的特例. 边界条件可以是固定孔隙压力或恒定流, 可以模拟水源或深井. 渗流计算可以与静力、动力或温度计算耦合, 也可以单独计算.(5) 温度模式:可以模拟材料中的瞬态热传导以及温度应力. 温度计算可以与静力、动力或渗流计算藕合, 也可单独计算.模拟多种结构形式(l) 对于通常的岩体、土体或其他材料实体, 用八节点六面体单元模拟. (2) FIAC-3D包含有四种结构单元:梁单元、锚单元、桩单元、壳单元. 可用来模拟岩土工程中的人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩等.(3) FLAC-3D的网格中可以有界面, 这种界面将计算网格分割为若干部分, 界面两边的网格可以分离, 也可以发生滑动, 因此, 界面可以模拟节理、断层或虚拟的物理边界.有多种边界条件边界方位可以任意变化, 边界条件可以是速度边界、应力边界, 单元部可以给定初始应力, 节点可以给定初始位移、速度等, 还可以给定地下水位以计算有效应力、所有给定量都可以具有空间梯度分布.FLAC-3D嵌语言FISHFLAC-3D具有强大嵌语言FISH, 使得用户可以定义新的变量或函数, 以适应用户的特殊需要, 例如, 利用HSH做以下事情:(l) 用户可以自定义材料的空间分布规律, 如非线性分布等.(2) 用户可以定义变量, 追踪其变化规律并绘图表示或打印输出.(3) 用户可以自己设计FLAC-3D部没有的单元形态.(4) 在数值试验中可以进行伺服控制.(5) 用户可以指定特殊的边界条件.(6) 自动进行参数分析(7) 利用FLAC-3D部定义的Fish变量或函数, 用户可以获得计算过程中节点、单元参数, 如坐标、位移、速度、材料参数、应力、应变、不平衡力等.FLAC-3D前后处理功能FLAC-3D具有强大的自动三维网格生成器, 部定义了多种单元形态, 用户还可以利用FISH自定义单元形态, 通过组合基本单元, 可以生成非常复杂的三维网格, 比如交叉隧洞等.在计算过程中的任何时刻用户都可以用高分辨率的彩色或灰度图或数据文件输出结果, 以对结果进行实时分析, 图形可以表示网格、结构以及有关变量的等值线图、矢量图、曲线图等, 可以给出计算域的任意截面上的变量图或等直线图, 计算域可以旋转以从不同的角度观测计算结果.FLAC3D计算分析一般步骤与大多数程序采用数据输入方式不同, FLAC采用的是命令驱动方式. 命令字控制着程序的运行. 在必要时, 尤其是绘图, 还可以启动FLAc用户交互式图形界面. 为了建立FLAC计算模型, 必须进行以下三个方面的工作:(1) 有限差分网格(2) 本构特性与材料性质(3) 边界条件与初始条件完成上述工作后, 可以获得模型的初始平衡状态, 也就是模拟开挖前的原岩应力状态. 然后, 进行工程开挖或改变边界条件来进行工程的响应分析, 类似于FLAC的显式有限差分程序的问题求解. 与传统的隐式求解程序不同, FLAC采用一种显式的时间步来求解代数方程. 进行一系列计算步后达到问题的解.在FLAC中, 达到问题所需的计算步能够通过程序或用户加以控制, 但是, 用户必须确定计算步是否已经达到问题的最终的解.后处理(一) 用tecplot绘制曲线(1) 第一主应力(2) xdisp、ydisp、zdisp、disp(二) 用excel做曲线隧道(1) 做地表沉降槽(zdisp)(2) 地表横向位移(xdisp)(3) 隧道中线竖向沉降曲线(zdisp)(4) 提取位移矢量图,(5) 显示初期支护结构力(6) 显示state(找塑性区)基坑(1) 做地表沉降槽(zdisp)(2) 提取位移矢量图,(3) 显示初期支护结构力(4) 显示state(找塑性区)边坡(1) 做安全系数和应变图模型最优化用FLAC3D解决问题时, 为了得到最有效的分析使模型最优化是很重要的.(1) 检查模型运行时间:一个FLAC3D例子的运行时间是区域数的4/3倍. 这个规则适用于平衡条件下的弹性问题. 对于塑性问题, 运行时间会有点改变, 但是不会很大, 但是如果发生塑性流动, 这个时间将会大的多. 对一个具体模型检查自己机子的计算速度很重要. 一个简单的方法就是运行基准测试. 然后基于区域数的改变, 用这个速度评估具体模型的计算速度.(2) 影响运行时间的因素:FLAC3D有时会需要较长时间才可以收敛主要发生在下列情况下:(a)材料本身刚度变异或材料与结构及接触面之间的刚度差异很大.(b)划分的区域尺寸相差很大. 这些尺寸差异越大编码就越无效. 在做详细分析前应该研究刚度差异的影响. 例如, 一个荷载作用下的刚性板, 可以用一系列顶点固定的网格代替, 并施以等速度. (记住FIX命令确定速度, 而不是位移. )地下水的出现将使体积模量发生明显的增加(流体-固体相互作用).(3) 考虑网格划分的密度:FLAC3D使用常应变单元. 如果应力/应变曲线倾斜度比较高, 那么你将需要许多区域来代表多变的分区. 通过运行划分密度不同的同一个问题来检查影响. FLAC3D应用常应变区域, 因为当用多的少节点单元与用比较少的多节点单元模拟塑性流动时相比更准确.应尽可能保持网格, 尤其是重要区域网格的统一. 避免长细比大于5:1的细长单元, 并避免单元尺寸跳跃式变化(即应使用平滑的网格). 应用GENERATE命令中的比率关键词, 使细划分区域平滑过渡到粗划分区域.(4) 自动发现平衡状态:默认情况下, 当执行SOLVE 命令时, 系统将自动发现力的平衡. 当模型中所有网格顶点中所有力的平均量级与其中最大的不平衡力的量级的比率小于1*10时, 认为达到了平衡状态. 注意一个网格顶点的力由力(例如, 由于重力)和外力(例如, 由于所加的应力边界条件)共同引起. 因为比率是没有尺寸的, 所以对于有不同的单元体系的模型, 在大多数情况下, 不平衡力和所加力比率的限制给静力平衡提供了一个精确的限制.同时还提供了其他的比率限制;可以用SET ratio 命令施加. 如果默认的比率限制不能为静力平衡提供一个足够精确的限制, 那么应考虑可供选择的比率限制. 默认的比率限制同样可用于热分析和流体分析的稳定状态求解. 对于热分析,是对不平衡热流量和所加的热流量量级进行评估, 而不是力. 对于流体分析,对不平衡流度和所加流度量级进行评估.(5) 考虑选择阻尼:对于静力分析, 默认的阻尼是局部阻尼, 对于消除大多数网格顶点的速度分量周期性为零时的动能很有效. 这是因为质量的调节过程依赖于速度的改变. 局部阻尼对于求解静力平衡是一个非常有效的计算法则且不会引入错误的阻尼力(见Cundall 1987).如果在求解最后状态, 重要区域的网格海域的速度分量不为零, 那么说明默认的阻尼对于达到平衡状态是不够的. 有另外一种形式的阻尼, 叫组合阻尼, 相比局部阻尼可以使稳定状态达到更好的收敛, 这时网格将发生明显的刚性移动. 例如, 求解轴向荷载作用下桩的承载力或模拟蠕变时都可能发生. 使用SETmechanical damp combined命令来调用组合阻尼. 组合阻尼对于减小动能方面不如局部阻尼有效, 所以应注意使系统的动力激发最小化. 可以用SETmechanical damp local命令转换到默认阻尼.(6) 检查模型反应:FLAC3D 显示了一个相试的物理系统是怎样变化的. 做一个简单的试验证明你在做你认为你在做的事情. 例如, 如果荷载和实体在几何尺寸上都是对称的, 当然反应也是对称的. 改变了模型以后, 执行几个时步(假如, 5或10步), 证明初始反应是正确的, 并且发生的位置是正确的. 对应力或位移的期望值做一个估计, 与FLAC3D 的输出结果作比较.如果你对模型施加了一个猛烈的冲击, 你将会得到猛烈的反应. 如果你对模型作了一些看起来不合理的事情, 你一定要等待奇怪的结果. 如果在分析的一个给定阶段, 得到了意外值, 那么回顾到这个阶段所用的时步.在进行模拟前很关键的是检查输出结果. 例如, 除了一个角点速度很大外, 一切都很合理, 那么在你理解原因前不要继续下去. 这种情况下, 你可能没有给定适当的网格边界.(7) 初始化变量:在模拟基坑开挖过程时, 在达到目的前通常要初始化网格顶点位移. 因为计算次序法则不要求位移, 所以可以初始化位移, 这只是由网格顶点的速度决定, 并有益于用户初始化速度却是一件难事. 如果设定网格顶点的速度为一常数, 那么这些点在设置否则前保持不变. 所以, 不要为了清除这些网格的速度而简单的初始化它们为零. . . 这将影响模拟结果. 然而, 有时设定速度为零是有用的(例如, 消除所有的动能).(8) 最小化静力分析的瞬时效应:对于连续性静力分析, 经过许多阶段逐步接近结果是很重要的. . . 即, 当问题条件突然改变时, 通过最小化瞬时波的影响, 使结果更加“静力”. 使FLAC3D 解决办法更加静态的方法有两种.(a) 当突然发生一个变化时(例如, 通过使区域值为零模拟开挖), 设定强度性能为很高的值以得到静力平衡. 然后为了确保不平衡力很低, 设定性能为真实值, 再计算, 这样, 由瞬时现象引起的失败就不会发生了.(b) 当移动材料时, 用FISH 函数或表格记录来逐步减少荷载.(9) 改变模型材料:FLAC3D 对一个模拟中所用的材料数没有限制. 这个准则已经尺寸化, 允许用户在自己所用版本的FLAC3D中最大尺寸网格的每个区域(假如设定的)使用不同的材料.(10) 运行在现场原位应力和重力作用下的问题:有很多问题在建模时需要考虑现场原位应力和重力的作用. 这种问题的一个例子是深层矿业开挖:回填. 此时大多数岩石受很高的原位应力区的影响(即, 自重应力由于网孔尺寸的限制可以忽略不计), 但是回填桩的放置使自重应力发展导致岩石在荷载作用下可能坍塌. 在这些模拟中要注意的重点(因为任何一种模拟都有重力的作用)是网格的至少三个点在空间上应固定. . . 否则, 整个网格在重力作用下将转动. 如果你曾经注意到整个网格在重力加速度矢量方向发生转动, 那么你可能忘记在空间上固定网格了.FLAC3D主要适明模拟计算地质材料和岩土上程的力学行为。
FLAC3D的基本知识介绍岩土工程结构的数值解是建立在满足基本方程(平衡方程、几何方程、本构方程)和边界条件下推导的。
由于基本方程和边界条件多以微分方程的形式出现,因此,将基本方程近假发改用差分方程(代数方程)表示,把求解微分方程的问题改换成求解代数方程的问题,这就是所谓的差分法。
差分法由来已久,但差分法需要求解高阶代数方程组,只有在计算机的出现,才使该法得以实施和发展。
FLAC3D(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存(64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V5.0的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。
并且其推出的FLAC SLOPE有了WINDOWS界面。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术能够非常准确发模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
FLAC3D采用ANSI C++语言编写的。