“萨德”X波段ANTPY-2雷达参数、探测距离计算、搜索模式及其对抗思路
- 格式:doc
- 大小:2.41 MB
- 文档页数:13
中段反导话雷达X波段反导跟踪火控雷达中新社北京一月十一日电中国十一日在境内进行了一次陆基中段反导拦截技术试验,试验达到了预期目的。
中国外交部表示,这一试验是防御性的,不针对任何国家。
本国此次反导实验,开创我国中段反导之先河,成为地球上除了美国之外唯一一个成功完成中段反导实验的国家。
这不仅仅标志了我国国家导弹防御系统发展有了一个良好的开端,更预示着我国将会在拥有种类齐全的战术战略弹道导弹打击体系之后,具备反战术战略导弹打击的能力,可谓是剑盾皆紧握在手,打防两不耽误。
中国已经装备了种类齐全,射程涵盖全面的战略战术弹道导弹打击体系中国中段反导,抢了美国人独领风骚的风头。
美国当然不会善罢甘休。
于是,美国在2010年2月1日也进行了一次大气层外中层反导实验。
但是,此次试验非常可耻的失败了。
根据媒体初步报道,美国此次反导实验的主要原因是“海基X波段雷达”并未如先前预计地一样正常工作。
那么这个雷达在美国反导体系中处于什么位置?研制X波段反导跟踪雷达需要攻克什么技术难关?我国在相应领域又有何进展?龙腾今儿个首次不写航空发动机、不写隐身,就谈谈反导跟踪火控雷达。
中段反导作战过程示意图,遗憾的是,我国还未装备图中的红外预警卫星弹道导弹防御系统是一个包含了众多传感器、指挥、控制、通信以及拦截武器等系统在内的庞大而复杂的系统,跟踪制导雷达则是系统中的核心探测器,它集目标截获、跟踪、成像、识别、拦截弹制导以及拦截效果评估等功能于一身,很大程度上决定了系统防御拦截的成败。
对目标的探测和截获是跟踪制导雷达实现其它所有功能的前提和基础,一旦雷达无法及时捕获到目标,那么其它一切都是空谈。
这和反导系统拦截导弹的工作流程是分不开的。
美国是当今世界上公认的弹道导弹防御技术和实际系统发展得最为先进和成熟的国家,代表了目前导弹防御系统及其相关技术的最高水平和主要发展方向,下面就以美国导弹防御系统(MD)为参考,对弹道导弹防御过程进行描述。
雷达的知识点总结一、雷达的工作原理雷达的工作原理是利用发射器发射一定频率的无线电波,当这些电波遇到目标物时,一部分电波被目标物所反射,接收器捕捉这些被反射的电波,并通过信号处理,确定目标物的距离、方向和速度信息。
雷达工作的基本原理包括发射、接收和信号处理三个步骤。
1. 发射:雷达发射器产生并发射一定频率的无线电波,这些电波称为RCS(雷达交会截面)。
2. 接收:当RCS遇到目标物时,一部分电波被目标物所反射,接收器接收并捕捉这些被反射的电波。
3. 信号处理:接收到的被反射的电波通过信号处理系统进行处理,根据信号的时间延迟、频率偏移和振幅变化等信息,确定目标物的距离、方向和速度。
二、雷达的分类根据不同的工作原理和应用领域,雷达可以分为不同的分类。
1. 按工作频率分类:雷达可以根据工作频率的不同分为X波段雷达、K波段雷达、S波段雷达等,不同频率的雷达适用于不同的应用领域。
2. 按工作方式分类:雷达可以根据工作方式的不同分为连续波雷达和脉冲雷达,连续波雷达适用于测距,脉冲雷达适用于测速和目标分辨。
3. 按应用领域分类:雷达可以根据应用领域的不同分为军用雷达、民用雷达、航空雷达、舰船雷达等。
三、雷达的应用领域雷达技术在军事、民用航空、舰船航行、天气预报和科学研究等领域都有重要的应用价值。
1. 军事领域:雷达在军事领域具有重要的作用,可以用于目标探测、追踪和导航,对于战争中的空中防御和攻击具有重要的战术意义。
2. 民用航空:雷达在民用航空领域用于飞行导航、空中交通管制和飞行安全监测,对于航空运输的安全与效率具有重要的作用。
3. 舰船航行:雷达在舰船航行中用于目标探测、导航和防御,对于海上安全和航行效率起到关键的作用。
4. 天气预报:气象雷达用于对大气中的降水、风暴和气旋等气象现象进行探测和监测,对于天气预报和自然灾害预警具有重要的作用。
5. 科学研究:雷达技术也被广泛应用于科学研究领域,例如地球科学领域的地形测绘和地壳运动监测等。
雷达基础知识摘自王小谟,张光义等主编雷达与探测一书测量空间位置的方法(距离,角度,高度三坐标,速度等)1:方位角测量:波束扫描到目标时,回波从时间顺序上从无到有,从小到大,再从大到小最后消失.所以天线对回波信号进行调制.当测量的回波最大时,此时方位即为方位角数据.另一种测量方法是顺序比较法:用两个相互交叉的波束照射目标.只有当方向角对准目标时左右两侧回波强度才相等.所以只要对两个接收机的信号做出比较即可精密测向.这种方法称单脉冲测角法,往往用于要求高精度的场合2:距离的测量:电磁波以光速传递,则有R=1/2·(CT):R=雷达和目标的直线距离,C=光速(3X10^8米/秒),T=时间单一脉冲制雷达为了防止距离模糊(雷达无法分清接受到回波是什么时段发射而导致距离失准),有时会采用互质频率发射以统计时间3:高度的测量:需要通过点头雷达或相扫等手段确定目标仰角θ,再依据目标与雷达的距离R,可测量出目标高度考虑地球曲率,雷达高度h后的目标高度计算公式为H=h+Rsinθ+R^2/2ρ.其中ρ为地球曲率半径与之相对,如果知道目标高度(如舰船,山峰等),求目标距离的公式为R=2.08(√h+√H)4:目标测速:通过多普勒原理得知,从目标反射回的波段,相比发射的波段多了一个多普勒频移f如果目标径向速度V,雷达波长为λ,则f=2V/λ.则目标速度V=Fλ/2 5:其他测量:通过对目标回波起伏特性的测量,可以判定目标的一些状态(如稳定或翻滚);通过对目标回波极化矩阵的测量,在一定程度上可判断目标的构成与属性;通过提高雷达的分辨能力和多目标跟踪能力,可以作到雷达成像,以及对目标状态变化的跟踪等(如飞机发射导弹,卫星脱离火箭等)另有,甚高频雷达对地下目标(如工事坑道,地下管道等)有比较强的探测能力频率的划分:波长与频率的关系为:频率F=c/波长λ雷达接受距离的方程简单点说就是接收距离R的四次方与目标面积δ,波长λ的平方,峰值功率P,以及发射/接收天线的增益之积G成正比,而与信噪比(S/N)和带宽(△f),损耗因数L,玻耳兹曼常数K(1.38x10^-23 J/K),以及等效噪声温度T成反比R^4=[P·G·δ·λ^2]/[(4π)^3·L·K·T·△f·(S/N)]雷达观察区域受到观察空域(如两坐标监视雷达要求360环视),最大仰角(比如对于监视雷达一般取0到30度),最大探测高度Hmax,最大和最小观测距离Rmax/Rmin等的影响一般雷达对指定截面积目标可以观测到的距离和高度有一定包线,称雷达威力图例如下图电子对抗电子战的实质是斗争双方利用一切手段争夺对电磁频谱的有效使用权.主要包括三个方面:电子支援措施(ESM),主要功能是对敌辐射源进行截获,识别,分析和定位电子对抗措施(ECM),主要是破坏敌人电子设备或降低其效能,乃至物理摧毁等以及电子反对抗措施(ECCM),是保障自己电子设备在敌方实施电子对抗手段后仍能正常工作的各种战术和技术手段按照使用种类,可以分为平台式(如降低信号,干扰等),和投放式(投放诱饵,拖曳信号标等)按照有无辐射源,可分为无源干扰(降低信号,投放箔条)和有源干扰(各种有源诱饵,闪光照射,噪声/红外/欺骗干扰等)电子侦察以及反侦察电子战中雷达的电子侦察主要包括:雷达情报侦察,运用各种手段侦察敌雷达的特征参数,判断其性能,类型,用途,配置,以及所指挥武器的有关战术情报雷达对抗支援侦察:凭借上一步侦察到的对方雷达各种数据和有关战术情报,识别敌雷达的数量,部署,范围,性质以及威胁等级程度等,为作战指挥实施雷达预警,以及相关战役战术行动等提供依据雷达告警:作战中实时发现敌雷达并作出告警引导干扰:侦察是实现有效干扰的前提和依据辐射源定位:为武器精确摧毁敌人雷达提供依据雷达为了自己的生存,必须具备良好的反侦察能力.最重要的是想办法让敌人收不到雷达信号或者受到假信号.主要措施有:设计低截获概率雷达:依上叙述,雷达可以采取低峰值功率,宽频率带宽,高占空因数,低旁瓣发射天线,采取被动工作方式,采用自适应发射功率管理等技术,降低被发现的距离(如美国APG77.而有关侦察距离则可用有源相控手段控制各个单元分别将其波段和频率合成成较适合波段,以及侦察方向的集中性等手段来弥补)控制雷达开机时间:在完成任务的前提下,开机时间尽量短,次数尽量少,同时开机必须经过规定程序批准.值班雷达的开机时间和顺序应当无规律.控制雷达工作频率:对雷达的使用频率要按常用频率工作;同一模式的雷达应尽量按同一频率工作;严格控制使用频率,禁止擅自改变雷达频率,若必须采用跳频手段工作,必须经过批准并按照预定计划进行.隐蔽雷达和新雷达的使用必须经过批准适时更换敌人可能发现和熟悉的雷达阵地设置假目标并对外发射假信号等电子干扰针对雷达的对抗措施有三种:一是告警和回避,而是火力摧毁,三就是干扰雷达干扰是指利用干扰设备发射干扰电磁波,或录用能反射,散射,衰减以及吸收电磁波的材料反射或衰减雷达波,乃至通过主动手段欺骗和使武器系统失控等,从而扰乱敌人雷达工作,降低其效能,使其不能发现目标和告警,造成武器系统威力无法发挥等.这是电子对抗中最常用的一种手段雷达抗干扰电子反干扰是指确保己方有效运用电磁频谱而对电子干扰采取的各种举措,这些措施共同的特点是它们几乎总是与雷达等电子设备设计制造的技术有关.电子干扰和反干扰的斗争基本上就是争夺功率和带宽资源的斗争.任何雷达和通信都是可以被干扰的,同样任何干扰手段都是可以预防的.这最终还是主要取决于双方愿意投入电子战的资源.精心设计,性能优良的雷达基本上都具备强大的ECCM能力,而各种先进技术,如无源探测手段和低概率雷达等的研究,也取决于一个国家的工业能力和工业基础,以及投资的多少雷达抗摧毁现代战争中反辐射导弹(ARM,包括反辐射无人机)已经成为雷达不可回避的对手.海湾战争中联军在战争第一小时之内就投放200多枚ARM,配合其他电子战手段,彻底将伊拉克防空系统炸瘫ARM的特点有:采用多种方式制导:包括红外,光学,惯性制导等;采用宽频接收机,可攻击各种先进雷达(包括单脉冲雷达,脉冲压缩雷达,跳频雷达和连续波雷达等),且自身抗干扰能力较强,一些先进的ARM甚至采用了人工智能技术,可自动寻找,记忆,锁定和攻击辐射目标抗ARM的办法,除了主动打掉ARM极其载机以外,还有一些被动措施:1:ARM在攻击之前需要电子支援手段先截获,识别和定位目标雷达信号,因此可以采用战术手段让ARM难以接受信号.如经常更换阵地,控制开机和控制频率;将发射机和接收机分离并设置各种电子/光学/红外诱饵(甚至可以让诱饵轮番开机消耗其能量,并使其无法瞄准);技术上提高和优化雷达的空间,频率,波形和极化的隐蔽性;以及多台雷达组网(摧毁个别雷达仍能保证地域监视)等雷达的低空性能与低空突防低空/超低空一般指地表以上300米以下的空域.这里是大多数雷达探测的盲区,一些先进雷达即使能探测,性能也要打折扣(例如典型二代战斗机下视能力基本为零,典型三代战斗机和预警机的下视能力也很不乐观往往探测距离要减一半左右.装备先进相控阵雷达的三代半和四代战斗机这方面则可以接近和达到雷达的探测距离)一些西方专家认为,目前飞机和巡航导弹突防高度为:水面上10到15米(甚至有的可以做到5米);平原地区50到60米;丘陵山地等100到120米.而且降低高度比增加速度更有利于提高生存能力从军事上说,低空对雷达的干扰主要有:地球曲率的遮挡地形多径效应(雷达直射波,地面反射波和目标回波产生干涉效应,导致波束分裂和衰减.这种效应与地形平坦有关,山区等地的多径效应比平原和海面更严重)地表反射背景回波的强干扰(往往杂波的强度是回波的许多倍,尤其对于小反射面积的巡航导弹和隐身飞机而言.所以对低空雷达有个参数叫做杂波可见度SCV,用来表示多普勒雷达或动目标监视雷达从杂波中分辨目标的能力)雷达反低空突防,从技术上说可以采用各种反杂波技术.如降低旁瓣,采用超视距雷达(低空视野可达普通雷达数倍乃至数十倍,甚至几千千米.但是地波雷达精度低且易被干扰,天波雷达则受气象和环境限制比较大,虽不容易找到波段相位但是只要找到则非常小的功率即可干扰);采用SAR(合成孔径雷达)搜索地表目标(比较适合卫星和飞机使用).而从战术上,通过雷达提升高度(如制高点或者直接使用雷达飞艇或预警机等);不同种类的各种探测手段(雷达/红外/光学/甚至防空哨等)组网观察;依靠技术手段和计算而精选雷达阵地等,都可减弱地表杂波对雷达的影响反隐身飞机首先说明一下,根据相关材料,F22雷达反射面积小于F117,而不是之前某些人士宣称的0.3M^2(一发导弹的反射面积都有0.5M^2以上)隐身飞机通过涂料,材料和外型,使大多数雷达波被吸收或者反射到其他角度,其对雷达的威胁极大,甚至将完全成为防空作战的主要对手对于常规雷达来说,雷达截面积的减小明显削弱了雷达的探测能力,也就削弱了整个武器系统的战斗力.如果要维持旧有雷达体系不变的情况下象发现常规飞机一样发现隐身飞机,功率和口径都需要成几何级数的增大.二者的乘积需要增加10~1000倍.这可以对个别单基地雷达使用,但是在整体上是军费难以支撑的一些有前途的技术手段为:短波超视距雷达甚高频(100~300MHZ)与超高频(300~500MHZ)雷达,但需要克服抗干扰能力低和精度差的问题.可作为警戒和引导手段使用多基地雷达,或雷达组网对于某些必须使用单体雷达的单位,可以试图增大功率和口径使用带辐射管理功能的主动相控阵雷达目前反隐身技术仍在研究中。
机载预警雷达工作参数
1. 工作频率:机载预警雷达的工作频率通常在X波段和S波段之间,具体频率取决于雷达的设计和应用需求。
2. 波束宽度:波束宽度是雷达天线发射和接收信号的角度范围。
较窄的波束宽度可以提供更高的分辨率,但需要更精确的波束控制。
3. 扫描范围:机载预警雷达的扫描范围通常涵盖360度全方位,以实现对周围环境的全面监测。
4. 分辨率:分辨率指的是雷达能够区分和识别目标的能力。
高分辨率雷达能够更好地区分不同目标并获取更详细的信息。
5. 抗干扰能力:机载预警雷达应具备一定的抗干扰能力,以应对电子战和通信干扰等环境中的挑战。
抗干扰能力取决于雷达的信号处理技术和硬件设计。
6. 探测距离:探测距离取决于雷达的发射功率、工作频率、目标特性和环境条件等因素。
机载预警雷达通常具有较远的探测距离,以提供足够的预警时间。
7. 数据处理能力:机载预警雷达收集的数据量庞大,需要具备高效的数据处理能力,包括信号处理、目标跟踪和数据融合等功能。
8. 可靠性:对于机载预警雷达而言,可靠性至关重要,以确保在各种环境和条件下都能可靠地运行并提供准确的预警信息。
这些参数共同决定了机载预警雷达的性能和适用性,根据实际应用需
求选择合适的参数对于提高预警雷达的整体性能具有重要意义。
sar的波段长度
摘要:
1.引言
2.sar的波段长度定义
3.波段长度的选择与影响
4.我国SAR卫星的波段长度应用
5.总结
正文:
1.引言
SAR(Synthetic Aperture Radar,合成孔径雷达)是一种高分辨率遥感技术,通过合成孔径来模拟大口径天线,以获取地物信息。
SAR波段长度作为参数之一,对SAR系统性能起到关键作用。
本文将围绕SAR的波段长度展开讨论。
2.SAR的波段长度定义
SAR的波段长度是指雷达发射和接收的电磁波波长范围,通常用厘米或毫米表示。
波段长度的选择取决于SAR系统的设计需求,如分辨率、目标大小、探测距离等。
波段长度不同,SAR系统性能和应用领域也有所差异。
3.波段长度的选择与影响
波段长度的选择对SAR系统性能具有重要影响。
波段越长,分辨率越低,但探测距离越远,穿透能力也越强。
相反,波段越短,分辨率越高,但探测距离和穿透能力会受到限制。
因此,在实际应用中,需要根据目标特性和任务需
求来选择合适的波段长度。
4.我国SAR卫星的波段长度应用
我国已成功发射多颗SAR卫星,如高分三号、天绘一号等,它们携带的SAR载荷波段长度各异,以满足不同应用需求。
例如,高分三号的C波段具有较高的分辨率,适用于地表观测和城市规划;而天绘一号的X波段具有较长的波段长度,适用于地质勘探和灾害监测。
5.总结
SAR波段长度的选择对系统性能和应用领域具有重要影响。
根据目标特性和任务需求,合理选择波段长度有助于提高SAR系统的遥感效果。
搜救雷达频段全文共四篇示例,供读者参考第一篇示例:搜救雷达是一种专门用于搜救目标的雷达设备,它能够快速、准确地定位目标的位置,帮助搜救人员进行救援工作。
搜救雷达频段是指搜救雷达设备所使用的频段范围,不同的频段有不同的特点和适用场景。
在搜救雷达频段中,常用的频段有X波段、S波段、L波段等。
X波段是指工作在8-12.5GHz频段的雷达设备,它具有很好的穿透性能,可以穿透云雾、雨雪等恶劣气象,检测目标的情况。
X波段搜救雷达在恶劣气象下的搜救工作中具有很大的优势,能够快速、准确地定位搜救目标。
X波段搜救雷达还具有较高的分辨率和灵敏度,可以检测到小型目标,为搜救人员提供更准确的信息。
L波段是指工作在1-2GHz频段的雷达设备,L波段搜救雷达具有较好的穿透性和抗干扰能力,能够在复杂环境下准确地探测目标。
L波段搜救雷达通常用于局部范围的搜救工作,可以在建筑物、山区等限定范围内搜索目标,并提供较为精确的信息。
与X波段和S波段相比,L波段搜救雷达在局部范围搜索目标方面具有一定的优势,适用于城市、山区等较为复杂的环境。
在实际搜救工作中,搜救雷达频段的选择取决于搜救目标的具体情况和搜救环境的特点。
不同的频段有不同的优势和适用场景,搜救人员需要根据实际情况选择合适的频段进行搜救工作。
通过科学合理地利用搜救雷达频段,可以提高搜救效率,快速、准确地找到搜救目标,最大限度地提高搜救成功率。
第二篇示例:雷达是一种能够探测目标并实现目标测距、测速、成像等功能的无线电设备,被广泛应用于航空航天、军事防务、海洋科学等领域。
搜救雷达是一种特殊的雷达,主要用于搜索和救援任务,能够快速准确地定位失事飞机、船只等目标,为救援行动提供关键信息。
在搜救雷达中,不同频段的雷达具有不同的特点和应用范围。
本文将详细介绍搜救雷达的频段及其特点。
一、S频段雷达S频段雷达是一种工作在3 GHz至4 GHz频段的雷达系统,具有较长的波长和较大的穿透能力,适用于远距离探测大尺寸目标。
雷达对抗的名词解释雷达对抗是一种信息对抗技术,是指通过各种手段干扰、破坏敌方雷达系统的正常工作,从而达到混淆、掩护、保护或干扰自身的作战目的。
本文将从雷达基本原理、雷达对抗的方法以及雷达对抗技术的未来发展等方面进行探讨。
一、雷达基本原理雷达是利用电磁波通过发送和接收信号来感知和探测目标的一种无线电设备。
雷达系统通常由发射器、接收器和信号处理器组成。
在雷达工作时,发射器将一束电磁波发送出去,当电磁波碰撞到物体时,一部分会被反射回雷达系统。
接收器接收到返回的信号后,信号处理器会处理并显示出目标的位置、速度等信息。
二、雷达对抗的方法雷达对抗主要有两种基本方法:干扰和隐蔽。
1. 干扰干扰是通过发送干扰信号来干扰敌方雷达系统的正常工作。
干扰信号可以是噪音、杂波、假目标等。
干扰信号可以使敌方雷达系统的接收机受到干扰,从而无法正确接收到目标的回波信号,导致雷达系统无法探测到目标或错误地识别目标。
此外,还有频率突变、信号反转、方位错位等干扰技术,可以使敌方雷达系统误判目标位置和移动速度,降低对目标的打击精度。
2. 隐蔽隐蔽是通过减小雷达系统对目标的侦测概率,降低目标的雷达散射截面积,使目标更难被敌方雷达探测到。
隐蔽技术包括雷达吸波涂层、雷达反射面形状设计、多波束隐身等。
雷达吸波涂层可以吸收入射电磁波,减小反射回波;雷达反射面形状设计可以减小雷达散射截面积,使目标更难被探测到;多波束隐身技术可以通过精确的控制发射和接收的信号方向,使目标的回波的强度减弱,从而降低被侦测到的概率。
三、雷达对抗技术的未来发展随着雷达技术的不断发展,雷达对抗技术也在不断改进和创新。
未来的雷达对抗技术可能会出现以下几个方面的发展趋势:1. 智能化随着人工智能技术的进步,雷达对抗系统可能会引入智能化技术。
智能化的对抗系统可以根据敌方雷达的运行状态和工作模式,自动调整干扰信号的特性和参数,以达到最大的干扰效果。
此外,还可以通过机器学习等技术,自动学习敌方雷达的工作方式和特点,并针对性地进行优化干扰。
以下是一些可以有效提高雷达探测距离的方法:
1. 提高雷达功率:增加发射功率可以提高雷达信号的强度,从而增加探
测距离。
但需要注意的是,高功率也会增加雷达的成本和复杂度。
2. 使用高增益天线:高增益天线可以更集中地接收和发射雷达信号,从
而提高雷达的探测距离。
3. 提高雷达频率:较高的雷达频率可以提供更好的分辨率和穿透力,从
而提高探测距离。
但需要注意的是,高频也会受到更多的大气衰减和干扰。
4. 采用更先进的信号处理技术:现代信号处理技术可以更好地处理和分
析雷达回波,从而提高雷达的探测距离和精度。
5. 利用多基地雷达:多基地雷达系统可以通过多个位置的接收站来提高
雷达的探测范围和精度。
6. 进行环境适应性设计:考虑到不同环境条件对雷达信号的影响,进行
适应性设计可以提高雷达在复杂环境中的探测能力。
7. 进行系统协同:将多种类型的雷达系统进行协同工作,利用它们的互
补性可以提高整体的探测距离和性能。
雷达频段分类雷达(Radar)是一种利用无线电波进行目标探测和测距、测速的技术。
雷达系统通常在不同的频段工作,这些频段根据其特定的特性和应用需求进行分类。
以下是一些常见的雷达频段分类:超高频(UHF)雷达:频段:300 MHz到1 GHz。
特点:UHF雷达在大气中传播性能较好,适用于空中监测、导航和通信。
L波段雷达:频段:1 GHz到2 GHz。
特点:L波段雷达适用于长距离空中搜索、地面监测和天气雷达。
S波段雷达:频段:2 GHz到4 GHz。
特点:S波段雷达在航空和航天应用中常用,也用于气象雷达、地面移动目标追踪等。
C波段雷达:频段:4 GHz到8 GHz。
特点:C波段雷达在军事和民用领域都有广泛应用,适用于高分辨率地图制作、地面目标跟踪等。
X波段雷达:频段:8 GHz到12 GHz。
特点:X波段雷达常用于气象、导弹防御、空中控制等领域,其高频率有助于提高分辨率。
K波段雷达:频段:12 GHz到18 GHz。
特点:K波段雷达在军事和民用领域中都有应用,用于空中监测、火控雷达等。
Ka波段雷达:频段:26.5 GHz到40 GHz。
特点:Ka波段雷达在高分辨率、高精度的应用中表现出色,如卫星雷达、高精度测速雷达等。
毫米波雷达:频段:30 GHz到300 GHz。
特点:毫米波雷达在毫米和亚毫米波段操作,适用于高精度雷达成像、安全检测、遥感等。
每个频段都有其独特的特性,例如传播特性、穿透能力和分辨率等,因此在不同的应用场景中选择适当的雷达频段是至关重要的。
雷达技术的不断发展和创新使得在各种环境下进行高效的目标探测和测量成为可能。
“萨德”X波段AN/TPY-2雷达参数、探测距离计算、搜索模式及其对抗思路
萨德(THAAD),末段高空区域防御系统,是美军先进的导弹防御系统。
末段高空区域防御系统由携带8枚拦截弹的发射装置、AN/TPY-2X波段雷达、火控通信系统(TFCC)及作战管理系统组成。
它与陆基中段拦截系统配合,可以拦截洲际弹道导弹的末段,也可以与“爱国者”等低层防御中的“末段拦截系统”配合,拦截中短程导弹的飞行中段,在美国导弹防御系统中起到了承上启下的作用。
X波段AN/TPY-2有源相控阵雷达
AN/TPY-2高分辨率X波段固态有源相控阵多功能雷达是THAAD系
统的火控雷达,是陆基移动弹道导弹预警雷达,可远程截获、精密跟踪和精确识别各类弹道导弹,主要负责弹道导弹目标的探测与跟踪、威胁分类和弹道导弹的落点估算,并实时引导拦截弹飞行及拦截后毁伤效果评估。
AN/TPY-2雷达采用了先进的雷达信号处理技术以及薄化的相控阵天
线技术,使其探测波束不但功率大而且非常窄,因此分辨率非常高,对弹头具有跟踪和识别能力,对装备诱饵突防装置的弹道导弹具有很大威胁。
除了探测距离远、分辨率高之外,还具备公路机动能力,雷达还可用大型运输机空运,战术战略机动性好,其战时生存能力高于固定部署的雷达。
雷达探测距离分析
结合网上关于“萨德”的AN/TPY-2雷达的基本参数和具有一定合理性的假设来分析萨德在前置部署模式(Forward-Based Mode,FBM)和末端部署模式(Terminal Mode,TM)下由雷达方程计算出的最大探测距离。
在使用公式之前,需要分析一些众所周知的参数的合理性,数据是否精确不重要,重要的是计算方法和涉及的理论知识。
雷达波长(9.5GHz)
TPY-2雷达工作在X波段,频段范围8~12GHz,众多报道都说是9.5GHz,那就用这个计算好了。
天线增益G(48.77dB)
天线孔径面积9.2m2,拥有72个子阵列,每个子阵列有44个发射/接收微波接口模块,每个模块有8个发射/接收组件,72x44x8=25344
个阵元。
假设天线孔径效率选0.65,那么天线的有效孔径约为6m2。
根据天线有效孔径和波长计算出天线增益G约为48.77dB。
峰值发射功率Pt(405kW)
天线阵元数有25344个,每个阵元的平均功率是 3.2W,峰值功率16W,阵元平均功率为81kW,峰值发射功率Pt=405kW。
其中假设了脉冲重复周期为200Hz,占空比20%,那么脉宽为1000us;
探测目标的RCS
所探测目标的散射特性与目标本身有关,还与视角、极化、信号波长有关,是一个非常复杂的参数,计算中仅做出符合量级的假设。
雷达探测距离
雷达探测距离是在特定的雷达、目标、环境下计算出的雷达的最大作用距离。
用能量表示的雷达方程适用于复杂脉压信号的情况,通过脉冲发射功率及脉宽就可以估算出作用距离。
多脉冲积累可改善信噪比,也就是影响雷达方程中的检测因子。
n个脉冲的相参积累对信噪比改善可达到n倍,非相参积累为根号n,因此不如相
参积累。
电扫天线常用步进扫描的方式,在指向某方向后发射预置的脉冲数,然后再指向新的方向。
探测距离的数值计算
▪
当目标RCS假设为0.01m2,检测因子假设为1,通过计算,探测距离约为670km;
当RCS为0.1m2时,对目标的有效探测距离约为1200km,对目标的有效识别距离为800公里(检测因子用的5,也就是对信噪比要求更高);
当RCS为1m2时,检测因子为1,对目标的有效探测距离约为2000km。
可以看出,脱离了目标RCS和检测因子的假设,雷达的探测距离就无从
谈起,以上分析中出现了对众多不定参数的假设,可能有失精确,但这并不影响我们对雷达探测能力的理解。
雷达视距的影响
假设雷达高度为1000m(实际没有这么高,有报道说部署地海拔680m),简单计算一下直线距离2000km外所能看到的目标的最低高度。
根据上图参数,利用几何知识轻松求解得到能看到目标的最低高度约为272km。
在书中我们经常看到雷达视距可以用如下图中的简化公式,代入参
数计算结果约为206km。
差距这么大,哪个更准确呢?
三分之四地球模型
地球的大气层会对雷达波弯曲和折射,而一个非常通用的处理方法就是“三分之四地球模型”,也就是用虚拟地球代替实际地球,使用虚拟地球模型时,假设雷达波是直线传播的。
简化公式中的因子4.12的计算就已经使用:有效地球半径=4/3*实际地球半径,而我们利用几何知识精确计算的过程中并没有考虑大气折射,因此若用有效地球半径代入几何关系重新计算,结果为203km,这个结果与简化公式的计算结果相差并不多。
也就是说“萨德”在高1000m时,如果想探测2000km距离的目标,需要的目标高度最低约为200km,低于这个高度,目标就不在雷达视距范围内了。
拓展计算一下其他高度情况下雷达的视距范围。
假设预警机飞行高度10km,那么“萨德”可以看到预警机最远的距离是500多千米;假设侦察
机飞行高度30km,那么“萨德”可以看到侦察机最远的距离是800多千米。
雷达搜索方式
AN/TPY-2雷达系统具有三种搜索方式来保障三种搜索计划下的目标
搜索、跟踪和识别任务。
这三种方式分别为墙式搜索、广域搜索和远距离提示搜索,用于自主搜索计划、聚焦式搜索计划和精确引导搜索,对来袭的导
弹进行探测,获取导弹的轨迹,远程截获、精密跟踪和识别各类导弹。
美军其他相控阵雷达性能对比
“铺路爪”雷达(AN/FPS-115)
▪
天线:双面阵天线
频段:420~450MHz
探测距离:4800km
平均功率:145千瓦
铺路爪相控阵雷达是美国的远程预警系统,主要用途是担负战略性防卫任务。
雷达峰值功率582.4千瓦,对高弹道、雷达截面为10平方米的潜射弹道导弹的探测距离可达5550公里。
全部设备都安装在32米高的多层建筑物内,两个圆形天线阵面彼此成60度,每个阵面后倾20度,直径约30米,由2000个阵元组成,扫描一次所需时间为6秒钟。
▪
“宙斯盾”雷达(AN/SPY-1)
▪
天线:相控阵
频段:3.1~3.5GHz(S波段)
探测距离:400~450km
平均功率:58千瓦。