雷达原理课件第5章雷达作用距离
- 格式:pdf
- 大小:2.11 MB
- 文档页数:29
第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达方程•雷达作用距离–雷达能发现目标的距离–是一种统计平均意义上的估算和预测,因为•噪声是随机的•大部分目标特性是随机起伏的•工作环境难以预知:杂波、干扰、大气衰减•雷达系统存在误差和损耗–由雷达方程估算第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达方程•基本雷达方程推导–单基地雷达,理想无损耗自由空间,发射功率P t ,天线增益G t ,距离R 处的功率密度–目标有效反射面积σ,后向反射的功率(二次辐射功率)为–雷达接收天线收到的回波功率密度为2124R GP S P ttπσσ==22222)4(4R G P R P S t t πσπ==214R G P S t t π=第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达方程•基本雷达方程推导(续)–雷达天线接收的回波功率密度–雷达天线接收的回波功率–收发共用天线的单基地雷达–基本雷达方程2222)4(4R A G P A R P P rt t r r πσπ==24λπA G =42243224)4(R A P R G P P a t a t r λπσπσλ==minS P r ≥min22min 3224max 4)4(S A P S G P R at a t λπσπσλ==222(4)t t P G S R σπ=第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达方程•雷达方程的解读–用于雷达总体设计,根据技、战术指标估算并确定各分机设计参数–用于估算和研究雷达各参数对作用距离影响的程度,作为调整总体设计指标的依据–用雷达方程得到的雷达作用距离是一个统计值,不能简单地说雷达一定能看多远,通常只能在概率意义上讲, 当目标大小(例如σ = 2m 2)、虚警概率(例如P fa = 10-6)和发现概率(例如P d = 90%)给定时雷达的作用距离R 是多少公里第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇门限检测•门限检测–雷达检测信号的能力受同频段噪声电平限制,判断有无信号须根据某种统计最优准则–奈曼-皮尔逊准则:在给定SNR 和满足一定虚警概率的条件下,发现概率最大–门限检测:若信号包络超出某一预置门限,则认为有目标,否则认为没有目标第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇门限检测•四种概率–门限检测是一种统计检测,四种可能情况:•发现概率P d :有目标时判为有目标的概率•漏警概率P la :有目标时判为无目标的概率•不发现概率P an :无目标时判为无目标的概率•虚警概率P fa :无目标时判为有目标的概率–错误判断:P la 和P fa–相互关系:P d + P la = 1,P an + P fa = 1–雷达检测目标的性能由P d 和P fa 共同描述第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇门限检测•虚警概率和发现概率–噪声:0均值高斯分布,包络为瑞利分布–目标+噪声:包络为莱斯或广义瑞利分布–折中考虑:门限↓,P fa ↑,门限↑,P d ↓–掌握:SNR,P fa ,P d ,门限,四者的相互关系–恒虚警(概)率(CFAR )检测•自动调整电子门限,保证P fa 恒定第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇门限检测•虚警时间–出现虚假回波的平均时间间隔∑=∞→=NK KN fa T NT 11limBT T t TtP fa K K N K KNK Kfa 1)()(11===∑∑==平均平均第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇提高接收机灵敏度•确定接收机灵敏度–检测因子D 0:为获得所要求的P d 和P fa ,检测器输入端所要求的单脉冲SNR–单窄脉冲的脉冲雷达,无匹配滤波,无信号积累•接收机输出直接进入检测器D 0= (S o /N o )min •根据P d 和P fa 指标,D 0 可通过标准曲线图读取–接收机灵敏度S min = N i F 0D 0= kT 0B n F 0D 0第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇提高接收机灵敏度检测因子D o / d B单脉冲检测因子与发现概率和虚警概率的关系曲线图第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇提高接收机灵敏度•雷达接收信号的组成–目标:需要的电磁波反射,也称(目标)回波,如飞机、云雨、天体、舰船、山川、森林、陆地、建筑物、车辆、兵器、人员等–杂波:不需要的电磁波反射,如地面、海面、植被、山区、建筑物等–干扰:有源干扰(发射电磁波)、无源干扰–噪声:环境噪声、系统热噪声–目标、杂波、干扰属机会信号,不一定总是存在第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇提高接收机灵敏度•雷达接收信号的组成(续)–目标信号总是被淹没于(杂波+ 干扰)+ 噪声的背景中–杂波+ 干扰的强度往往超过目标信号的千万倍雷达经常面对的是微弱信号检测问题–注意:有时也将除目标外的所有不需要的信号成分(杂波、干扰、噪声)统称为噪声,例如检测时,而将目标回波简称为信号第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇提高接收机灵敏度•雷达信号处理–雷达信号处理作用•抑制杂波和干扰信号:多普勒处理,空间滤波•增强待测目标SNR :目标回波能量积累•提取目标参数:坐标、速度、特性–确定接收机灵敏度S min 时,通常假设•杂波和干扰能从多普勒或角度上与期望目标回波分离→暂不考虑干扰和杂波的影响•信号能量积累能无限接近最大的SNR 增益G SNR,max = B s T s = 有效信号带宽×有效积累时间第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇提高接收机灵敏度•信号积累提高接收机灵敏度–若P d 和P fa 一定,检测器接收端所需的D 0也一定•信号积累提高目标回波的SNR •要求接收机输出的(S o /N o )min 下降•接收机灵敏度提高S min = N i F 0(S o /N o )min = kT 0B n F 0D 0 /G sp第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇提高接收机灵敏度•相参积累–必须:相参系统,IQ 正交双通道处理,复信号–极限SNR 改善:雷达信号的有效时宽带宽积•脉内:脉冲压缩,匹配滤波,G mf ≤B s τ•脉间:脉冲串,多普勒滤波,G dp ≤N •阵列:数字波束形成,空域滤波,G bf ≤M•非相参积累–包络/视频累积,实信号,适用于快起伏目标–多脉冲非相参积累的SNR 改善:N ~ N 1/2第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达截面积•目标的雷达截面积–RCS :Radar Cross Section –目标的有效散射面积•在目标无损耗地向各方向均匀散射全部入射电磁功率的假设下,算出的垂直于散射传播方向的目标电磁面积(≠物理面积)–面积量纲,单位m 2,或dBsm–目标反射/散射电磁波的能力,目标特性–是波长、视角、极化及目标本身特性的函数光波:物理尺寸电磁波:电磁尺寸⎟⎟⎠⎞⎜⎜⎝⎛=)m (1)m (lg 10)dBsm (22σσ第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达截面积•目标的雷达截面积(续)–二次辐射:目标将入射电磁能量向空间辐射出去–视角函数:单基地雷达默认为后向散射RCS –直观定义:目标的后向散射雷达截面积σ=目标后向反射功率P 2/ 入射目标的功率密度S 1tP P R S P 22124πσ==第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达截面积•目标的雷达截面积(续)–目标RCS 反映目标本身特性,与目标距离无关–电磁理论定义:远场条件下222222||||lim 4lim 4t R t R E E R P P R ∞→∞→==ππσ思考:矛盾吗?–理想球体:完全导电+各向同性–从接收机角度,任意形状的目标与具有相同RCS 的理想球体没有区别任意目标的RCS 都能等效为一个理想球体的RCS第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达截面积•目标的雷达截面积(续)–理想球体RCS=πr 2散射方向垂面上的投影面积–复杂形状目标在各个方向的散射能力不同,需用不同的理想球体来等效–立体角功率密度=功率/(4π)–与目标等效的理想球体沿接收机方向的立体角回波功率密度P Δ=P 2 / (4π)–视角相关的RCS 定义:远场条件下入射功率密度功率密度接收机方向立体角回波ππσ441==ΔS P 第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达目标类型•雷达三维分辨单元–能区分两个目标的最小三维空间单元–三维分辨单元体积V •径向距离分辨ΔR = c τ/2•矩形天线波束水平距离分辨Δθ= RB θ俯仰距离分辨Δϕ= RB ϕ•任意天线波束波束立体角球面分辨ΔA = Ω R 2V = ΔΑ ·ΔR = Ω R 2c τ /2V = Δθ·Δϕ·ΔR = B θB ϕR 2c τ /2第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达目标类型•雷达目标类型–点目标•< 分辨单元的目标•例:远距离的飞机、导弹、行人、卫星…–大目标•> 分辨单元,形状不规则的目标•例:中近距离的舰船、楼房、火车…–分布目标•>> 分辨单元,具有某种统计特性的散射体集合•例:箔条、雨云、地面、海面…第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇决定目标散射特性的因素•目标RCS 与波长的关系–任意目标的RCS 都能等效为一个理想球体的RCS –理想球体RCS ~ λ(投影截面周长= 2πr )•瑞利区:2πr << λ,σ ∝λ-4,绕射为主•光学区:2πr >> λ,σ →πr 2,后向散射为主•振荡区:2πr ≈λ,σ 减幅振荡,绕射+散射–常见简单点目标在光学区的RCS •圆球:πr 2•平板:4πA 2/λ2•曲面:πρ1ρ2振荡思考:和天线增益的关系?第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇决定目标散射特性的因素•目标RCS 与波长的关系(续)理想金属球体第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇决定目标散射特性的因素•目标RCS 与极化的关系–目标的散射特性通常与入射场的极化有关–目标截面形状与波的极化匹配,反射能量↑–目标散射常会改变入射波的极化方向–接收天线与散射波的极化同向,吸收能量最大–目标散射特性与极化的关系用散射矩阵描述⎥⎥⎦⎤⎢⎢⎣⎡++=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡TV VV T H HV TVVH T H HH T V T H VV HV VH HH r V r H E E E E E E E E αααααααα 散射矩阵第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇决定目标散射特性的因素•目标RCS 与视角的关系–实际目标形状复杂,RCS 是视角的复杂函数•目标截面的几何形状随视角变化→RCS 变化•复杂目标的RCS 是许多独立小散射单元RCS 的矢量和(思考:为什么?)–复杂目标各组成单元的散射相位随视角变化→矢量和随视角起伏很大,常达数十dB –设计时,统计平均代表特定类型目标的σ 值•目标不可控,实际视角及姿态不能精确预知•不同类型目标RCS 的起伏有一定的统计规律第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇决定目标散射特性的因素•目标RCS 与视角的关系(续)dB5101520253035典型的飞机RCS λ= 10cm起伏范围:10 ~ 26dB第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇决定目标散射特性的因素•目标RCS 与视角的关系(续)类型σ / m 2普通带翼导弹0.5小型单引擎飞机1小型歼击机或四座喷气机2大型歼击机6中型轰炸机或中型喷气客机20大型轰炸机或大型喷气客机40小船(艇)0.02 ~ 2巡逻艇10目标雷达截面积举例(微波波段)第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇决定目标散射特性的因素•目标RCS 与目标本身特性的关系–目标几何形状对观测方向RCS 的影响•例:圆锥体,锥顶RCS << 锥底RCS –目标表面涂层对散射RCS 的影响•例:厘米~分米波段,吸波材料↓后向散射–目标隐身措施•关键方向形状(如机头):其它方向未必隐身•吸波材料涂层:特定波段有效,昂贵,难修复–反隐身措施:多基地、天基、米波、mm 波…第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇目标起伏模型•目标起伏模型–实际目标的视角、特性等不能精确预知,随机起伏的目标RCS 需用统计模型来描述–常用概率密度函数描述目标RCS 的起伏特性•大型飞机:瑞利分布•导弹、卫星、船舶:对数正态分布–目标起伏类型•慢起伏:一次扫描内脉冲间回波起伏相关→脉冲间相位关系确定(可能未知)→相参•快起伏:脉冲之间回波起伏不相关→非相参第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇目标起伏模型•目标起伏模型(续)–经典施威林(Swerling )起伏模型,4型•Ⅰ型(慢起伏)与Ⅱ型(快起伏),瑞利分布适用:目标由大量独立同分布的散射单元组成•Ⅲ型(慢起伏)与Ⅳ型(快起伏)适用:目标由一个较大反射体和许多小反射体合成,或者一个大的反射体有小的方位变化•Ⅴ型(无起伏),只是方便比较–实际目标起伏特性介于慢起伏和快起伏之间第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇目标起伏模型•目标起伏模型(续)–自由度为2m 的χ2 分布起伏模型•适用:飞机、人造卫星…•施威林Ⅰ~Ⅴ型起伏模型都是其特例–对数正态(log-normal )分布起伏模型•适用:某些卫星、船舰、圆柱体平面…–莱斯(rice )分布起伏模型•适用:一个非起伏成分加许多小随机成分组成的多散射体模型…•参数合适时,近似χ2 分布第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇杂波特性•杂波概述–雷达接收到的不需要的电磁回波信号–对于离散目标,可能伴随的杂波包括:•面分布杂波:地杂波、海杂波•体分布杂波:气象杂波、箔条杂波…–注意:在许多应用场合,地物回波和海面回波是有用信号,如雷达成像、地图测绘、测高…–杂波常用后向散射系数σo 描述•面杂波:单位面积杂波RCS •体杂波:单位体积杂波RCS第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达作用距离•雷达方程的其它形式–考虑各种衰减和损耗L –用检测因子D 0代替灵敏度S min –考虑信号积累增益,信号处理增益G sp00min D F B kT S n =LD F B kT G P R n a t 0003224max )4(πσλ=LD F B kT G G P Rn a sp t 0003224max)4(πσλ=第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇雷达作用距离•雷达方程的其它形式(续)–用信号能量表示的雷达方程•考虑了信号积累增益•适用于各种复杂信号波形–脉冲雷达的雷达方程LD F kT GE L DF kTG T P LD F B kT G T B P LD F B kT G G P R a s a s t n a s s t n asp t 0003220003220003220003224max )4()4()4()4(πσλπσλπσλπσλ====LD F kT NG P L D F kT GE R a t a s 0003220003224max)4()4(πσλτπσλ==第5章雷达作用距离/eolenv/homepage/common/opencourse/2013年南京理工大学电光学院电子工程系许志勇系统损耗•系统损耗–实际雷达作用距离受各种损耗L ( > 1 ) 限制•波导传输损耗;接收机失配损耗;•天线波束形状损耗;积累不完善损耗•目标起伏损耗;操纵员损耗•设备工作不完善损耗–射频传输损耗(波导损耗)•发射机输出端到天线间波导引起的损失,与波导材料、工艺、工作状态及工作波长等有关。