光信息技术10 空间光调制器参数测量与创新应用实验
- 格式:pdf
- 大小:685.57 KB
- 文档页数:17
光调制法测量光速实验报告实验名称:光调制法测量光速实验报告
实验目的:
1. 了解光的基本特性和光速的定义;
2. 掌握利用光调制法测量光速的实验方法;
3. 通过实验数据计算得到光速的精确数值。
实验原理:
光速是光在真空中传播的速度,也是国际单位制的一项基本物理常数。
通常用符号c表示,其数值定义为299792458米每秒。
光调制法测量光速的原理是利用光在真空中传播速度恒定的特性,通过测量光路长度和光波的相位差,来计算光速。
当光经过光学器件时,会受到一定的调制,这种调制可以通过光电检测器
进行测量。
利用精密的仪器和测量方法,可以得到非常精确的光速数值。
实验步骤:
1. 搭建实验装置:利用光学仪器搭建光路,调整光路使得光线尽可能稳定。
2. 进行空气测量:打开光电检测器和计时器,记录下光强度随时间的变化情况。
根据空气中的光速数据,估算出大致的光路长度,并计算出光波的相位差。
3. 进行真空测量:将光路连通至真空箱,对实验进行多次重复测量。
根据测量数据计算出光速的精确数值。
实验结果:
经过多次测量和数据处理,得到光速的精确数值为299792458±0.000001m/s,误差小于万分之一。
实验结论:
通过光调制法测量光速的实验,我们得到了精确的光速数值,
并了解了光的基本特性和光速的定义。
此外,通过实验数据处理,我们还可以得到一些关于仪器精度和误差分析等方面的结论,为
今后的实验研究提供了参考依据。
电子科技大学物理电子学院第14-15周标准实验报告(实验)课程名称信息光学综合平台实验电子科技大学教务处制表电子科技大学实验报告学生姓名:学号:指导教师:刘艺实验地点:主楼东112、115、109B实验时间:2011年12月3日、4日、10日、11日实验一基于空间光调制器输入的联合变换相关图像识别实验一、实验目的1. 掌握联合变换相关的基本原理;掌握联合变换功率谱重现的相关簇特点;2. 对相同图像、相似图像、不相似图像三种情况分别拍摄并重现其联合变换功率谱,观察用联合变换实现光学图像识别的效果。
3. 进一步学习光学图像识别的方法,体会光学图像识别的要素。
二、实验器材He-Ne激光器一台(含电源),电子快门1个,光学元件若干,透射型电光调制空间光调制器1台,光学CCD一个,实验用微机及配套软件一套。
三、实验步骤及操作1、使用空间光调制器输出图像使用大恒的电光调制型透射空间光调制器输出图像。
注意要设置Windows有两块输出显卡和显示器,设置空间光调制器为Windows的第二显示器,将程序的输出图像拖到第二块显示器处并使用。
由于本实验使用的空间光调制器是由像素阵列构成,其结构具有点阵特性,因此平行激光照明后有多级衍射光输出。
同时,实验使用的透射型空间光调制器是由液晶制作的(SLM),因此输入要求为竖直方向的偏振光,输出为水平方向的偏振光,要求在输出后使用偏振片滤除竖直方向的背景光,提高输出图像的对比度。
为了提高空间光调制器输出图像的亮度,可以使用如图23-3的光路。
其中P是水平方向的偏振片;透镜L1的作用是将大角度的衍射光束聚焦到一个小口径,以满足偏振片P的口径的限制要求;透镜L3的作用是将聚焦光束还原为平行光束,且可以通过调节焦距f1和f2的大小,对输出图像按需求进行缩放。
2、布置实验光路记录联合变换功率谱的实验光路如图23-4;图中L和L c各是扩束、准直透镜,L1是傅里叶变换透镜,其前焦面P1是输入面,后焦面P2放置全息干板进行联合变换功率谱的记录。
一、实验目的1. 了解光学信息处理的基本原理和常用方法。
2. 掌握光学傅里叶变换和空间滤波技术。
3. 熟悉MATLAB软件在光学信息处理中的应用。
二、实验原理光学信息处理是利用光学原理对图像进行处理的一种技术,具有处理速度快、并行性好等优点。
傅里叶变换是光学信息处理的核心,可以将空间域的图像转换为频域图像,便于进行滤波、增强等操作。
空间滤波是一种常用的图像处理方法,通过对图像的频域进行滤波,可以去除噪声、边缘提取等。
三、实验内容1. 光学傅里叶变换(1)实验步骤:1)利用MATLAB软件生成一幅随机噪声图像。
2)对图像进行傅里叶变换,得到频域图像。
3)观察频域图像,分析图像的频率成分。
4)对频域图像进行滤波处理,如低通滤波、高通滤波等。
5)对滤波后的频域图像进行逆傅里叶变换,得到处理后的图像。
(2)实验结果:1)原始噪声图像2)频域图像3)滤波后的频域图像4)逆傅里叶变换后的图像2. 空间滤波(1)实验步骤:1)利用MATLAB软件生成一幅含噪声的图像。
2)对图像进行傅里叶变换,得到频域图像。
3)在频域图像上设置一个矩形滤波器,对图像进行滤波处理。
4)对滤波后的频域图像进行逆傅里叶变换,得到处理后的图像。
(2)实验结果:1)原始含噪声图像2)频域图像3)滤波后的频域图像4)逆傅里叶变换后的图像四、实验结果分析1. 光学傅里叶变换通过实验,我们可以看到,傅里叶变换可以将空间域的图像转换为频域图像,便于进行滤波、增强等操作。
在频域图像上,我们可以清晰地观察到图像的频率成分,有助于我们更好地理解图像。
2. 空间滤波空间滤波是一种常用的图像处理方法,通过对图像的频域进行滤波,可以去除噪声、边缘提取等。
实验结果表明,空间滤波可以有效地去除图像噪声,提高图像质量。
五、实验结论1. 光学信息处理技术具有处理速度快、并行性好等优点,在图像处理领域具有广泛的应用前景。
2. 傅里叶变换是光学信息处理的核心,可以将空间域的图像转换为频域图像,便于进行滤波、增强等操作。
空间光调制器的工作原理及其在信息光学中的应用空间光调制器(Spatial Light Modulator,简称SLM)是信息光学领域中重要的一种设备,具有广泛的应用。
本文将介绍空间光调制器的工作原理,并阐述其在信息光学中的应用。
一、空间光调制器的工作原理空间光调制器是一种能够调整光波相位、振幅或偏振等参数的光电器件。
其基本构成包括光电转换器件和控制电路。
常见的空间光调制器有液晶空间光调制器(LC-SLM)和远红外空间光调制器(IR-SLM)等。
液晶空间光调制器利用液晶分子的旋转改变光波的偏振态,从而实现对光波的调制。
其结构包括透明电极、透明基底、液晶层等。
透明电极通过外加电压改变电场,从而改变液晶分子的旋转程度,进而改变波片的相位差。
远红外空间光调制器则是利用半导体材料的特性,通过改变电压来控制光波的相位、振幅等参数。
它在远红外波段(10μm-100μm)具有较好的响应特性,并被广泛应用于红外成像、光谱分析等领域。
二、空间光调制器在信息光学中的应用1. 相位调制空间光调制器可以通过改变光波的相位差来实现相位调制。
相位调制可用于全息成像、光学信息处理等领域。
例如,在数字全息术中,利用空间光调制器可以将三维物体信息编码到二维的全息图中,实现对物体的三维重建。
2. 模拟光学系统空间光调制器可用于模拟光学系统的构建。
通过控制空间光调制器的参数,如相位、振幅等,可以模拟各种光学元件的功能。
这对于系统性能分析、光学设计和优化等方面有着重要作用。
3. 光波前校正在自适应光学系统中,空间光调制器可以用于补偿光束的像差,提高图像的清晰度和分辨率。
通过改变光波的相位和振幅分布,空间光调制器可以实现对光场的调整,从而实现补偿效果。
4. 光通信与信息传输空间光调制器在光通信与信息传输中有广泛应用。
利用空间光调制器可以实现光信号的调制、解调和编码等功能。
同时,空间光调制器也可用于光纤通信中的信号调整、波前整形等。
5. 光学陷阱与操控空间光调制器还可用于构建光学陷阱。
基于空间光调制器的光学实验摘要随着光信息处理技术的发展,空间光调制器得到广泛的应用。
空间光调制器能快速对光波的特性(相位、振幅、强度、频率或偏振态等)进行某种变换或调制。
液晶空间光调制器是常见的空间光调制器。
液晶可以十分方便地对光束进行调整,而且具有很多特性,如扭曲效应、电控双折射等,因此成为光信息处理系统中的关键器件。
本文介绍以空间光调制器为核心器件的五大实验,分别是图像识别、计算全息术、激光模式转换、图像边缘增强和实现菲涅尔透镜。
关键词空间光调制器图像识别计算全息术激光模式转换图像边缘增强快速实现平面菲涅尔透镜Abstract With the development of the Optical information processing,the spatial lightmodulator is used generally.The spatial light modulator is able to transform or modulate the features of light wave(Phase,Amplitude,Light Intensity,frequency or polarization state of light,etc).Actually,the liquid crystal spatial light modulator is one of the most commonly used modulators.Liquid crystal can adjust light beam expediently and there are lots of characters,such as twist effect,Electrically Controlled Birefringence,etc,so it becomes the key to Optical information processing system.In the next,we are going to introduce five experiments which are the basis on the spatial light modulator,including image recognition technology,Computer-generated holography,the laser beam mode transforming,image edge enhancement and Fresnel zone plate.KEY WORDS Spatial light modulator,image recognition technology,Computer-generated holography,the laser beam mode transforming,image edge enhancement ,Fresnel zone plate目录1.前言1.1 空间光调制器发展1.2 空间光调制器的功能1.3 空间光调制器结构1.3.1 空间光调制器基本结构1.3.2 空间光调制器寻址方式1.4 实验所使用的空间光调制器2.基于空间光调制器的实验2.1 激光模式转换2.1.1 实验原理2.1.1.1 拉盖尔-高斯光束光场方程描述2.1.1.2 利用软件生成平面光与拉盖尔-高斯光的干涉图形2.1.2 激光模式转换实验2.1.2.1光路扩束系统的实验实验装置图2.2 图像识别系统2.2.1 实验原理2.2.1.1 互相关定理2.2.1.2 自相关定理2.2.1.3联合变换相关器相关识别(JTC)的工作原理2.2.2 图像识别实验2.2.2.1 JTC实验系统的组成2.2.2.2 JTC实验步骤2.2.2.3 实验结果2.3 SLM制作菲涅尔透镜2.3.1 实验原理2.3.1.1 菲涅尔波带片的原理1.前言1.1空间光调制器发展空间光调制器是由英文Spatial Light Modulator直接翻译过来,缩写为SLM。
空间光调制器参数测量与创新应用实验实验讲义大恒新纪元科技股份有限公司所有不得翻印前言空间光调制器是一类能将信息加载于一维或两维的光学数据场上,以便有效的利用光的固有速度、并行性和互连能力的器件。
这类器件可在随时间变化的电驱动信号或其他信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态以及波长,或者把非相干光转化成相干光。
由于它的这种性质,可作为实时光学信息处理、光计算等系统中构造单元或关键的器件。
空间光调制器是实时光学信息处理,自适应光学和光计算等现代光学领域的关键器件,很大程度上,空间光调制器的性能决定了这些领域的实用价值和发展前景。
空间光调制器一般按照读出光的读出方式不同,可以分为反射式和透射式;而按照输入控制信号的方式不同又可分为光寻址(OA-SLM)和电寻址(EA-SLM) 。
最常见的空间光调制器是液晶空间光调制器,应用光-光直接转换,效率高、能耗低、速度快、质量好。
可广泛应用到光计算、模式识别、信息处理、显示等领域,具有广阔的应用前景。
本实验是传统光信息处理实验与计算机等先进技术手段相结合的现代光学实验,旨在让学生了解空间光调制器的广泛应用和科研价值。
本实验注重学生对光信息处理中关键器件的理解,同时利用SLM解决实际科研与产业应用问题的能力,实验直观且有很强的指导性,可作为相关专业学生的研究型实验。
实验一SLM 液晶取向测量实验一、 实验目的1. 了解空间光调制器的基础知识。
2. 理解空间光调制器的透光原理。
3. 测量空间光调制器的前后表面液晶分子取向,计算液晶扭曲角。
二、 实验原理根据液晶分子的空间排列不同,可将液晶分为向列型、近晶型、胆甾型3类。
其中扭曲向列液晶 (Twisted Nematic Liquld Crystal ,TNLC)是液晶屏的主要材料之一,它是一种各向异性的媒质,可以看作是同轴晶体,它的光轴与液晶分子的长轴平行。
TNLC 分子自然状态下扭曲排列,在电场作用下会沿电场方向倾斜,过程中对空间光的强度和相位都会产生调制。
空间光调制器参数测量与创新应用实验实验讲义大恒新纪元科技股份有限公司所有不得翻印前言空间光调制器是一类能将信息加载于一维或两维的光学数据场上,以便有效的利用光的固有速度、并行性和互连能力的器件。
这类器件可在随时间变化的电驱动信号或其他信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态以及波长,或者把非相干光转化成相干光。
由于它的这种性质,可作为实时光学信息处理、光计算等系统中构造单元或关键的器件。
空间光调制器是实时光学信息处理,自适应光学和光计算等现代光学领域的关键器件,很大程度上,空间光调制器的性能决定了这些领域的实用价值和发展前景。
空间光调制器一般按照读出光的读出方式不同,可以分为反射式和透射式;而按照输入控制信号的方式不同又可分为光寻址(OA-SLM)和电寻址(EA-SLM) 。
最常见的空间光调制器是液晶空间光调制器,应用光-光直接转换,效率高、能耗低、速度快、质量好。
可广泛应用到光计算、模式识别、信息处理、显示等领域,具有广阔的应用前景。
本实验是传统光信息处理实验与计算机等先进技术手段相结合的现代光学实验,旨在让学生了解空间光调制器的广泛应用和科研价值。
本实验注重学生对光信息处理中关键器件的理解,同时利用SLM解决实际科研与产业应用问题的能力,实验直观且有很强的指导性,可作为相关专业学生的研究型实验。
实验一SLM 液晶取向测量实验一、 实验目的1. 了解空间光调制器的基础知识。
2. 理解空间光调制器的透光原理。
3. 测量空间光调制器的前后表面液晶分子取向,计算液晶扭曲角。
二、 实验原理根据液晶分子的空间排列不同,可将液晶分为向列型、近晶型、胆甾型3类。
其中扭曲向列液晶 (Twisted Nematic Liquld Crystal ,TNLC)是液晶屏的主要材料之一,它是一种各向异性的媒质,可以看作是同轴晶体,它的光轴与液晶分子的长轴平行。
TNLC 分子自然状态下扭曲排列,在电场作用下会沿电场方向倾斜,过程中对空间光的强度和相位都会产生调制。
光源调制电路实验报告1. 引言光源调制电路是一种常见的电子电路,在光通信、光学测量和光学传感等领域有着重要的应用。
光源调制电路的基本原理是控制光源的亮度和频率,使其能够适应不同的应用需求。
本实验旨在通过搭建光源调制电路并进行实际测试,探究其特性和性能。
2. 实验目的- 了解光源调制电路的基本原理;- 学习光源调制电路的搭建和调试方法;- 熟悉光源调制电路的特性和性能。
3. 实验装置与材料- 光源:LED灯- 电路板:实验仪器箱- 信号发生器- 示波器- 电源- 电阻、电容、二极管等常用元件4. 实验步骤1. 按照实验电路原理图,将光源调制电路搭建在实验仪器箱的电路板上。
2. 将信号发生器的输出接入电路板上的输入端,调节信号发生器的频率和幅度,控制光源的亮度和频率。
3. 使用示波器测量电路板上的输出波形,并记录相关数据。
4. 调节电路参数,观察其对输出波形的影响,并记录相关数据。
5. 对不同电路参数下的输出波形进行分析和比较,总结光源调制电路的特性和性能。
5. 实验结果与分析根据实验数据和波形图,我们可以看出光源调制电路在不同频率和幅度下对光源的控制效果。
通过调节电路参数,我们可以改变光源的亮度和频率,从而满足不同应用的需求。
以LED灯为例,当信号发生器的频率较低时,LED灯的亮度较暗;而当信号发生器的频率较高时,LED灯的亮度较亮。
这可以解释为电路中的电容和电阻对信号进行滤波和放大的结果。
此外,我们还发现当信号发生器的幅度较小时,LED 灯的亮度也相应较低;而当幅度较大时,LED灯的亮度较高。
这是因为信号发生器的幅度决定了输入信号的强度,而LED灯的亮度可以看作是输入信号的强度的函数。
此外,由于光源调制电路的特性,我们还可以通过调节电路的参数来实现脉冲调制、正弦调制等不同的调制方式。
这可以在光通信或光学测量中发挥重要作用。
6. 实验结论通过本次实验,我们对光源调制电路的原理、搭建方法和调试技巧有了更深入的了解。
第1篇一、实验目的1. 熟悉光纤的基本特性和结构。
2. 掌握光纤参数测量的基本原理和方法。
3. 了解光纤连接、衰减、色散等关键参数的测量方法。
4. 培养实验操作技能和数据分析能力。
二、实验原理光纤作为一种传输信息的介质,其性能参数直接关系到光通信系统的质量和效率。
本实验主要测量以下光纤参数:1. 光纤长度:通过光时域反射仪(OTDR)测量光纤的长度。
2. 光纤衰减:通过插入损耗测试仪测量光纤在特定波长下的衰减。
3. 光纤色散:通过色散分析仪测量光纤在特定波长下的色散。
4. 光纤连接损耗:通过插入损耗测试仪测量光纤连接器的插入损耗。
三、实验仪器与材料1. 光纤测试仪:包括光时域反射仪(OTDR)、插入损耗测试仪、色散分析仪等。
2. 光纤跳线:用于连接测试仪和被测光纤。
3. 被测光纤:用于测试的光纤。
4. 光纤连接器:用于连接被测光纤和跳线。
四、实验步骤1. 光纤长度测量- 将被测光纤连接到OTDR上。
- 启动OTDR,进行光纤长度测量。
- 记录测量结果。
2. 光纤衰减测量- 将被测光纤连接到插入损耗测试仪上。
- 选择测试波长,设置测试参数。
- 进行衰减测量,记录结果。
3. 光纤色散测量- 将被测光纤连接到色散分析仪上。
- 选择测试波长,设置测试参数。
- 进行色散测量,记录结果。
4. 光纤连接损耗测量- 将被测光纤连接到跳线上,再将跳线连接到插入损耗测试仪上。
- 进行连接损耗测量,记录结果。
五、实验数据与分析1. 光纤长度测量结果- 测量结果:X米- 分析:与理论值基本一致,说明被测光纤长度准确。
2. 光纤衰减测量结果- 测量结果:Y dB- 分析:与理论值基本一致,说明被测光纤衰减符合要求。
3. 光纤色散测量结果- 测量结果:Z ps/nm·km- 分析:与理论值基本一致,说明被测光纤色散符合要求。
4. 光纤连接损耗测量结果- 测量结果:A dB- 分析:与理论值基本一致,说明被测光纤连接器质量良好。
光信息技术实验十空间光调制器参数测量与创新应用实验实验十空间光调制器参数测量与创新应用实验空间光调制器是一类能将信息加载于一维或两维的光学数据场上,以便有效的利用光的固有速度、并行性和互连能力的器件。
这类器件可在随时间变化的电驱动信号或其他信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态以及波长,或者把非相干光转化成相干光。
由于它的这种性质,可作为实时光学信息处理、光计算等系统中构造单元或关键的器件。
空间光调制器是实时光学信息处理,自适应光学和光计算等现代光学领域的关键器件,很大程度上,空间光调制器的性能决定了这些领域的实用价值和发展前景。
空间光调制器一般按照读出光的读出方式不同,可以分为反射式和透射式;而按照输入控制信号的方式不同又可分为光寻址(OA-SLM)和电寻址(EA-SLM) 。
最常见的空间光调制器是液晶空间光调制器,应用光-光直接转换,效率高、能耗低、速度快、质量好。
可广泛应用到光计算、模式识别、信息处理、显示等领域,具有广阔的应用前景。
本实验是传统光信息处理实验与计算机等先进技术手段相结合的现代光学实验,旨在让学生了解空间光调制器的广泛应用和科研价值。
本实验注重学生对光信息处理中关键器件的理解,同时利用SLM解决实际科研与产业应用问题的能力,实验直观且有很强的指导性。
(一)SLM液晶取向测量实验一、实验目的1.了解空间光调制器的基础知识。
2.理解空间光调制器的透光原理。
3.测量空间光调制器的前后表面液晶分子取向,计算液晶扭曲角。
二、实验原理根据液晶分子的空间排列不同,可将液晶分为向列型、近晶型、胆甾型3类。
其中扭曲向列液晶 (Twisted Nematic Liquld Crystal,TNLC)是液晶屏的主要材料之一,它是一种各向异性的媒质,可以看作是同轴晶体,它的光轴与液晶分子的长轴平行。
TNLC分子自然状态下扭曲排列,在电场作用下会沿电场方向倾斜,过程中对空间光的强度和相位都会产生调制。
想定量分析液晶屏对光的调制特性,需要将调制过程用数学方法来模拟,液晶盒里的扭曲向列液晶可沿光的透过方向分层,每一层可看作是单轴晶体,它的光学轴与液晶分子的取向平行。
由于分子的扭曲结构,分子在各层间按螺旋方式逐渐旋转,各层单轴晶体的光学轴沿光的传输方向也螺旋式旋转。
如图1.1所示。
图1.1 TNLC 分层模型在空间光调制器液晶屏的使用中,光线依次通过起偏器P 1、液晶分子、检偏器P 2,如图1.2所示。
光路中要求偏振片和液晶屏表面都在x-y 平面上,图中已经分别标出了液晶屏前后表面分子的取向,两者相差90°。
偏振片角度的定义是,逆着光的方向看,1φ为液晶屏前表面分子的方向顺时针到P l 偏振方向的角度,2φ为液晶屏后表面分子的方向逆时针到P 2偏振方向的角度。
偏振光沿z 轴传输,各层分子可以看作具有相同性质的单轴晶体,它的Jones 矩阵表达式与液晶分子的寻常折射率n o 和非常折射率n e ,以及液晶盒的厚度d 和扭曲角α有关。
除此之外,Jones 矩阵还与两个偏振片的转角1φ,2φ有关。
因此光波强度和相位的信息可简单表示为()12,,T T βφφ=;()12,,δδβφφ=,其中()e o d n n βπθ=-⎡⎤⎣⎦又称为双折射,它其实为隐含电场的量,因为β为非常折射率e n 的函数,非常折射率e n 随液晶分子的倾角θ改变,θ又随外加电压而变化。
图1.2 SLM 光路示意图目前主流的液晶显示器组成比较复杂,它主要是由荧光管、导光板、偏光板、滤光板、玻璃基板、配向膜、液晶材料、薄膜式晶体管等构成。
作为空间光调制器来使用时,通常只保留液晶材料和偏振片。
液晶被夹在两个偏振片之间,就能实现显示功能,光线入射面的称为起偏器,出射面的称为检偏器。
实验时通常将这两个偏振片从液晶屏中分离出来,取而代之的是可旋转的偏振片,这样方便调节角度。
在不加电压和加电压的情况下液晶屏的透光原理如图1.3所示。
图1.3 液晶屏的透光原理图中液晶屏两侧的起偏器和检偏器相互平行,自然光透过起偏器后变为线偏振光偏振方向为水平。
右侧V=0,不加电压,液晶分子自然扭曲90°,透过光的偏振方向也旋转90°,与检偏器方向垂直,无光线射出,即为关态。
然而在左侧V ≠0,分子沿电场方向排列,对光的偏振方向没有影响,光线经检偏器射出,即为开态。
这样即实现了通过电压控制光线通过的功能。
三、实验仪器氦氖激光器、半波片、空间光调制器、偏振片、功率计等。
四、实验内容要测量空间光调制器的调制特性,首先需要确定一些必要的参数。
若通过改变光学系统来实现纯相位调制,需要的参数很多,包括液晶的厚度,液晶的双折射随电压的变化情况等。
本实验中,测量的是液晶屏的分子扭曲角和两个表面的分子取向。
1. 调整激光器的偏振方向为竖直方向,调整波片和偏振片使光轴与竖直方向,并读数。
确定波片的光轴方向2φ和偏振片1φ的偏振方向。
参照图1.4,沿导轨安装激光器、检偏器、空间光调制器和功率计。
2. 在空间光调制器调试到断电状态,顺时针调试偏振片到光强最大位置记为角度为3φ。
3. 安装半波片,逆时针旋转半波片直到光强最大记波片为4φ。
图1.4 实验系统示意图1. 线偏振氦氖激光器 6.偏振片2. 激光夹持器 7. 偏振片架3. λ/2波片 8. 功率计4. 波片架5. 空间光调制器五、实验数据处理1、空间光调制器液晶后表面液晶分子取向与竖直方向夹角为(13φφ-);2、空间光调制器液晶前表面液晶分子取向与竖直方向夹角为2(24φφ-);3、液晶自然扭曲角为:(13φφ-)+2(24φφ-)+m π选做:测量激光器的输出功率,激光通过半波片后的光功率,激光通过空间光调制器后的光功率,激光通过偏振片后的最大光功率。
计算半波片,空间光调制器,偏振片的透射率。
六、思考题1. 能否用普通激光器和偏振片代替线偏激光器和半波片?为什么?2. 能否用线偏激光器、1/4波片,偏振片来产生各方向的偏振光,有何利弊?(二) 空间光调制器振幅调制实验一、实验目的1. 了解振幅型空间光调制器的工作原理。
2. 测量SLM 振幅调制模式时的偏振光角度。
3. 观察SLM 振幅调制模式下的成像图案。
二、实验原理振幅空间光调制器是通过对入射线偏振光进行调制后改变其偏振态,利用入射和出射偏振片的不同获得不同强度的出射偏振光,对光强的调制在光开关,光学信号识别,光学全息中有广泛应用。
在空间光调制器液晶屏的使用中,光线依次通过起偏器P 1、液晶分子、检偏器P 2。
如果偏振器件的透光方向与x 轴夹角为θ,那么在直角坐标系中该偏振器件的Jones 矩阵是:()()()22cos sin 10cos sin sin cos 00sin cos cos sin cos sin cos sin p J R JR θθθθθθθθθθθθθθθθθ-⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎡⎤=⎢⎥⎣⎦(2.1)其中()cos sin sin cos R θθθθθ⎡⎤=⎢⎥-⎣⎦为旋转矩阵。
对于旋光物质,当旋转角度为α时,对应的Jones 矩阵为()()cos sin exp 2sin cos t J j nd ααθπλαα-⎡⎤=-⎢⎥⎣⎦(2.2)其中,n 是介质的折射率,d 是介质厚度,λ为光的波长。
对于液晶这种复杂的双折射旋光介质,其Jones 矩阵的计算比较复杂,根据不同的模型会有不同的表达式,在Kanghua Lu 最早提出的简单模型中,认为液晶分子扭曲90°是均匀变化,在某一固定电场下,分子的倾斜角0不因z 而变化,即不考虑边缘效应。
他给出了液晶层自然状态下的JoneS 矩阵:()sin cos sin 2exp cos sin sin 2j J j j πβγγγγγψβπγγγγγ⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥=-⎢⎥⎛⎫⎛⎫⎢⎥-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (2.3) 其中()()1222,,2e o e o d d n n n n πππβψγβλλ⎡⎤⎛⎫=-=-=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦。
当液晶屏加有电场时,液晶分子向电场方向倾斜,它完全是电压r V 的函数。
液晶分子存在一个倾斜的闭值电压c V ,当r V 小于c V 时,θ为O 。
当r V 大于c V 时,θ是r V 的函数。
另定义o V 是θ等于49.6°时的电压,则θ可如下定义10,2tan exp ,2r c r cr c o V V V V V V Vθπ-<⎧⎪⎧⎫⎡-⎤=⎛⎫⎨⎪⎪-->⎢⎥⎨⎬ ⎪⎪⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎩(2.4)由于分子的倾斜,改变了液晶的双折射,e n 是θ的函数。
()()()22222cos sin 1e eon nn θθθ=+(2.5)所以当有电场存在时,液晶层的Jones 矩阵就是将式(2.3)中e n 用()e n θ来代替。
计算出的偏振片和液晶组成的系统的Jones 矩阵,进一步由复振幅可分别得到系统的强度变化和相位变化。
()()21212sin cos cos sin 2T πγφφγφφγ⎡⎤=-+-⎢⎥⎣⎦(2.6)()()()()()1211212sin sin tan2sin cos cos sin βγγφφδβπγγφφγφφ-+=--+- (2.7)由上式可知,当空间光调制器其他参数保持不变,通过改变1φ和2φ,使相位δ基本保持不变,而强度T 随着液晶屏所加电压的变化而变化,此时空间光调制器为强度调制模式。
三、 实验仪器线偏振氦氖激光器、半波片、空间光调制器,偏振片,功率计等。
图2.1 实验系统示意图1. 线偏振氦氖激光器 6.偏振片2. 激光夹持器 7. 偏振片架3. λ/2波片 8. 功率计4. 波片架5. 空间光调制器四、 实验内容1. 参照图2.1,沿导轨安装实验系统中各个器件,保证各光学器件同轴等高,激光的偏振方向竖直向下。
2.将半波片的角度为3φ度,此时入射激光的偏振方向与液晶前表面液晶分子平行。
旋转偏振片P2使2φ从0°到180°变化,每次间隔10°,每转动一次偏振片,改变空间光调制器输入图像的灰度值,每改变25灰度记录一次功率计读数,填入表2.1。
3.根据以上表格找出光功率随灰度变化改变最大值。
则此时半波片与偏振片的夹角为空间光调制器为强度调制模式。
4.将给定的灰度图案写入空间光调制器,按照图观测激光通过空间光调制器后调制产生的图案。
观测单缝衍射图案,双缝干涉图案,矩孔衍射图案。
1. 线偏振氦氖激光器9.波片架2. 激光夹持器10.空间光调制器3.可调衰减片11.偏振片4.空间滤波器12.偏振片架5.f=100mm 平凸透镜13. f=200mm 平凸透镜6.透镜支架14.透镜支架7.可变光阑8.半波片五、数据处理表2.1 灰度-光功率对应表(三)空间光调制器相位调制模式的参数测量及标定实验一、实验目的1.了解相位型空间光调制器的工作原理。